Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
País como asunto
Tipo del documento
Publication year range
1.
Sci Rep ; 14(1): 8088, 2024 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-38582794

RESUMEN

The Amur tiger is currently confronted with challenges of anthropogenic development, leading to its population becoming fragmented into two geographically isolated groups: smaller and larger ones. Small and isolated populations frequently face a greater extinction risk, yet the small tiger population's genetic status and survival potential have not been assessed. Here, a total of 210 samples of suspected Amur tiger feces were collected from this small population, and the genetic background and population survival potentials were assessed by using 14 microsatellite loci. Our results demonstrated that the mean number of alleles in all loci was 3.7 and expected heterozygosity was 0.6, indicating a comparatively lower level of population genetic diversity compared to previously reported studies on other subspecies. The genetic estimates of effective population size (Ne) and the Ne/N ratio were merely 7.6 and 0.152, respectively, representing lower values in comparison to the Amur tiger population in Sikhote-Alin (the larger group). However, multiple methods have indicated the possibility of genetic divergence within our isolated population under study. Meanwhile, the maximum kinship recorded was 0.441, and the mean inbreeding coefficient stood at 0.0868, both of which are higher than those observed in other endangered species, such as the African lion and the grey wolf. Additionally, we have identified a significant risk of future extinction if the lethal equivalents were to reach 6.26, which is higher than that of other large carnivores. Further, our simulation results indicated that an increase in the number of breeding females would enhance the prospects of this population. In summary, our findings provide a critical theoretical basis for further bailout strategies concerning Amur tigers.


Asunto(s)
Leones , Tigres , Animales , Femenino , Tigres/genética , Especies en Peligro de Extinción , Heterocigoto , Densidad de Población , Repeticiones de Microsatélite/genética , Leones/genética , Conservación de los Recursos Naturales , Variación Genética
2.
PeerJ ; 12: e17381, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38726379

RESUMEN

Background: Escherichia coli is an important intestinal flora, of which pathogenic E. coli is capable of causing many enteric and extra-intestinal diseases. Antibiotics are essential for the treatment of bacterial infections caused by pathogenic E. coli; however, with the widespread use of antibiotics, drug resistance in E. coli has become particularly serious, posing a global threat to human, animal, and environmental health. While the drug resistance and pathogenicity of E. coli carried by tigers and leopards in captivity have been studied intensively in recent years, there is an extreme lack of information on E. coli in these top predators in the wild environment. Methods: Whole genome sequencing data of 32 E. coli strains collected from the feces of wild Amur tiger (Panthera tigris altaica, n = 24) and North China leopard (Panthera pardus japonensis, n = 8) were analyzed in this article. The multi-locus sequence types, serotypes, virulence and resistance genotypes, plasmid replicon types, and core genomic SNPs phylogeny of these isolates were studied. Additionally, antimicrobial susceptibility testing (AST) was performed on these E. coli isolates. Results: Among the E. coli isolates studied, 18 different sequence types were identified, with ST939 (21.9%), ST10 (15.6%), and ST3246 (9.4%) being the most prevalent. A total of 111 virulence genes were detected, averaging about 54 virulence genes per sample. They contribute to invasion, adherence, immune evasion, efflux pump, toxin, motility, stress adaption, and other virulence-related functions of E. coli. Sixty-eight AMR genes and point mutations were identified. Among the detected resistance genes, those belonging to the efflux pump family were the most abundant. Thirty-two E. coli isolates showed the highest rate of resistance to tetracycline (14/32; 43.8%), followed by imipenem (4/32; 12.5%), ciprofloxacin (3/32; 9.4%), doxycycline (2/32; 6.3%), and norfloxacin (1/32; 3.1%). Conclusions: Our results suggest that E. coli isolates carried by wild Amur tigers and North China leopards have potential pathogenicity and drug resistance.


Asunto(s)
Escherichia coli , Heces , Panthera , Tigres , Secuenciación Completa del Genoma , Animales , Tigres/microbiología , Escherichia coli/genética , Escherichia coli/efectos de los fármacos , Escherichia coli/patogenicidad , Escherichia coli/aislamiento & purificación , Panthera/microbiología , Heces/microbiología , Infecciones por Escherichia coli/veterinaria , Infecciones por Escherichia coli/microbiología , Filogenia , Antibacterianos/farmacología , Genoma Bacteriano/genética , Pruebas de Sensibilidad Microbiana , China , Virulencia/genética , Farmacorresistencia Bacteriana/genética , Polimorfismo de Nucleótido Simple/genética , Tipificación de Secuencias Multilocus
3.
Animals (Basel) ; 14(7)2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38612345

RESUMEN

The Amur tiger is an important endangered species in the world, and its re-identification (re-ID) plays an important role in regional biodiversity assessment and wildlife resource statistics. This paper focuses on the task of Amur tiger re-ID based on visible light images from screenshots of surveillance videos or camera traps, aiming to solve the problem of low accuracy caused by camera perspective, noisy background noise, changes in motion posture, and deformation of Amur tiger body patterns during the re-ID process. To overcome this challenge, we propose a serial multi-scale feature fusion and enhancement re-ID network of Amur tiger for this task, in which global and local branches are constructed. Specifically, we design a global inverted pyramid multi-scale feature fusion method in the global branch to effectively fuse multi-scale global features and achieve high-level, fine-grained, and deep semantic feature preservation. We also design a local dual-domain attention feature enhancement method in the local branch, further enhancing local feature extraction and fusion by dividing local feature blocks. Based on the above model structure, we evaluated the effectiveness and feasibility of the model on the public dataset of the Amur Tiger Re-identification in the Wild (ATRW), and achieved good results on mAP, Rank-1, and Rank-5, demonstrating a certain competitiveness. In addition, since our proposed model does not require the introduction of additional expensive annotation information and does not incorporate other pre-training modules, it has important advantages such as strong transferability and simple training.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda