Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 543
Filtrar
1.
Cereb Cortex ; 34(1)2024 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-38012118

RESUMEN

The present study aimed to clarify the brain function of classical trigeminal neuralgia (CTN) by analyzing 77 CTN patients and age- and gender-matched 73 healthy controls (HCs) based on three frequency bands of the static and dynamic amplitude of low-frequency fluctuation, regional homogeneity, and degree centrality (sALFF, sReHo, sDC, dALFF, dReHo, and dDC). Compared to HCs, the number of altered brain regions was different in three frequency bands, and the classical frequency band was most followed by slow-4 in CTN patients. Cerrelellum_8_L (sReHo), Cerrelellum_8_R (sDC), Calcarine_R (sDC), and Caudate_R (sDC) were found only in classical frequency band, while Precuneus_L (sALFF) and Frontal_Inf_Tri_L (sReHo) were found only in slow-4 frequency band. Except for the above six brain regions, the others overlapped in the classical and slow-4 frequency bands. CTN seriously affects the mental health of patients, and some different brain regions are correlated with clinical parameters. The static and dynamic indicators of brain function were complementary in CTN patients, and the changing brain regions showed frequency specificity. Compared to slow-5 frequency band, slow-4 is more consistent with the classical frequency band, which could be valuable in exploring the pathophysiology of CTN.


Asunto(s)
Fenómenos Fisiológicos del Sistema Nervioso , Neuralgia del Trigémino , Humanos , Lóbulo Parietal , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética
2.
Cereb Cortex ; 34(2)2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38216521

RESUMEN

This study aimed to analyze the brain function of severe obstructive sleep apnea patients with various sleepiness assessment methods and explore the brain imaging basis for the differences between these methods. This study included 30 severe obstructive sleep apnea patients and 19 healthy controls. Obstructive sleep apnea patients were divided into a subjective excessive daytime sleepiness group and a subjective non-excessive daytime sleepiness group according to the Epworth sleepiness scale. Moreover, they were divided into an objective excessive daytime sleepiness group and an objective non-excessive daytime sleepiness group according to the multiple sleep latency test. The fractional amplitude of low-frequency fluctuation was used to assess the features of brain function. Compared with healthy controls, participants in the subjective excessive daytime sleepiness group exhibited higher fractional amplitude of low-frequency fluctuation signals in the right thalamus, left cerebellar lobe 6, left putamen, and pallidum. Participants in the objective excessive daytime sleepiness group showed higher fractional amplitude of low-frequency fluctuation signals in the right thalamus and lower fractional amplitude of low-frequency fluctuation signals in the right superior frontal gyrus, the dorsolateral and superior frontal gyrus, and the medial orbital. We concluded that the thalamus may be involved in subjective and objective sleepiness regulation. Functional abnormalities in the putamen and pallidum may be involved in subjective sleepiness, whereas the frontal lobe may be involved in objective sleepiness.


Asunto(s)
Trastornos de Somnolencia Excesiva , Apnea Obstructiva del Sueño , Humanos , Somnolencia , Latencia del Sueño , Apnea Obstructiva del Sueño/diagnóstico por imagen , Sueño , Trastornos de Somnolencia Excesiva/etiología
3.
Neurobiol Dis ; 197: 106527, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38740347

RESUMEN

BACKGROUND: Neurotransmitter deficits and spatial associations among neurotransmitter distribution, brain activity, and clinical features in Parkinson's disease (PD) remain unclear. Better understanding of neurotransmitter impairments in PD may provide potential therapeutic targets. Therefore, we aimed to investigate the spatial relationship between PD-related patterns and neurotransmitter deficits. METHODS: We included 59 patients with PD and 41 age- and sex-matched healthy controls (HCs). The voxel-wise mean amplitude of the low-frequency fluctuation (mALFF) was calculated and compared between the two groups. The JuSpace toolbox was used to test whether spatial patterns of mALFF alterations in patients with PD were associated with specific neurotransmitter receptor/transporter densities. RESULTS: Compared to HCs, patients with PD showed reduced mALFF in the sensorimotor- and visual-related regions. In addition, mALFF alteration patterns were significantly associated with the spatial distribution of the serotonergic, dopaminergic, noradrenergic, glutamatergic, cannabinoid, and acetylcholinergic neurotransmitter systems (p < 0.05, false discovery rate-corrected). CONCLUSIONS: Our results revealed abnormal brain activity patterns and specific neurotransmitter deficits in patients with PD, which may provide new insights into the mechanisms and potential targets for pharmacotherapy.


Asunto(s)
Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/fisiopatología , Masculino , Femenino , Persona de Mediana Edad , Anciano , Encéfalo/metabolismo , Imagen por Resonancia Magnética/métodos , Neurotransmisores/metabolismo , Imagen Multimodal/métodos
4.
Mol Pain ; 20: 17448069241286466, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39259583

RESUMEN

Introduction: The brain's reward system (RS) reacts differently to pain and its alleviation. This study examined the correlation between RS activity and behavior during both painful and pain-free periods in individuals with primary dysmenorrhea (PDM) to elucidate their varying responses throughout the menstrual cycle. Methods: Ninety-two individuals with PDM and 90 control participants underwent resting-state functional magnetic resonance imaging (rsfMRI) scans during their menstrual and peri-ovulatory phases. Regional homogeneity (ReHo) and amplitude of low-frequency fluctuation (ALFF) analyses were used to evaluate RS responses. Psychological evaluations were conducted using the McGill Pain Questionnaire and the Pain Catastrophizing Scale. Results: ReHo analysis showed higher values in the left putamen and right amygdala of the PDM group during the peri-ovulatory phase compared to the menstrual phase. ALFF analysis revealed lower values in the putamen of the PDM group compared to controls, regardless of phase. ReHo and ALFF values in the putamen, amygdala, and nucleus accumbens were positively correlated with pain scales during menstruation, while ALFF values in the ventral tegmental area inversely correlated with pain intensity. Those with severe PDM (pain intensity ≥7) displayed distinct amygdala ALFF patterns between pain and pain-free phases. PDM participants also had lower ReHo values in the left insula during menstruation, with no direct correlation to pain compared to controls. Discussion: Our study highlights the pivotal role of the RS in dysmenorrhea management, exhibiting varied responses between menstrual discomfort and non-painful periods among individuals with PDM. During menstruation, the RS triggers mechanisms for pain avoidance and cognitive coping strategies, while it transitions to processing rewards during the peri-ovulatory phase. This demonstrates the flexibility of the RS in adapting to the recurring pain experienced by those with PDM.


Asunto(s)
Dismenorrea , Imagen por Resonancia Magnética , Recompensa , Humanos , Femenino , Dismenorrea/fisiopatología , Dismenorrea/psicología , Adulto Joven , Adulto , Encéfalo/fisiopatología , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Ciclo Menstrual/fisiología , Ciclo Menstrual/psicología , Dimensión del Dolor , Adaptación Fisiológica/fisiología
5.
Eur J Neurosci ; 59(9): 2391-2402, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38314647

RESUMEN

The brain's dynamic spontaneous neural activity is significant in supporting cognition; however, how brain dynamics go awry in subjective cognitive decline (SCD) and mild cognitive impairment (MCI) remains unclear. Thus, the current study aimed to investigate the dynamic amplitude of low-frequency fluctuation (dALFF) alterations in patients at high risk for Alzheimer's disease and to explore its correlation with clinical cognitive assessment scales, to identify an early imaging sign for these special populations. A total of 152 participants, including 72 SCD patients, 44 MCI patients and 36 healthy controls (HCs), underwent a resting-state functional magnetic resonance imaging and were assessed with various neuropsychological tests. The dALFF was measured using sliding-window analysis. We employed canonical correlation analysis (CCA) to examine the bi-multivariate correlations between neuropsychological scales and altered dALFF among multiple regions in SCD and MCI patients. Compared to those in the HC group, both the MCI and SCD groups showed higher dALFF values in the right opercular inferior frontal gyrus (voxel P < .001, cluster P < .05, correction). Moreover, the CCA models revealed that behavioural tests relevant to inattention correlated with the dALFF of the right middle frontal gyrus and right opercular inferior frontal gyrus, which are involved in frontoparietal networks (R = .43, P = .024). In conclusion, the brain dynamics of neural activity in frontal areas provide insights into the shared neural basis underlying SCD and MCI.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Imagen por Resonancia Magnética , Humanos , Enfermedad de Alzheimer/fisiopatología , Enfermedad de Alzheimer/diagnóstico por imagen , Masculino , Femenino , Disfunción Cognitiva/fisiopatología , Disfunción Cognitiva/diagnóstico por imagen , Anciano , Imagen por Resonancia Magnética/métodos , Persona de Mediana Edad , Pruebas Neuropsicológicas , Encéfalo/fisiopatología , Encéfalo/diagnóstico por imagen
6.
Eur J Neurosci ; 59(10): 2766-2777, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38515219

RESUMEN

Despite altered brain activities being associated with suicidal ideation (SI), the neural correlates of SI in major depressive disorder (MDD) have remained elusive. We enrolled 82 first-episode drug-naïve MDD patients including 41 with SI and 41 without SI, as well as 41 healthy controls (HCs). Resting-state functional and structural MRI data were collected. The measures of fractional amplitude of low-frequency fluctuation (fALFF) and grey matter volume (GMV) were calculated and compared. Compared with HCs, patients with SI exhibited increased fALFF values in the right rectus gyrus and left medial superior frontal gyrus, middle frontal gyrus and precuneus. Decreased GMV in the right parahippocampal gyrus, insula and middle occipital gyrus and increased GMV in the left superior frontal gyrus were detected in patients with SI. In addition, patients without SI demonstrated increased fALFF values in the right superior frontal gyrus and decreased fALFF values in the right postcentral gyrus. Decreased GMV in the left superior frontal gyrus, right medial superior frontal gyrus, opercular part of inferior frontal gyrus, postcentral gyrus, fusiform gyrus and increased left supplementary motor area, superior occipital gyrus, right anterior cingulate gyrus and superior temporal gyrus were revealed in patients with SI. Moreover, in comparison with patients without SI, increased fALFF values were identified in the left precuneus of patients with SI. However, no significant differences were found in GMV between patients with and without SI. These findings might be helpful for finding neuroimaging markers predicting individual suicide risk and detecting targeted brain regions for effective early interventions.


Asunto(s)
Encéfalo , Trastorno Depresivo Mayor , Imagen por Resonancia Magnética , Ideación Suicida , Humanos , Trastorno Depresivo Mayor/fisiopatología , Trastorno Depresivo Mayor/diagnóstico por imagen , Masculino , Femenino , Adulto , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Adulto Joven , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/patología , Sustancia Gris/fisiopatología
7.
Brain Behav Immun ; 120: 44-53, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38777282

RESUMEN

The functional alterations of the brain in bipolar II depression (BDII-D) and their clinical and inflammatory associations are understudied. We aim to investigate the functional brain alterations in BDII-D and their relationships with inflammation, childhood adversity, and psychiatric symptoms, and to examine the moderating effects among these factors. Using z-normalized amplitude of low-frequency fluctuation (zALFF), we assessed the whole-brain resting-state functional activity between 147 BDII-D individuals and 150 healthy controls (HCs). Differential ALFF regions were selected as seeds for functional connectivity analysis to observe brain connectivity alterations resulting from abnormal regional activity. Four inflammatory cytokines including interleukin (IL)-6, IL-1ß, tumor necrosis factor (TNF)-α, and C-reactive protein (CRP) and five clinical scales including Hamilton Depression Scale (HAMD), Hamilton Anxiety Scale (HAMA), Positive and Negative Syndrome Scale (PANSS), Columbia-Suicide Severity Rating Scale (C-SSRS), and Childhood Trauma Questionnaire (CTQ) were tested and assessed in BDII-D. Partial correlations with multiple comparison corrections identified relationships between brain function and inflammation, childhood adversity, and psychiatric symptoms. Moderation analysis was conducted based on correlation results and previous findings. Compared to HCs, BDII-D individuals displayed significantly lower zALFF in the superior and middle frontal gyri (SFG and MFG) and insula, but higher zALFF in the occipital-temporal area. Only the MFG and insula-related connectivity exhibited significant differences between groups. Within BDII-D, lower right insula zALFF value correlated with higher IL-6, CRP, and emotional adversity scores, while lower right MFG zALFF was related to higher CRP and physical abuse scores. Higher right MFG-mid-anterior cingulate cortex (mACC) connectivity was associated with higher IL-1ß. Moreover, IL-1ß moderated associations between higher right MFG-mACC/insula connectivity and greater depressive symptoms. This study reveals that abnormal functional alterations in the right MFG and right insula were associated with elevated inflammation, childhood adversity, and depressive symptoms in BDII-D. IL-1ß may moderate the relationship between MFG-related connectivity and depressive symptoms.


Asunto(s)
Trastorno Bipolar , Depresión , Interleucina-1beta , Imagen por Resonancia Magnética , Humanos , Femenino , Masculino , Trastorno Bipolar/metabolismo , Trastorno Bipolar/fisiopatología , Adulto , Interleucina-1beta/metabolismo , Depresión/metabolismo , Depresión/fisiopatología , Imagen por Resonancia Magnética/métodos , Inflamación/metabolismo , Corteza Insular/metabolismo , Persona de Mediana Edad , Encéfalo/metabolismo , Encéfalo/fisiopatología , Escalas de Valoración Psiquiátrica , Experiencias Adversas de la Infancia , Vías Nerviosas/fisiopatología , Vías Nerviosas/metabolismo , Mapeo Encefálico/métodos , Adulto Joven , Lóbulo Frontal/metabolismo , Lóbulo Frontal/fisiopatología
8.
Brain Cogn ; 181: 106223, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39383675

RESUMEN

INTRODUCTION: This study aims to explore the impact of smoking on intrinsic brain activity among high-altitude (HA) populations. Smoking is associated with various neural alterations, but it remains unclear whether smokers in HA environments exhibit specific neural characteristics. METHODS: We employed ALFF and fALFF methods across different frequency bands to investigate differences in brain functional activity between high-altitude smokers and non-smokers. 31 smokers and 31 non-smokers from HA regions participated, undergoing resting-state functional magnetic resonance imaging (rs-fMRI) scans. ALFF/fALFF values were compared between the two groups. Correlation analyses explored relationships between brain activity and clinical data. RESULTS: Smokers showed increased ALFF values in the right superior frontal gyrus (R-SFG), right middle frontal gyrus (R-MFG), right anterior cingulate cortex (R-ACC), right inferior frontal gyrus (R-IFG), right superior/medial frontal gyrus (R-MSFG), and left SFG compared to non-smokers in HA. In sub-frequency bands (0.01-0.027 Hz and 0.027-0.073 Hz), smokers showed increased ALFF values in R-SFG, R-MFG, right middle cingulate cortex (R-MCC), R-MSFG, Right precentral gyrus and L-SFG while decreased fALFF values were noted in the right postcentral and precentral gyrus in the 0.01-0.027 Hz band. Negative correlations were found between ALFF values in the R-SFG and smoking years. CONCLUSION: Our study reveals the neural characteristics of smokers in high-altitude environments, highlighting the potential impact of smoking on brain function. These results provide new insights into the neural mechanisms of high-altitude smoking addiction and may inform the development of relevant intervention measures.


Asunto(s)
Altitud , Imagen por Resonancia Magnética , Fumadores , Fumar , Humanos , Masculino , Adulto , Femenino , Fumar/fisiopatología , Persona de Mediana Edad , Encéfalo/fisiopatología , Encéfalo/diagnóstico por imagen , Giro del Cíngulo/fisiopatología , Giro del Cíngulo/diagnóstico por imagen , Adulto Joven , Mapeo Encefálico/métodos
9.
Neuroradiology ; 66(5): 847-854, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38530417

RESUMEN

PURPOSE: We sought to use the fractional amplitude of low-frequency fluctuation (fALFF) method to investigate the changes in spontaneous brain activity in CSM patients and their relationships with clinical features. METHODS: We recruited 20 patients with CSM, and 20 healthy controls (HCs) matched for age, sex, and education status. The fALFF method was used to evaluate the altered spontaneous brain activities. The Pearson correlation analysis of fALFF and the clinical features were carried out. RESULTS: Compared with HC, CSM group showed increased fALFF values in the left middle frontal gyrus, inferior parietal lobule, and right angular gyrus. Decreased fALFF values were found in the right lingual gyrus, cuneus (P < 0.05). Pearson correlation analysis shows that the fALFF values of all CSM were positively correlated with JOA score in the right angular gyrus (r = 0.518, P < 0.05). CONCLUSION: CSM patients have abnormal fALFF distribution in multiple brain regions and might be an appealing alternative approach for further exploration of the pathological and neuropsychological states in CSM.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Encéfalo/patología , Mapeo Encefálico/métodos , Lóbulo Occipital , Lóbulo Frontal
10.
Cereb Cortex ; 33(10): 5774-5782, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-36444721

RESUMEN

Benign epilepsy with centrotemporal spikes (BECTS) is a common pediatric epilepsy syndrome that has been widely reported to show abnormal brain structure and function. However, the genetic mechanisms underlying structural and functional changes remain largely unknown. Based on the structural and resting-state functional magnetic resonance imaging data of 22 drug-naïve children with BECTS and 33 healthy controls, we conducted voxel-based morphology (VBM) and fractional amplitude of low-frequency fluctuation (fALFF) analyses to compare cortical morphology and spontaneous brain activity between the 2 groups. In combination with the Allen Human Brain Atlas, transcriptome-neuroimaging spatial correlation analyses were applied to explore gene expression profiles associated with gray matter volume (GMV) and fALFF changes in BECTS. VBM analysis demonstrated significantly increased GMV in the right brainstem and right middle cingulate gyrus in BECTS. Moreover, children with BECTS exhibited significantly increased fALFF in left temporal pole, while decreased fALFF in right thalamus and left precuneus. These brain structural and functional alterations were closely related to behavioral and cognitive deficits, and the fALFF-linked gene expression profiles were enriched in voltage-gated ion channel and synaptic activity as well as neuron projection. Our findings suggest that brain morphological and functional abnormalities in children with BECTS involve complex polygenic genetic mechanisms.


Asunto(s)
Trastornos del Conocimiento , Epilepsia Rolándica , Humanos , Niño , Transcriptoma , Epilepsia Rolándica/diagnóstico por imagen , Epilepsia Rolándica/genética , Epilepsia Rolándica/complicaciones , Encéfalo/diagnóstico por imagen , Lóbulo Parietal , Imagen por Resonancia Magnética
11.
Arch Phys Med Rehabil ; 105(11): 2107-2117, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38969254

RESUMEN

OBJECTIVE: To investigate the neural mechanism underlying functional reorganization and motor coordination strategies in patients with chronic low back pain (cLBP). DESIGN: A case-control study based on data collected during routine clinical practice. SETTING: This study was conducted at a university hospital. PARTICIPANTS: Fifteen patients with cLBP and 15 healthy controls. INTERVENTIONS: Not applicable. MAIN OUTCOME MEASURES: Whole brain blood oxygen level-dependent signals were measured using functional magnetic resonance imaging and amplitude of low-frequency fluctuation (ALFF) method to identify pain-induced changes in regional spontaneous brain activity. A novel approach based on the surface electromyogram (EMG) system and fine-wire electrodes was used to record EMG signals in the deep multifidus, superficial multifidus, and erector spinae. RESULTS: In cLBP, compared with healthy groups, ALFF was higher in the medial prefrontal, primary somatosensory, primary motor, and inferior temporal cortices, whereas it was lower in the cerebellum and anterior cingulate and posterior cingulate cortices. Furthermore, the decrease in the average EMG activity of the 3 lumbar muscles in the cLBP group was positively correlated with the ALFF values of the primary somatosensory cortex, motor cortex, precuneus, and middle temporal cortex but significantly negatively correlated with the ALFF values of the medial prefrontal and inferior temporal cortices. Interestingly, the correlation between the functional activity in the cerebellum and the EMG activity varied in the lumbar muscles. CONCLUSIONS: These findings suggest a functional association between changes in spontaneous brain activity and altered voluntary neuromuscular activation patterns of the lumbar paraspinal muscles, providing new insights into the mechanisms underlying pain chronicity as well as important implications for developing novel therapeutic targets of cLBP.


Asunto(s)
Electromiografía , Dolor de la Región Lumbar , Imagen por Resonancia Magnética , Músculos Paraespinales , Humanos , Dolor de la Región Lumbar/fisiopatología , Masculino , Femenino , Músculos Paraespinales/fisiopatología , Músculos Paraespinales/diagnóstico por imagen , Estudios de Casos y Controles , Adulto , Persona de Mediana Edad , Dolor Crónico/fisiopatología , Encéfalo/fisiopatología , Encéfalo/diagnóstico por imagen
12.
Artículo en Inglés | MEDLINE | ID: mdl-39382650

RESUMEN

Autism spectrum disorder (ASD) is a developmental disorder involving regional changes and local neural disturbances. However, few studies have investigated the dysfunctional phenomenon across different age stages. This study explores the structural and functional brain changes across different developmental stages in individuals with ASD, focusing on childhood (6-12 years), adolescence (12-18 years), and adulthood (18 + years). Using a comprehensive set of neuroimaging metrics, including modulated and non-modulated voxel-based morphometry (VBM), regional homogeneity (ReHo), amplitude of low-frequency fluctuation (ALFF), and fractional ALFF (fALFF), we identified significant stage-specific alterations in both VBM and functional measurements. Our results reveal that ASD is associated with progressive and stage-specific abnormalities in brain structure and function, with distinct patterns emerging at each developmental stage. Specifically, we observed significant modulated VBM reductions in the precuneus, lentiform nucleus, and inferior parietal lobule, accompanied by increases in the midbrain and sub-gyral regions. Moreover, we observed unmodulated VBM increment in regions including lentiform nucleus and thalamus. Functionally, ReHo analyses demonstrated disrupted local synchronization in the medial frontal gyrus, while ALFF and fALFF metrics highlighted altered spontaneous brain activity in the sub-gyral and sub-lobar. Finally, correlation analyses revealed that stage-specific findings are closely linked to clinical social- and behavior-related scores, with VBM in the inferior parietal lobule and putamen as well as ReHo in supplemental motor area being significantly associated with restrictive repetitive behaviors in childhood. These findings underscore the importance of considering age-specific brain changes when studying ASD and suggest that targeted interventions may be necessary at different developmental stages.

13.
J Integr Neurosci ; 23(6): 111, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38940082

RESUMEN

BACKGROUND: The neuropathophysiological mechanisms of brain damage underlying hypothyroidism remain unclear. Fractional amplitude of low-frequency fluctuations (fALFF) has been established as a reliable indicator for investigation of abnormal spontaneous brain activity that occurs at specific frequencies in different types of mental disorder. However, the changes of fALFF in specific frequency bands in hypothyroidism have not yet been investigated. METHODS: Fifty-three hypothyroid patients and 39 healthy controls (HCs) underwent thyroid-related hormone levels tests, neuropsychological assessment, and magnetic resonance imaging (MRI) scans. The fALFF in the standard band (0.01-0.1 Hz), slow-4 (0.027-0.073 Hz), and slow-5 bands (0.01-0.027 Hz) were analyzed. An analysis of Pearson correlation was conducted between fALFF, thyroid-related hormone levels, and neuropsychological scores in hypothyroid patients. RESULTS: Compared to HCs, within the routine band, hypothyroidism group showed significantly decreased fALFF in left lingual gyrus, middle temporal gyrus (MTG), precentral gyrus, calcarine cortex, and right inferior occipital gyrus; within the slow-5 band, the hypothyroidism group exhibited decreased fALFF in left lingual gyrus, MTG, superior temporal gyrus, postcentral gyrus, and paracentral lobule, and increased fALFF in supplementary motor area (SMA) and right middle frontal gyrus; additionally, fALFF in the left lingual gyrus within the routine and slow-5 bands were negatively correlated with the level of thyroid stimulating hormone. CONCLUSIONS: In this study, the slow-5 frequency band exhibits better sensitivity than the standard band in detecting fALFF values. A decrease of fALFF values in the lingual gyrus and MTG was observed in both the standard and slow-5 bands and might present potential neuroimaging biomarkers for hypothyroidism. CLINICAL TRIAL REGISTRATION: No: ChiCTR2000028966. Registered 9 January, 2020, https://www.chictr.org.cn.


Asunto(s)
Hipotiroidismo , Imagen por Resonancia Magnética , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Ondas Encefálicas/fisiología , Hipotiroidismo/fisiopatología , Hipotiroidismo/diagnóstico por imagen , Estudios de Casos y Controles
14.
J Neurochem ; 164(2): 210-225, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36184969

RESUMEN

Anti-N-methyl-d-aspartate receptor (NMDAR) encephalitis shows a predilection for affecting the limbic system, but structural MRI in most patients is usually unremarkable. However, the functional connectivity reorganization of limbic nodes remains unknown. Serum neurofilament light chains (sNfL) are clinically linked with the disease severity and neurological disability of anti-NMDAR encephalitis. However, the relationship between sNfL and limbic-based functional architecture has not been explored. We consecutively recruited 20 convalescent patients with anti-NMDAR encephalitis and 24 healthy controls from March 2018 to March 2021. Resting-state functional MRI metrics, including fractional amplitude of low-frequency fluctuation (fALFF), regional homogeneity (ReHo), and atlas-based seed functional connectivity, were analyzed to investigate regional activities and functional connectivity alterations. Correlation analysis among functional connectivity, sNfL, Mini-Mental State Examination (MMSE), and Montreal cognitive assessment outcomes were explored in patients. Compared with those of healthy controls, the fALFF and ReHo were consistently increased in regions of the posterior default mode network (DMN) hub, mainly the bilateral supramarginal gyrus and precuneus, in patients with anti-NMDAR encephalitis (FWE-corrected p < 0.05). Patients demonstrated disturbed functional organization characterized by reduced connectivity of the posterior DMN hub with the sensorimotor cortex and hypoconnectivity of the parahippocampal gyrus (PHG) with the right fusiform gyrus but extensively enhanced thalamocortical connectivity (FWE-corrected p < 0.05). Furthermore, convalescent sNfL showed a positive correlation with enhanced thalamocortical connectivity (r = 0.4659, p = 0.0384). Onset sNfL with an independent linear correlation to convalescent MMSE performance (B coefficient, -0.013, 95% CI, -0.025 ~ -0.002, p = 0.0260) was positively correlated with intra-DMN connectivity (r = 0.8969, p < 0.0001) and limbic-sensory connectivity (r = 0.4866, p = 0.0346 for hippocampus seed and r = 0.5218, p = 0.0220 for PHG seed). Patients with anti-NMDAR encephalitis demonstrated disturbed functional organization with substantial thalamocortical hyperconnectivity, that was positively correlated with convalescent sNfL. Onset sNfL showed a positive correlation with intra-DMN connectivity and limbic-sensory connectivity.


Asunto(s)
Encefalitis Antirreceptor N-Metil-D-Aspartato , Humanos , Encefalitis Antirreceptor N-Metil-D-Aspartato/diagnóstico por imagen , Encéfalo , Filamentos Intermedios , Imagen por Resonancia Magnética , Lóbulo Parietal
15.
Hum Brain Mapp ; 44(7): 2767-2777, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36852459

RESUMEN

Bipolar disorder (BD) is associated with marked suicidal susceptibility, particularly during a major depressive episode. However, the evaluation of suicidal risk remains challenging since it relies mainly on self-reported information from patients. Hence, it is necessary to complement neuroimaging features with advanced machine learning techniques in order to predict suicidal behavior in BD patients. In this study, a total of 288 participants, including 75 BD suicide attempters, 101 BD nonattempters and 112 healthy controls, underwent a resting-state functional magnetic resonance imaging (rs-fMRI). Intrinsic brain activity was measured by amplitude of low-frequency fluctuation (ALFF). We trained and tested a two-level k-nearest neighbors (k-NN) model based on resting-state variability of ALFF with fivefold cross-validation. BD suicide attempters had increased dynamic ALFF values in the right anterior cingulate cortex, left thalamus and right precuneus. Compared to other machine learning methods, our proposed framework had a promising performance with 83.52% accuracy, 78.75% sensitivity and 87.50% specificity. The trained models could also replicate and validate the results in an independent cohort with 72.72% accuracy. These findings based on a relatively large data set, provide a promising way of combining fMRI data with machine learning technique to reliably predict suicide attempt at an individual level in bipolar depression. Overall, this work might enhance our understanding of the neurobiology of suicidal behavior by detecting clinically defined disruptions in the dynamics of instinct brain activity.


Asunto(s)
Trastorno Bipolar , Trastorno Depresivo Mayor , Suicidio , Humanos , Ideación Suicida , Giro del Cíngulo
16.
Hum Brain Mapp ; 44(16): 5346-5356, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37515416

RESUMEN

Although previous neuroimaging evidence has confirmed the brain functional disturbances in thyroid-associated ophthalmopathy (TAO), the dynamic characteristics of brain activity and functional connectivity (FC) in TAO were rarely concerned. The present study aims to investigate the alterations of temporal variability of brain activity and FC in TAO using resting-state functional magnetic resonance imaging (rs-fMRI). Forty-seven TAO patients and 30 age-, gender-, education-, and handedness-matched healthy controls (HCs) were enrolled and underwent rs-fMRI scanning. The dynamic amplitude of low-frequency fluctuation (dALFF) was first calculated using a sliding window approach to characterize the temporal variability of brain activity. Based on the dALFF results, seed-based dynamic functional connectivity (dFC) analysis was performed to identify the temporal variability of efficient communication between brain regions in TAO. Additionally, correlations between dALFF and dFC and the clinical indicators were analyzed. Compared with HCs, TAO patients displayed decreased dALFF in the left superior occipital gyrus (SOG) and cuneus (CUN), while showing increased dALFF in the left triangular part of inferior frontal gyrus (IFGtriang), insula (INS), orbital part of inferior frontal gyrus (ORBinf), superior temporal gyrus (STG) and temporal pole of superior temporal gyrus (TPOsup). Furthermore, TAO patients exhibited decreased dFC between the left STG and the right middle occipital gyrus (MOG), as well as decreased dFC between the left TPOsup and the right calcarine fissure and surrounding cortex (CAL) and MOG. Correlation analyses showed that the altered dALFF in the left SOG/CUN was positively related to visual acuity (r = .409, p = .004), as well as the score of QoL for visual functioning (r = .375, p = .009). TAO patients developed abnormal temporal variability of brain activity in areas related to vision, emotion, and cognition, as well as reduced temporal variability of FC associated with vision deficits. These findings provided additional insights into the neurobiological mechanisms of TAO.


Asunto(s)
Mapeo Encefálico , Oftalmopatía de Graves , Humanos , Mapeo Encefálico/métodos , Oftalmopatía de Graves/diagnóstico por imagen , Calidad de Vida , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen
17.
Hum Brain Mapp ; 44(3): 1105-1117, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36394386

RESUMEN

Amplitude of low-frequency fluctuation (ALFF) has been widely used for localization of abnormal activity at the single-voxel level in resting-state fMRI (RS-fMRI) studies. However, previous ALFF studies were based on fast Fourier transform (FFT-ALFF). Our recent study found that ALFF based on wavelet transform (Wavelet-ALFF) showed better sensitivity and reproducibility than FFT-ALFF. The current study aimed to test the reliability and validity of Wavelet-ALFF, and apply Wavelet-ALFF to investigate the modulation effect of repetitive transcranial magnetic stimulation (rTMS). The reliability and validity were assessed on multicenter RS-fMRI datasets under eyes closed (EC) and eyes open (EO) conditions (248 healthy participants in total). We then detected the sensitivity of Wavelet-ALFF using a rTMS modulation dataset (24 healthy participants). For each dataset, Wavelet-ALFF based on five mother wavelets (i.e., db2, bior4.4, morl, meyr and sym3) and FFT-ALFF were calculated in the conventional band and five frequency sub-bands. The results showed that the reliability of both inter-scanner and intra-scanner was higher with Wavelet-ALFF than with FFT-ALFF across multiple frequency bands, especially db2-ALFF in the higher frequency band slow-2 (0.1992-0.25 Hz). In terms of validity, the multicenter ECEO datasets showed that the effect sizes of Wavelet-ALFF with all mother wavelets (especially for db2-ALFF) were larger than those of FFT-ALFF across multiple frequency bands. Furthermore, Wavelet-ALFF detected a larger modulation effect than FFT-ALFF. Collectively, Wavelet db2-ALFF showed the best reliability and validity, suggesting that db2-ALFF may offer a powerful metric for inspecting regional spontaneous brain activities in future studies.


Asunto(s)
Imagen por Resonancia Magnética , Estimulación Magnética Transcraneal , Humanos , Reproducibilidad de los Resultados , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Mapeo Encefálico/métodos
18.
Hum Brain Mapp ; 44(2): 403-417, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36073537

RESUMEN

Emerging evidence has indicated that cognitive impairment is an underrecognized feature of multiple system atrophy (MSA). Mild cognitive impairment (MCI) is related to a high risk of dementia. However, the mechanism underlying MCI in MSA remains controversial. In this study, we conducted the amplitude of low-frequency fluctuation (ALFF) and seed-based functional connectivity (FC) analyses to detect the characteristics of local neural activity and corresponding network alterations in MSA patients with MCI (MSA-MCI). We enrolled 80 probable MSA patients classified as cognitively normal (MSA-NC, n = 36) and MSA-MCI (n = 44) and 40 healthy controls. Compared with MSA-NC, MSA-MCI exhibited decreased ALFF in the right dorsal lateral prefrontal cortex (RDLPFC) and increased ALFF in the right cerebellar lobule IX and lobule IV-V. In the secondary FC analyses, decreased FC in the left inferior parietal lobe (IPL) was observed when we set the RDLPFC as the seed region. Decreased FC in the bilateral cuneus, left precuneus, and left IPL and increased FC in the right middle temporal gyrus were shown when we set the right cerebellar lobule IX as the seed region. Furthermore, FC of DLPFC-IPL and cerebello-cerebral circuit, as well as ALFF alterations, were significantly correlated with Montreal Cognitive Assessment scores in MSA patients. We also employed whole-brain voxel-based morphometry analysis, but no gray matter atrophy was detected between the patient subgroups. Our findings indicate that altered spontaneous activity in the DLPFC and the cerebellum and disrupted DLPFC-IPL, cerebello-cerebral networks are possible biomarkers of early cognitive decline in MSA patients.


Asunto(s)
Disfunción Cognitiva , Atrofia de Múltiples Sistemas , Humanos , Atrofia de Múltiples Sistemas/diagnóstico por imagen , Mapeo Encefálico , Encéfalo/diagnóstico por imagen , Disfunción Cognitiva/etiología , Disfunción Cognitiva/complicaciones , Corteza Cerebral , Imagen por Resonancia Magnética
19.
BMC Neurol ; 23(1): 430, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38049760

RESUMEN

BACKGROUND: Insomnia disorder (ID) seriously affects people's daily life. Difficulty falling asleep is the most commonly reported complaint in patients with ID. However, the mechanism of prolonged sleep latency (SL) is still obscure. The aim of our present study was to investigate the relationship between prolonged SL and alterations in spontaneous neural activity and brain functional connectivity (FC) in ID patients using functional magnetic resonance imaging (fMRI). METHODS: A total of 52 insomniacs with difficulty falling asleep and 30 matched healthy controls (HCs) underwent resting-state fMRI. The amplitude of low-frequency fluctuation (ALFF) was measured and group differences were compared. The peak areas with significantly different ALFF values were identified as the seed regions to calculate FC to the whole brain. SL was assessed by a wrist actigraphy device in ID patients. The Pittsburgh Sleep Quality Index (PSQI), Hamilton Anxiety Rating Scale (HAMA), and Hyperarousal Scale (HAS) were evaluated in both ID patients and HCs. Finally, correlation analyses were performed between the clinical features and FC/ALFF values. RESULTS: ID patients showed higher PSQI, HAMA, HAS scores than HCs. The functional MRI results indicated increased ALFF value in the left insula and right amygdala and decreased ALFF value in the right superior parietal lobe (SPL) in ID patients. The seed-based FC analysis demonstrated increased FC between the left insula and the bilateral precentral gyrus and FC between the right amygdala and the left posterior cingulate cortex (PCC) in patients with ID. Correlation analysis indicated that the increased FC value of the right amygdala-left PCC was positively correlated with SL measured by actigraphy. CONCLUSION: This study revealed abnormal regional spontaneous fluctuations in the right amygdala, left insula, and right SPL, as well as increased FC in the left insula-precentral and right amygdala-left PCC. Moreover, the prolonged SL was positively correlated with the abnormal FC in the right amygdala-left PCC in ID patients. The current study showed the correlation between prolonged SL and the abnormal function of emotion-related brain regions in ID patients, which may contribute to a better understanding of the neural mechanisms underlying difficulty falling asleep in patients with ID. CLINICAL TRIAL REGISTRATION: http://www.chictr.org.cn ., ChiCTR1800015282. Registered on 20th March 2018.


Asunto(s)
Trastornos del Inicio y del Mantenimiento del Sueño , Humanos , Trastornos del Inicio y del Mantenimiento del Sueño/diagnóstico por imagen , Mapeo Encefálico/métodos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Emociones
20.
BMC Infect Dis ; 23(1): 521, 2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37553613

RESUMEN

BACKGROUND: Although most patients can recover from SARS-CoV-2 infection during the short-term, the long-term effects of COVID-19 on the brain remain explored. Functional MRI (fMRI) could potentially elucidate or otherwise contribute to the investigation of the long COVID syndrome. A lower fMRI response would be translated into decreased brain activity or delayed signal transferring reflecting decreased connectivity. This research aimed to investigate the long-term alterations in the local (regional) brain activity and remote (interregional) functional connection in recovered COVID-19. METHODS: Thirty-five previously hospitalized COVID-19 patients underwent 3D T1weighed imaging and resting-state fMRI at 6-month follow-up, and 36 demographic-matched healthy controls (HCs) were recruited accordingly. The amplitude of low-frequency fluctuation (ALFF) and seed-based functional connectivity (FC) was used to assess the regional intrinsic brain activity and the influence of regional disturbances on FC with other brain regions. Spearman correlation analyses were performed to evaluate the association between brain function changes and clinical variables. RESULTS: The incidence of neurosymptoms (6/35, 17.14%) decreased significantly at 6-month follow-up, compared with COVID-19 hospitalization stage (21/35, 60%). Compared with HCs, recovered COVID-19 exhibited higher ALFF in right precuneus, middle temporal gyrus, middle and inferior occipital gyrus, lower ALFF in right middle frontal gyrus and bilateral inferior temporal gyrus. Furthermore, setting seven abnormal activity regions as seeds, we found increased FC between right middle occipital gyrus and left inferior occipital gyrus, and reduced FC between right inferior occipital gyrus and right inferior temporal gyrus/bilateral fusiform gyrus, and between right middle frontal gyrus and right middle frontal gyrus/ supplementary motor cortex/ precuneus. Additionally, abnormal ALFF and FC were associated with clinical variables. CONCLUSIONS: COVID-19 related neurological symptoms can self heal over time. Recovered COVID-19 presented functional alterations in right frontal, temporal and occipital lobe at 6-month follow-up. Most regional disturbances in ALFF were related to the weakening of short-range regional interactions in the same brain function.


Asunto(s)
Mapeo Encefálico , COVID-19 , Humanos , Mapeo Encefálico/métodos , Síndrome Post Agudo de COVID-19 , Estudios de Seguimiento , COVID-19/diagnóstico por imagen , SARS-CoV-2 , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda