Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
J Biol Chem ; 300(9): 107649, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39122011

RESUMEN

Amaryllidaceae alkaloids are a diverse group of alkaloids exclusively reported from the Amaryllidaceae plant family. In planta, their biosynthesis is still not fully characterized; however, a labeling study established 4'-O-methylnorbelladine as the key intermediate compound of the pathway. Previous reports have characterized O-methyltransferases from several Amaryllidaceae species. Nevertheless, the formation of the different O-methylnorbelladine derivatives (3'-O-methylnorbelladine, 4'-O-methylnorbelladine, and 3'4'-O-dimethylnorbelladine), the role, and the preferred substrates of O-methyltransferases are not clearly understood. In this study, we performed the biochemical characterization of an O-methyltransferase candidate from Narcissus papyraceus (NpOMT) in vitro and in vivo, following biotransformation of norbelladine in Nicotiana benthamiana having transient expression of NpOMT. Docking analysis was further used to investigate substrate preferences, as well as key interacting residues of NpOMT. Our study shows that NpOMT methylates norbelladine preferentially at the 4'-OH position in vitro and in planta. Interestingly, NpOMT also catalyzed the synthesis of 3',4'-O-dimethylnorbelladine from norbelladine and 4'-O-methylnorbelladine during in vitro enzymatic assay. Furthermore, we show that NpOMT methylates 3,4-dihydroxybenzylaldehyde and caffeic acid in a nonregiospecific manner to produce meta/para monomethylated products. This study reveals a novel catalytic potential of an Amaryllidaceae O-methyltransferase and its ability to regioselectively methylate norbelladine in the heterologous host N. benthamiana.


Asunto(s)
Metiltransferasas , Proteínas de Plantas , Metiltransferasas/metabolismo , Metiltransferasas/química , Metiltransferasas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Cinética , Alcaloides de Amaryllidaceae/metabolismo , Alcaloides de Amaryllidaceae/química , Nicotiana/metabolismo , Nicotiana/genética , Narcissus/metabolismo , Narcissus/química , Narcissus/enzimología , Especificidad por Sustrato , Simulación del Acoplamiento Molecular
2.
New Phytol ; 241(5): 2258-2274, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38105545

RESUMEN

Alkaloids are a large group of plant secondary metabolites with various structures and activities. It is important to understand their functions in the interplay between plants and the beneficial and pathogenic microbiota. Amaryllidaceae alkaloids (AAs) are unique secondary metabolites in Amaryllidaceae plants. Here, we studied the interplay between AAs and the bacteriome in Lycoris radiata, a traditional Chinese medicinal plant containing high amounts of AAs. The relationship between AAs and bacterial composition in different tissues of L. radiata was studied. In vitro experiments revealed that AAs have varying levels of antimicrobial activity against endophytic bacteria and pathogenic fungi, indicating the importance of AA synthesis in maintaining a balance between plants and beneficial/pathogenic microbiota. Using bacterial synthetic communities with different compositions, we observed a positive feedback loop between bacteria insensitive to AAs and their ability to increase accumulation of AAs in L. radiata, especially in leaves. This may allow insensitive bacteria to outcompete sensitive ones for plant resources. Moreover, the accumulation of AAs enhanced by insensitive bacteria could benefit plants when challenged with fungal pathogens. This study highlights the functions of alkaloids in plant-microbe interactions, opening new avenues for designing plant microbiomes that could contribute to sustainable agriculture.


Asunto(s)
Alcaloides , Alcaloides de Amaryllidaceae , Lycoris , Alcaloides de Amaryllidaceae/farmacología , Alcaloides de Amaryllidaceae/química , Alcaloides de Amaryllidaceae/metabolismo , Lycoris/química , Lycoris/metabolismo , Alcaloides/metabolismo , Extractos Vegetales/química
3.
J Exp Bot ; 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38652148

RESUMEN

Amaryllidaceae alkaloid (AAs) biosynthesis has garnered significant attention in recent years, particularly with the commercialisation of galanthamine as a treatment for the symptoms of Alzheimer's disease. A significant amount of research work over the last 8 decades has focused on the understanding of AA biosynthesis, starting from early radiolabelling studies to recent multi-omics analysis with modern biotechnological advancements. Those studies enabled the identification of hundreds of metabolites, the characterisation of biochemical pathway, an understanding of the environmental stimuli, and of the molecular regulation of these pharmaceutically and agriculturally important metabolites. Despite the numerous works there remain significant gaps in understanding their biosynthesis in Amaryllidaceae plants. As such, further research is needed to fully elucidate the metabolic pathway and facilitate their production. This review aims to provide a comprehensive overall summary of the current state of knowledge on AAs biosynthesis, from elicitation of transcription factors expression in the cell nucleus to alkaloid transport in the apoplast, and to highlight the challenges that need to be overcome for further advancement.

4.
Molecules ; 29(18)2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39339437

RESUMEN

Norbelladine derivatives have garnered attention in recent years due to their diverse biological activities and pivotal role in the biosynthetic pathway of Amaryllidaceae alkaloids. This study reports the synthesis and biological evaluation of four O,N-methylated derivatives of norbelladine. These derivatives were synthesized through a three-step process: forming imine intermediates from benzaldehydes with tyramine, hydrogenating them to secondary amines, and N-methylating these amines. The products were purified and characterized by 1H and 13C NMR spectroscopy. Their biological activities were assessed by evaluating their ability to inhibit Alzheimer's disease-related enzymes acetylcholinesterase and butyrylcholinesterase. Additionally, the cytotoxic activity of the novel derivatives was tested against cancer cell lines derived from hepatocarcinoma (Huh7), adenocarcinoma (HCT-8), and acute myeloid leukemia (THP-1) cells, and their antiviral properties against a human coronavirus (HCoV-OC43), a flavivirus (dengue virus), and a lentivirus (pseudotyped HIV-1). Docking analysis was performed to understand the impact of the N-methylation on their pharmacological relevance. The results indicate that while N-methylation does not significantly affect antiviral activity, it enhances butyrylcholinesterase inhibition for N-methylnorbelladine and 4'-O,N-dimethylnorbelladine. Overall, this work enhances our understanding of norbelladine derivatives, provides new tools for Alzheimer's disease research, and lays the groundwork for future pharmaceutical developments.


Asunto(s)
Antivirales , Butirilcolinesterasa , Simulación del Acoplamiento Molecular , Humanos , Antivirales/farmacología , Antivirales/síntesis química , Antivirales/química , Línea Celular Tumoral , Butirilcolinesterasa/metabolismo , Butirilcolinesterasa/química , Acetilcolinesterasa/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/síntesis química , Inhibidores de la Colinesterasa/química , Metilación , Relación Estructura-Actividad , Estructura Molecular
5.
Molecules ; 28(3)2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-36770905

RESUMEN

Amaryllidaceae alkaloids are secondary metabolites with interesting medicinal properties. Almost every Narcissus species can synthesize them and constitute an excellent source for their isolation and study. Several Amaryllidaceae alkaloids have shown acetylcholinesterase inhibitory activities and are a promising tool for treating cholinergic disorders such as Alzheimer's disease (AD). Indeed, three of the four palliative treatments approved for AD are acetylcholinesterase (AChE) inhibitors and one of them, galanthamine, is an Amaryllidaceae alkaloid itself. This molecule is currently isolated from natural sources. However, its production is insufficient to supply the increasing demand for the active principle. Our main aim is to discover tools to improve galanthamine production and to prospect for potential new and more efficient drugs for AD treatment. Furthermore, we seek to broaden the knowledge of plants of the genus Narcissus from a chemotaxonomic perspective. Hence, in this study, we evaluate the alkaloid content through GC-MS and the AChE inhibitory activity of ten autumn-flowering Narcissus, which have been less studied than their spring-flowering counterparts. A total of thirty Amaryllidaceae alkaloids have been found, twenty-eight properly identified. Two Narcissus contained galanthamine, and seven were able to inhibit AChE.


Asunto(s)
Alcaloides de Amaryllidaceae , Amaryllidaceae , Narcissus , Acetilcolinesterasa/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Amaryllidaceae/química , Alcaloides de Amaryllidaceae/farmacología , Inhibidores de la Colinesterasa , Galantamina/farmacología , Narcissus/química
6.
Molecules ; 28(6)2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36985571

RESUMEN

Cancer is a major cause of death and an impediment to increasing life expectancy worldwide. With the aim of finding new molecules for chemotherapeutic treatment of epidemiological relevance, ten alkaloid fractions from Amaryllidaceae species were tested against six cancer cell lines (AGS, BT-549, HEC-1B, MCF-7, MDA-MB 231, and PC3) with HaCat as a control cell line. Some species determined as critically endangered with minimal availability were propagated using in vitro plant tissue culture techniques. Molecular docking studies were carried out to illustrate binding orientations of the 30 Amaryllidaceae alkaloids identified in the active site of some molecular targets involved with anti-cancer activity for potential anti-cancer drugs. In gastric cancer cell line AGS, the best results (lower cell viability percentages) were obtained for Crinum jagus (48.06 ± 3.35%) and Eucharis bonplandii (45.79 ± 3.05%) at 30 µg/mL. The research focused on evaluating the identified alkaloids on the Bcl-2 protein family (Mcl-1 and Bcl-xL) and HK2, where the in vitro, in silico and statistical results suggest that powelline and buphanidrine alkaloids could present cytotoxic activity. Finally, combining experimental and theoretical assays allowed us to identify and characterize potentially useful alkaloids for cancer treatment.


Asunto(s)
Alcaloides , Alcaloides de Amaryllidaceae , Amaryllidaceae , Antineoplásicos , Neoplasias , Extractos Vegetales/farmacología , Amaryllidaceae/química , Simulación del Acoplamiento Molecular , Alcaloides/química , Alcaloides de Amaryllidaceae/farmacología
7.
Molecules ; 28(7)2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37049986

RESUMEN

The Amaryllidaceae species are well-known as a rich source of bioactive compounds in nature. Although Hymenocallis littoralis has been studied for decades, its polar components were rarely explored. The current phytochemical investigation of Amaryllidaceae alkaloids from H. littoralis led to the identification of three previously undescribed compounds: O-demethyl-norlycoramine (1), (-)-2-epi-pseudolycorine (2) and (+)-2-epi-pseudolycorine (3), together with eight known compounds: 6α-hydroxyhippeastidine (4), 6ß-hydroxyhippeastidine (5), lycorine (6), 2-epi-lycorine (7), zephyranthine (8), ungeremine (9), pancratistatin (10) and 9-O-demethyl-7-O-methyllycorenine (11). Among the eight previously reported compounds, five were isolated from H. littoralis for the first time (compounds 4, 5, 7, 8, and 9). Compounds 1, 4, 5, 7, 8, and 11 exhibited weak anti-SARS-CoV-2 activity (EC50 = 40-77 µM) at non-cytotoxic concentrations. Assessment of cytotoxicity on the Vero-E6 cell line revealed lycorine and pancratistatin as cytotoxic substances with CC50 values of 1.2 µM and 0.13 µM, respectively. The preliminary structure-activity relationship for the lycorine-type alkaloids in this study was further investigated, and as a result ring C appears to play a crucial role in their anti-SARS-CoV-2 activity.


Asunto(s)
Alcaloides de Amaryllidaceae , Amaryllidaceae , COVID-19 , Liliaceae , Alcaloides de Amaryllidaceae/farmacología , Alcaloides de Amaryllidaceae/química , Amaryllidaceae/química
8.
Molecules ; 28(14)2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37513280

RESUMEN

The genus Clinanthus Herb. is found in the Andes Region (South America), mainly in Peru, Ecuador, and Bolivia. These plants belong to the Amaryllidaceae family, specifically the Amaryllidoideae subfamily, which presents an exclusive group of alkaloids known as Amaryllidaceae alkaloids that show important structural diversity and pharmacological properties. It is possible to find some publications in the literature regarding the botanical aspects of Clinanthus species, although there is little information available about their chemical and biological activities. The aim of this work was to obtain the alkaloid profile and the anti-cholinesterase activity of four different samples of Clinanthus collected in South America: Clinanthus sp., Clinanthus incarnatus, and Clinanthus variegatus. The alkaloid extract of each sample was analyzed by gas chromatography coupled with mass spectrometry (GC-MS), and their potential against the enzymes acetyl- and butyrylcholinesterase were evaluated. Thirteen alkaloids have been identified among these species, while six unidentified structures have also been detected in these plants. The alkaloid extract of the C. variegatus samples showed the highest structural diversity as well as the best activity against AChE, which was likely due to the presence of the alkaloid sanguinine. The results suggest this genus as a possible interesting new source of Amaryllidaceae alkaloids, which could contribute to the development of new medicines.


Asunto(s)
Alcaloides , Alcaloides de Amaryllidaceae , Amaryllidaceae , Alcaloides de Amaryllidaceae/farmacología , Butirilcolinesterasa/química , Amaryllidaceae/química , Alcaloides/química , Inhibidores de la Colinesterasa/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , América del Sur
9.
J Appl Biomed ; 21(1): 36-47, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37016777

RESUMEN

Skin cancer has high rates of mortality and therapeutic failure. In this study, to develop a multi-agent strategy for skin cancer management, the selective cytotoxicity of several alkaloid fractions and pure alkaloids isolated from Amaryllidaceae species was evaluated in melanoma cells. In addition, UVB-stimulated keratinocytes (HaCaT) were exposed to seven alkaloid fractions characterized by GC-MS, and the production of intracellular reactive oxygen species (ROS) and IL-6, were measured to evaluate their photoprotection effects. The Eucharis caucana (bulb) alkaloid fraction (20 µg/ml) had a clear effect on the viability of melanoma cells, reducing it by 45.7% without affecting healthy keratinocytes. This alkaloid fraction and tazettine (both at 2.5 µg/ml) suppressed UVB-induced ROS production by 31.6% and 29.4%, respectively. The highest anti-inflammatory potential was shown by the Zephyranthes carinata (bulb) alkaloid fraction (10 µg/ml), which reduced IL-6 production by 90.8%. According to the chemometric analysis, lycoramine and tazettine had a photoprotective effect on the UVB-exposed HaCaT cells, attenuating the production of ROS and IL-6. These results suggest that Amaryllidaceae alkaloids have photoprotective and therapeutic potential in skin cancer management, especially at low concentrations.


Asunto(s)
Alcaloides , Alcaloides de Amaryllidaceae , Melanoma , Neoplasias Cutáneas , Humanos , Alcaloides de Amaryllidaceae/farmacología , Especies Reactivas de Oxígeno/farmacología , Interleucina-6 , Alcaloides/farmacología , Queratinocitos , Neoplasias Cutáneas/tratamiento farmacológico , Melanoma/tratamiento farmacológico
10.
Saudi Pharm J ; 31(8): 101684, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37457365

RESUMEN

Ambelline, an alkaloid from the Amaryllidaceae family with a crinane-type skeleton, has not yet demonstrated any outstanding biological activity. However, its analogues prepared by derivatization of the C-11 hydroxyl group show different interesting effects. Continuing our earlier work, twelve novel aromatic esters were developed (10, 14, 16, 17, 22-25, 30-33) and studied, together with previously synthesized derivatives (2-9, 11-13, 15, 18-21, 26-29) in terms of their cytotoxic activity. The cytotoxic potential was determined on a panel of nine human cancer cell lines and one noncancerous cell line to characterize their biological activity spectrum. To describe and foresee the structure-activity relationship for further research, substances synthesized and described in our previous work were also included in this cytotoxicity study. The most significant activity was associated with analogues having methyl (10), methoxy (14-17), or ethoxy (18) substitution on the phenyl condensed to ambelline. However, the 4-chloro-3-nitrobenzoyl derivative (32) showed the most promising IC50 values, ranging from 0.6 ± 0.1 µM to 9.9 ± 0.2 µM. In vitro cytotoxicity studies indicated the most potent antiproliferative activity of 32 in a dose-dependent and time-dependent manner. Besides, 32 was found to be effective in decreasing viability and triggering apoptosis of MOLT-4 T-lymphoblastic leukemia cells.

11.
Molecules ; 27(13)2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35807391

RESUMEN

During the search for a general, efficient route toward the synthesis of C-1 analogues of narciclasine, natural narciclasine was protected and converted to its C-1 enol derivative using a novel semi-synthetic route. Attempted conversion of this material to its triflate in order to conduct cross-coupling at C-1 resulted in a triflate at C-6 that was successfully coupled with several functionalities. Four novel compounds were fully deprotected after seven steps and subjected to evaluation for cytotoxic activity against three cancer cell lines. Only one derivative showed moderate activity compared to that of narciclasine. Spectral and physical data are provided for all new compounds.


Asunto(s)
Alcaloides de Amaryllidaceae , Antineoplásicos , Neoplasias , Alcaloides de Amaryllidaceae/química , Antineoplásicos/química , Humanos , Fenantridinas/química
12.
Molecules ; 27(18)2022 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-36144504

RESUMEN

Aiming to find Amaryllidaceae alkaloids against breast cancer, including the highly aggressive triple-negative breast cancer, the phytochemical study of Pancratium maritimum was carried out. Several Amaryllidaceae-type alkaloids, bearing scaffolds of the haemanthamine-, homolycorine-, lycorine-, galanthamine-, and tazettine-type were isolated (3-11), along with one alkamide (2) and a phenolic compound (1). The antiproliferative effect of compounds (1-11) was evaluated by the sulforhodamine B assay against triple-negative breast cancer cell lines MDA-MB-231 and MDA-MB-468, breast cancer cells MCF-7, and the non-malignant fibroblast (HFF-1) and breast (MCF12A) cell lines. The alkaloids 3, 5, 7, and 11 showed significant growth inhibitory effects against all breast cancer cell lines, with IC50 (half-maximal inhibitory concentration) values ranging from 0.73 to 16.3 µM. The homolycorine-type alkaloid 7 was selected for further investigation in MDA-MB-231 cells. In the annexin-V assay, compound 7 increased cell death by apoptosis, which was substantiated, in western blot analyses, by the increased expression of the pro-apoptotic protein Bax, and the decreased expression of the anti-apoptotic protein Bcl-xL. Consistently, it further stimulated mitochondrial reactive oxygen species (ROS) generation. The antiproliferative effect of compound 7 was also associated with G2/M cell cycle arrest, which was supported by an increase in the p21 protein expression levels. In MDA-MB-231 cells, compound 7 also exhibited synergistic effects with conventional chemotherapeutic drugs such as etoposide.


Asunto(s)
Alcaloides , Alcaloides de Amaryllidaceae , Amaryllidaceae , Neoplasias de la Mama , Neoplasias de la Mama Triple Negativas , Alcaloides/farmacología , Amaryllidaceae/metabolismo , Alcaloides de Amaryllidaceae/farmacología , Anexinas , Apoptosis , Neoplasias de la Mama/tratamiento farmacológico , Puntos de Control del Ciclo Celular , Línea Celular Tumoral , Proliferación Celular , Etopósido/farmacología , Femenino , Galantamina/farmacología , Humanos , Especies Reactivas de Oxígeno/metabolismo , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/metabolismo , Proteína X Asociada a bcl-2/metabolismo
13.
Chem Rec ; 21(12): 3818-3838, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34796643

RESUMEN

Natural product synthesis has been the prime focus for the development of new carbon-carbon bond forming transformations. In particular, the construction of molecules with all-carbon quaternary centers remain one of the most facinating targets. In this regard, transition-metal catalyzed processes have gained imporatnce owing to their mild nature. Towards this, Pd(0)-catalyzed decarboxylative allylations (DcA) is worth mentioning and has emerged as a convenient method for synthesis of molecules even in their enantioenriched form. However, in order to have a flexible approach that facilitate rapid production of derivatives by utilizing commercially available allyl alcohols, the concept of Pd(0)-catalyzed deacylative allylations (DaA) methodology gains popularity. In these reactions, the transfer of an acyl group has a functional role in activating the allylic alcohol (proelectrophile) toward reaction with Pd(0)-catalysts. We present here an Account on newly conceptualized deacylative allylations (DaA) methodology and its applications in the synthesis of various intermediates and building blocks. Further, its potential in the total synthesis of naturally occurring alkaloids have been summarized in this personal account.


Asunto(s)
Alcaloides , Carbono , Catálisis , Estructura Molecular , Estereoisomerismo
14.
Tetrahedron Lett ; 752021 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-34176982

RESUMEN

A rapid synthesis of the core structures of crinane and haemanthamine has been developed, enabled by a multicomponent approach. This work constitutes a formal synthesis of crinane and sets the stage for access to both families of natural products and key analogues. A key highlight of the approach is the modularity of the core synthesis, overcoming existing challenges for these scaffolds and providing a path to explore site-selective oxidation to expand the scope of molecules accessible from common intermediates.

15.
Int J Mol Sci ; 22(13)2021 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-34209868

RESUMEN

Pancracine, a montanine-type Amaryllidaceae alkaloid (AA), is one of the most potent compounds among natural isoquinolines. In previous studies, pancracine exhibited cytotoxic activity against diverse human cancer cell lines in vitro. However, further insight into the molecular mechanisms that underlie the cytotoxic effect of pancracine have not been reported and remain unknown. To fill this void, the cell proliferation and viability of cancer cells was explored using the Trypan Blue assay or by using the xCELLigence system. The impact on the cell cycle was determined by flow cytometry. Apoptosis was evaluated by Annexin V/PI and by quantifying the activity of caspases (-3/7, -8, and -9). Proteins triggering growth arrest or apoptosis were detected by Western blotting. Pancracine has strong antiproliferative activity on A549 cells, lasting up to 96 h, and antiproliferative and cytotoxic effects on MOLT-4 cells. The apoptosis-inducing activity of pancracine in MOLT-4 cells was evidenced by the significantly higher activity of caspases. This was transmitted through the upregulation of p53 phosphorylated on Ser392, p38 MAPK phosphorylated on Thr180/Tyr182, and upregulation of p27. The pancracine treatment negatively altered the proliferation of A549 cells as a consequence of an increase in G1-phase accumulation, associated with the downregulation of Rb phosphorylated on Ser807/811 and with the concomitant upregulation of p27 and downregulation of Akt phosphorylated on Thr308. This was the first study to glean a deeper mechanistic understanding of pancracine activity in vitro. Perturbation of the cell cycle and induction of apoptotic cell death were considered key mechanisms of pancracine action.


Asunto(s)
Adenocarcinoma del Pulmón/patología , Proliferación Celular/efectos de los fármacos , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Leucemia/patología , Neoplasias Pulmonares/patología , Células A549 , Alcaloides/aislamiento & purificación , Alcaloides/farmacología , Amaryllidaceae/química , Antineoplásicos Fitogénicos/aislamiento & purificación , Antineoplásicos Fitogénicos/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Células Hep G2 , Compuestos Heterocíclicos de 4 o más Anillos/aislamiento & purificación , Humanos , Células MCF-7
16.
Molecules ; 25(21)2020 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-33113950

RESUMEN

Alkaloids are an important group of specialized nitrogen metabolites with a wide range of biochemical and pharmacological effects. Since the first publication on lycorine in 1877, more than 650 alkaloids have been extracted from Amaryllidaceae bulbous plants and clustered together as the Amaryllidaceae alkaloids (AAs) family. AAs are specifically remarkable for their diverse pharmaceutical properties, as exemplified by the success of galantamine used to treat the symptoms of Alzheimer's disease. This review addresses the isolation, biological, and structure activity of AAs discovered from January 2015 to August 2020, supporting their therapeutic interest.


Asunto(s)
Alcaloides de Amaryllidaceae/metabolismo , Alcaloides de Amaryllidaceae/farmacología , Descubrimiento de Drogas , Alcaloides de Amaryllidaceae/química , Animales , Humanos
17.
Phytochem Anal ; 29(2): 217-227, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29044771

RESUMEN

INTRODUCTION: Enzymatic inhibition of acetylcholinesterase (AChE) is an essential therapeutic target for the treatment of Alzheimer's disease (AD) and AChE inhibitors are the first-line drugs for it treatment. However, butyrylcholinesterase (BChE), contributes critically to cholinergic dysfunction associated with AD. Thus, the development of novel therapeutics may involve the inhibition of both cholinesterase enzymes. OBJECTIVE: To evaluate, in an integrated bioguided study, cholinesterases alkaloidal inhibitors of Amaryllidaceae species. METHODOLOGY: The proposed method combines high-performance thin-layer chromatography (HPTLC) with data analysis by densitometry, enzymatic bioautography with different AChEs and BChEs, the detection of bioactive molecules through gas chromatography mass spectrometry (GC-MS) analysis of spots of interest, and theoretical in silico studies. RESULTS: To evaluate the bioguided method, the AChE and BChE inhibitory activities of seven Amaryllidaceae plant extracts were evaluated. The alkaloid extracts of Eucharis bonplandii exhibited a high level of inhibitory activity (IC50  = 0.72 ± 0.05 µg/mL) against human recombinant AChE (hAChE). Regarding human serum BChE (hBChE), the bulb and leaf extracts of Crinum jagus had the highest activity (IC50  = 8.51 ± 0.56 µg/mL and 11.04 ± 1.21 µg/mL, respectively). In the HPTLC spots with high inhibitory activity, several alkaloids were detected using GC-MS, and some of these alkaloids were identified. Galanthamine, galanthamine N-oxide and powelline should be the most prominent inhibitors of substrate accommodation in the active site of the Torpedo californica AChE (TcAChE), hAChE and hBChE enzymes. CONCLUSIONS: These results are evidence of the chemical relevance of the Colombian's Amaryllidaceae species for the inhibition of cholinesterases and as potent sources for the palliative treatment of AD. Copyright © 2017 John Wiley & Sons, Ltd.


Asunto(s)
Acetilcolinesterasa/efectos de los fármacos , Alcaloides/aislamiento & purificación , Amaryllidaceae/química , Butirilcolinesterasa/efectos de los fármacos , Inhibidores de la Colinesterasa/aislamiento & purificación , Alcaloides/farmacología , Animales , Inhibidores de la Colinesterasa/farmacología , Cromatografía en Capa Delgada/métodos , Cromatografía de Gases y Espectrometría de Masas/métodos , Caballos , Humanos , Simulación del Acoplamiento Molecular , Extractos Vegetales/farmacología , Hojas de la Planta/química , Raíces de Plantas/química , Proteínas Recombinantes/efectos de los fármacos , Torpedo
18.
Int J Mol Sci ; 19(7)2018 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-29966257

RESUMEN

O-methyltransferases (OMTs) have been demonstrated to play key roles in the biosynthesis of plant secondary metabolites, such as alkaloids, isoprenoids, and phenolic compounds. Here, we isolated and characterized an OMT gene from Lycoris aurea (namely LaOMT1), based on our previous transcriptome sequencing data. Sequence alignment and phylogenetic analysis showed that LaOMT1 belongs to the class I OMT, and shares high identity to other known plant OMTs. Also, LaOMT1 is highly identical in its amino acid sequence to NpN4OMT, a norbelladine 4'-OMT from Narcissus sp. aff. pseudonarcissus involved in the biosynthesis of Amaryllidaceae alkaloids. Biochemical analysis indicated that the recombinant LaOMT1 displayed both para and metaO-methylation activities with caffeic acid and 3,4-dihydroxybenzaldehyde, and showed a strong preference for the meta position. Besides, LaOMT1 also catalyzes the O-methylation of norbelladine to form 4'-O-methylnorbelladine, which has been demonstrated to be a universal precursor of all the primary Amaryllidaceae alkaloid skeletons. The results from quantitative real-time PCR assay indicated that LaOMT1 was ubiquitously expressed in different tissues of L. aurea, and its highest expression level was observed in the ovary. Meanwhile, the largest concentration of lycorine and galanthamine were found in the ovary, whereas the highest level of narciclasine was observed in the bulb. In addition, sodium chloride (NaCl), cold, polyethylene glycol (PEG), sodium nitroprusside (SNP), and methyl jasmonate (MeJA) treatments could significantly increase LaOMT1 transcripts, while abscisic acid (ABA) treatment dramatically decreased the expression level of LaOMT1. Subcellular localization showed that LaOMT1 is mainly localized in cytoplasm and endosome. Our results in this study indicate that LaOMT1 may play a multifunctional role, and lay the foundation for Amaryllidaceae alkaloid biosynthesis in L. aurea.


Asunto(s)
Clonación Molecular , Metiltransferasas/metabolismo , Proteínas de Plantas/metabolismo , Plantas Medicinales/metabolismo , Alcaloides de Amaryllidaceae/metabolismo , Benzaldehídos/metabolismo , Ácidos Cafeicos/metabolismo , Catecoles/metabolismo , Metiltransferasas/genética , Proteínas de Plantas/genética , Plantas Medicinales/genética
19.
Molecules ; 23(4)2018 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-29561817

RESUMEN

Glycogen synthase kinase-3ß (GSK-3ß) is a multifunctional serine/threonine protein kinase that was originally identified as an enzyme involved in the control of glycogen metabolism. It plays a key role in diverse physiological processes including metabolism, the cell cycle, and gene expression by regulating a wide variety of well-known substances like glycogen synthase, tau-protein, and ß-catenin. Recent studies have identified GSK-3ß as a potential therapeutic target in Alzheimer´s disease, bipolar disorder, stroke, more than 15 types of cancer, and diabetes. GSK-3ß is one of the most attractive targets for medicinal chemists in the discovery, design, and synthesis of new selective potent inhibitors. In the current study, twenty-eight Amaryllidaceae alkaloids of various structural types were studied for their potency to inhibit GSK-3ß. Promising results have been demonstrated by alkaloids of the homolycorine-{9-O-demethylhomolycorine (IC50 = 30.00 ± 0.71 µM), masonine (IC50 = 27.81 ± 0.01 µM)}, and lycorine-types {caranine (IC50 = 30.75 ± 0.04 µM)}.


Asunto(s)
Alcaloides de Amaryllidaceae/farmacología , Glucógeno Sintasa Quinasa 3 beta/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Alcaloides de Amaryllidaceae/química , Evaluación Preclínica de Medicamentos , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Humanos , Concentración 50 Inhibidora , Inhibidores de Proteínas Quinasas/química
20.
J Biol Chem ; 291(32): 16740-52, 2016 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-27252378

RESUMEN

Amaryllidaceae alkaloids are a large group of plant natural products with over 300 documented structures and diverse biological activities. Several groups of Amaryllidaceae alkaloids including the hemanthamine- and crinine-type alkaloids show promise as anticancer agents. Two reduction reactions are required for the production of these compounds: the reduction of norcraugsodine to norbelladine and the reduction of noroxomaritidine to normaritidine, with the enantiomer of noroxomaritidine dictating whether the derivatives will be the crinine-type or hemanthamine-type. It is also possible for the carbon-carbon double bond of noroxomaritidine to be reduced, forming the precursor for maritinamine or elwesine depending on the enantiomer reduced to an oxomaritinamine product. In this study, a short chain alcohol dehydrogenase/reductase that co-expresses with the previously discovered norbelladine 4'-O-methyltransferase from Narcissus sp. and Galanthus spp. was cloned and expressed in Escherichia coli Biochemical analyses and x-ray crystallography indicates that this protein functions as a noroxomaritidine reductase that forms oxomaritinamine from noroxomaritidine through a carbon-carbon double bond reduction. The enzyme also reduces norcraugsodine to norbelladine with a 400-fold lower specific activity. These studies identify a missing step in the biosynthesis of this pharmacologically important class of plant natural products.


Asunto(s)
Alcaloides de Amaryllidaceae/química , Galanthus/enzimología , Narcissus/enzimología , Oxidorreductasas/química , Proteínas de Plantas/química , Alcaloides de Amaryllidaceae/metabolismo , Galanthus/genética , Narcissus/genética , Oxidación-Reducción , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda