Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 1.167
Filtrar
Más filtros

Publication year range
1.
Cell ; 186(6): 1279-1294.e19, 2023 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-36868220

RESUMEN

Antarctic krill (Euphausia superba) is Earth's most abundant wild animal, and its enormous biomass is vital to the Southern Ocean ecosystem. Here, we report a 48.01-Gb chromosome-level Antarctic krill genome, whose large genome size appears to have resulted from inter-genic transposable element expansions. Our assembly reveals the molecular architecture of the Antarctic krill circadian clock and uncovers expanded gene families associated with molting and energy metabolism, providing insights into adaptations to the cold and highly seasonal Antarctic environment. Population-level genome re-sequencing from four geographical sites around the Antarctic continent reveals no clear population structure but highlights natural selection associated with environmental variables. An apparent drastic reduction in krill population size 10 mya and a subsequent rebound 100 thousand years ago coincides with climate change events. Our findings uncover the genomic basis of Antarctic krill adaptations to the Southern Ocean and provide valuable resources for future Antarctic research.


Asunto(s)
Euphausiacea , Genoma , Animales , Relojes Circadianos/genética , Ecosistema , Euphausiacea/genética , Euphausiacea/fisiología , Genómica , Análisis de Secuencia de ADN , Elementos Transponibles de ADN , Evolución Biológica , Adaptación Fisiológica
2.
Proc Natl Acad Sci U S A ; 120(39): e2302292120, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37722044

RESUMEN

As a major sink of anthropogenic heat and carbon, the Southern Ocean experienced pronounced warming with increasing extreme temperature events over the past decades. Mesoscale eddies that strongly influence the uptake, redistribution, and storage of heat in the ocean are expected to play important roles in these changes, yet observational evidence remains limited. Here, we employ a comprehensive analysis of over 500,000 historical hydrographic profile measurements combined with satellite-based eddy observations to show enhanced thermal eddy imprints in the Southern Ocean. Our observations reveal that anticyclonic (cyclonic) eddies are responsible for nearly half of the subsurface high (low)-temperature extremes detected, although only 10% of the profiles are located in eddy interiors. Over the past decade (2006 to 2019), both mean and extreme temperature anomalies within eddies in the Antarctic Circumpolar Current increased significantly, promoting the rise in subsurface ocean temperature variability. This enhanced role of eddies is likely a result of enhanced eddy pumping due to the increase in eddy intensity and ocean stratification caused by ocean warming. Our analysis underscores the crucial role of eddies in amplifying ocean temperature variability and extremes, with their effects expected to be even more pronounced as global warming persists.

3.
RNA ; 29(7): 1051-1068, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37041031

RESUMEN

Initiation of translation on many viral mRNAs occurs by noncanonical mechanisms that involve 5' end-independent binding of ribosomes to an internal ribosome entry site (IRES). The ∼190-nt-long intergenic region (IGR) IRES of dicistroviruses such as cricket paralysis virus (CrPV) initiates translation without Met-tRNAi Met or initiation factors. Advances in metagenomics have revealed numerous dicistrovirus-like genomes with shorter, structurally distinct IGRs, such as nedicistrovirus (NediV) and Antarctic picorna-like virus 1 (APLV1). Like canonical IGR IRESs, the ∼165-nt-long NediV-like IGRs comprise three domains, but they lack key canonical motifs, including L1.1a/L1.1b loops (which bind to the L1 stalk of the ribosomal 60S subunit) and the apex of stem-loop V (SLV) (which binds to the head of the 40S subunit). Domain 2 consists of a compact, highly conserved pseudoknot (PKIII) that contains a UACUA loop motif and a protruding CrPV-like stem--loop SLIV. In vitro reconstitution experiments showed that NediV-like IRESs initiate translation from a non-AUG codon and form elongation-competent 80S ribosomal complexes in the absence of initiation factors and Met-tRNAi Met Unlike canonical IGR IRESs, NediV-like IRESs bind directly to the peptidyl (P) site of ribosomes leaving the aminoacyl (A) site accessible for decoding. The related structures of NediV-like IRESs and their common mechanism of action indicate that they exemplify a distinct class of IGR IRES.


Asunto(s)
Sitios Internos de Entrada al Ribosoma , Ribosomas , Sitios Internos de Entrada al Ribosoma/genética , ADN Intergénico/genética , ADN Intergénico/metabolismo , Ribosomas/metabolismo , Factores de Iniciación de Péptidos , ARN de Transferencia/química , ARN Viral/genética , ARN Viral/química , Biosíntesis de Proteínas
4.
Proc Natl Acad Sci U S A ; 119(7)2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35131938

RESUMEN

The catalytic depletion of Antarctic stratospheric ozone is linked to anthropogenic emissions of chlorine and bromine. Despite its larger ozone-depleting efficiency, the contribution of ocean-emitted iodine to ozone hole chemistry has not been evaluated, due to the negligible iodine levels previously reported to reach the stratosphere. Based on the recently observed range (0.77 ± 0.1 parts per trillion by volume [pptv]) of stratospheric iodine injection, we use the Whole Atmosphere Community Climate Model to assess the role of iodine in the formation and recent past evolution of the Antarctic ozone hole. Our 1980-2015 simulations indicate that iodine can significantly impact the lower part of the Antarctic ozone hole, contributing, on average, 10% of the lower stratospheric ozone loss during spring (up to 4.2% of the total stratospheric column). We find that the inclusion of iodine advances the beginning and delays the closure stages of the ozone hole by 3 d to 5 d, increasing its area and mass deficit by 11% and 20%, respectively. Despite being present in much smaller amounts, and due to faster gas-phase photochemical reactivation, iodine can dominate (∼73%) the halogen-mediated lower stratospheric ozone loss during summer and early fall, when the heterogeneous reactivation of inorganic chlorine and bromine reservoirs is reduced. The stratospheric ozone destruction caused by 0.77 pptv of iodine over Antarctica is equivalent to that of 3.1 (4.6) pptv of biogenic very short-lived bromocarbons during spring (rest of sunlit period). The relative contribution of iodine to future stratospheric ozone loss is likely to increase as anthropogenic chlorine and bromine emissions decline following the Montreal Protocol.


Asunto(s)
Atmósfera/análisis , Yodo/química , Pérdida de Ozono , Ozono Estratosférico/química , Contaminantes Atmosféricos/química , Regiones Antárticas , Estaciones del Año
5.
Proc Biol Sci ; 291(2019): 20232519, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38503331

RESUMEN

Despite decades of research, surprisingly little is known about the mechanism(s) by which an individual's genotype is encoded in odour. Many studies have focused on the role of the major histocompatibility complex (MHC) owing to its importance for survival and mate choice. However, the salience of MHC-mediated odours compared to chemicals influenced by the rest of the genome remains unclear, especially in wild populations where it is challenging to quantify and control for the effects of the genomic background. We addressed this issue in Antarctic fur seals by analysing skin swabs together with full-length MHC DQB II exon 2 sequences and data from 41 genome-wide distributed microsatellites. We did not find any effects of MHC relatedness on chemical similarity and there was also no relationship between MHC heterozygosity and chemical diversity. However, multilocus heterozygosity showed a significant positive association with chemical diversity, even after controlling for MHC heterozygosity. Our results appear to rule out a dominant role of the MHC in the chemical encoding of genetic information in a wild vertebrate population and highlight the need for genome-wide approaches to elucidate the mechanism(s) and specific genes underlying genotype-odour associations.


Asunto(s)
Lobos Marinos , Animales , Lobos Marinos/genética , Genotipo , Heterocigoto , Complejo Mayor de Histocompatibilidad/genética , Odorantes , Regiones Antárticas
6.
Mol Ecol ; 33(11): e17360, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38656687

RESUMEN

Connectivity is a fundamental process of population dynamics in marine ecosystems. In the last decade, with the emergence of new methods, combining different approaches to understand the patterns of connectivity among populations and their regulation has become increasingly feasible. The Western Antarctic Peninsula (WAP) is characterized by complex oceanographic dynamics, where local conditions could act as barriers to population connectivity. Here, the notothenioid fish Harpagifer antarcticus, a demersal species with a complex life cycle (adults with poor swim capabilities and pelagic larvae), was used to assess connectivity along the WAP by combining biophysical modelling and population genomics methods. Both approaches showed congruent patterns. Areas of larvae retention and low potential connectivity, observed in the biophysical model output, coincide with four genetic groups within the WAP: (1) South Shetland Islands, (2) Bransfield Strait, (3) the central and (4) the southern area of WAP (Marguerite Bay). These genetic groups exhibited limited gene flow between them, consistent with local oceanographic conditions, which would represent barriers to larval dispersal. The joint effect of geographic distance and larval dispersal by ocean currents had a greater influence on the observed population structure than each variable evaluated separately. The combined effect of geographic distance and a complex oceanographic dynamic would be generating limited levels of population connectivity in the fish H. antarcticus along the WAP. Based on this, population connectivity estimations and priority areas for conservation were discussed, considering the marine protected area proposed for this threatened region of the Southern Ocean.


Asunto(s)
Flujo Génico , Genética de Población , Animales , Regiones Antárticas , Dinámica Poblacional , Perciformes/genética , Genómica , Ecosistema , Larva/genética , Peces/genética
7.
J Exp Bot ; 75(7): 2013-2026, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38173309

RESUMEN

One of the well-documented effects of regional warming in Antarctica is the impact on flora. Warmer conditions modify several leaf anatomical traits of Antarctic vascular plants, increasing photosynthesis and growth. Given that CO2 and water vapor partially share their diffusion pathways through the leaf, changes in leaf anatomy could also affect the hydraulic traits of Antarctic plants. We evaluated the effects of growth temperature on several anatomical and hydraulic parameters of Antarctic plants and assessed the trait co-variation between these parameters and photosynthetic performance. Warmer conditions promoted an increase in leaf and whole plant hydraulic conductivity, correlating with adjustments in carbon assimilation. These adjustments were consistent with changes in leaf vasculature, where Antarctic species displayed different strategies. At higher temperature, Colobanthus quitensis decreased the number of leaf xylem vessels, but increased their diameter. In contrast, in Deschampsia antarctica the diameter did not change, but the number of vessels increased. Despite this contrasting behavior, some traits such as a small leaf diameter of vessels and a high cell wall rigidity were maintained in both species, suggesting a water-conservation response associated with the ability of Antarctic plants to cope with harsh environments.


Asunto(s)
Fotosíntesis , Hojas de la Planta , Temperatura , Regiones Antárticas , Hojas de la Planta/fisiología , Fotosíntesis/fisiología , Plantas
8.
Glob Chang Biol ; 30(3): e17191, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38433338

RESUMEN

The response to climate change in highly dimorphic species can be hindered by differences between sexes in habitat preferences and movement patterns. The Antarctic fur seal, Arctocephalus gazella, is the most abundant pinniped in the Southern Hemisphere, and one of the main consumers of Antarctic krill, Euphausia superba, in the Southern Ocean. However, the populations breeding in the Atlantic Southern Ocean are decreasing, partly due to global warming. Male and female Antarctic fur seals differ greatly in body size and foraging ecology, and little is known about their sex-specific responses to climate change. We used satellite tracking data and Earth System Models to predict changes in habitat suitability for male and female Antarctic fur seals from the Western Antarctic Peninsula under different climate change scenarios. Under the most extreme scenario (SSP5-8.5; global average temperature +4.4°C projected by 2100), suitable habitat patches will shift southward during the non-breeding season, leading to a minor overall habitat loss. The impact will be more pronounced for females than for males. The reduction of winter foraging grounds might decrease the survival of post-weaned females, reducing recruitment and jeopardizing population viability. During the breeding season, when males fast on land, suitable foraging grounds for females off the South Shetland Islands will remain largely unmodified, and new ones will emerge in the Bellingshausen Sea. As Antarctic fur seals are income breeders, the foraging grounds of females should be reasonably close to the breeding colony. As a result, the new suitable foraging grounds will be useful for females only if nearby beaches currently covered by sea ice emerge by the end of the century. Furthermore, the colonization of these new, ice-free breeding locations might be limited by strong female philopatry. These results should be considered when managing the fisheries of Antarctic krill in the Southern Ocean.


La resposta al canvi climàtic en espècies amb dimorfisme sexual pot veure's dificultada per les diferències entre sexes respecte a les seves preferències d'ús de l'hàbitat i els seus patrons de moviment. L'os marí antàrtic (Arctocephalus gazella), és el pinnípede més abundant a l'Hemisferi Sud i un dels principals consumidors de krill antàrtic, (Euphausia superba), a l'Oceà Antàrtic. No obstant això, les poblacions que es reprodueixen al sector Atlàntic de l'Oceà Antàrtic estan disminuint, en part a causa de l'escalfament global. Els mascles i les femelles de l'os marí antàrtic difereixen considerablement en la seva mida corporal i ecologia tròfica, i es té poc coneixement sobre les seves respostes específiques al canvi climàtic. En aquest estudi hem utilitzat dades de seguiment per satèl·lit i models del Sistema Terrestre per predir els canvis en la idoneïtat de l'hàbitat per als mascles i les femelles d'os marí antàrtic de la Península Antàrtica Occidental sota diferents escenaris de canvi climàtic. Sota l'escenari més extrem (SSP5-8.5; temperatura mitjana mundial +4.4°C prevista per a 2100), les zones d'hàbitat idoni es desplaçaran cap al sud durant l'època d'hivernada (no reproducció), provocant una lleugera pèrdua d'hàbitat idoni. Tot i això, l'impacte serà més pronunciat per a les femelles que per als mascles. Aquesta reducció dels territoris d'alimentació durant l'hivern podria disminuir la supervivència de les femelles postdeslletades, reduint-ne el reclutament i posant en perill la viabilitat de la població. Durant l'època de cria, quan els mascles es troben majoritàriament en dejú a terra, els territoris d'alimentació idonis per a les femelles al voltant de les Illes Shetland del Sud romandran en gran part sense modificar-se, i n'emergiran de nous al mar de Bellingshausen. Com que les femelles d'os marí antàrtic es continuen alimentant durant la cria, els territoris d'alimentació de les femelles han d'estar raonablement a prop de la colònia de cria. Com a resultat, aquestes noves zones d'alimentació seran útils només si les platges properes, actualment cobertes de gel marí, emergeixen al llarg del segle. A més, la colonització d'aquests nous llocs de reproducció lliures de gel podria veure's limitada per la forta filopatria de les femelles. Aquests resultats haurien de tenir-se en compte en la gestió de les pesqueries de krill a l'Oceà Antàrtic.


Asunto(s)
Lobos Marinos , Femenino , Masculino , Animales , Regiones Antárticas , Océano Atlántico , Tamaño Corporal , Cambio Climático
9.
Glob Chang Biol ; 30(3): e17238, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38497342

RESUMEN

The Western Antarctic Peninsula (WAP) experiences one of the highest rates of sea surface warming globally, leading to potential changes in biological communities. Long-term phytoplankton monitoring in Potter Cove (PC, King George Island, South Shetlands) from the 1990s to 2009 revealed consistently low biomass values, and sporadic blooms dominated by cold-water microplankton diatoms. However, a significant change occurred between 2010 and 2020, marked by a notable increase in intense phytoplankton blooms in the region. During this period, the presence of a nanoplankton diatom, Shionodiscus gaarderae, was documented for the first time. In some instances, this species even dominated the blooms. S. gaarderae is recognized for producing blooms in temperate waters in both hemispheres. However, its blooming in the northern Southern Ocean may suggest either a recent introduction or a range shift associated with rising temperatures in the WAP, a phenomenon previously observed in experimental studies. The presence of S. gaarderae could be viewed as a warning sign of significant changes already underway in the northern WAP plankton communities. This includes the potential replacement of microplankton diatoms by smaller nanoplankton species. This study, based on observations along the past decade, and compared to the previous 20 years, could have far-reaching implications for the structure of the Antarctic food web.


Asunto(s)
Diatomeas , Fitoplancton , Regiones Antárticas , Plancton , Biomasa
10.
J Exp Biol ; 227(9)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38634142

RESUMEN

The ability of predators to adopt hunting tactics that minimise escape reactions from prey is crucial for efficient foraging, and depends on detection capabilities and locomotor performance of both predators and prey. Here, we investigated the efficiency of a small pinniped, the Antarctic fur seal (Arctocephalus gazella) at exploiting their small prey by describing for the first time their fine-scale predator-prey interactions. We compared these with those from another diving predator, the southern elephant seal (Mirounga leonina) that forage on the same prey type. We used data recorded by a newly developed sonar tag that combines active acoustics with ultrahigh-resolution movement sensors to study simultaneously the fine-scale behaviour of both Antarctic fur seals and prey during predator-prey interactions in more than 1200 prey capture events for eight female Antarctic fur seals. Our results showed that Antarctic fur seals and their prey detect each other at the same time, i.e. 1-2 s before the strike, forcing Antarctic fur seals to display reactive fast-moving chases to capture their prey. In contrast, southern elephant seals detect their prey up to 10 s before the strike, allowing them to approach their prey stealthily without triggering an escape reaction. The active hunting tactics used by Antarctic fur seals is probably very energy consuming compared with the stalking tactics used by southern elephant seals but might be compensated for by the consumption of faster-moving larger prey. We suggest that differences in manoeuvrability, locomotor performance and detection capacities and in pace of life between Antarctic fur seals and southern elephant seals might explain these differences in hunting styles.


Asunto(s)
Lobos Marinos , Conducta Predatoria , Phocidae , Animales , Lobos Marinos/fisiología , Femenino , Phocidae/fisiología , Regiones Antárticas , Acústica , Reacción de Fuga/fisiología
11.
Artículo en Inglés | MEDLINE | ID: mdl-38787370

RESUMEN

A Gram-stain-positive, aerobic, non-mobile and spherical strain, designated ZS9-10T, belonging to the genus Deinococcus was isolated from soil sampled at the Chinese Zhong Shan Station, Antarctica. Growth was observed in the presence of 0-4 % (w/v) NaCl, at pH 7.0-8.0 and at 4-25 °C. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain ZS9-10T formed a lineage in the genus Deinococcus. It exhibited highest sequence similarity (97.4 %) to Deinococcus marmoris DSM 12784T. The major phospholipids of ZS9-10T were unidentified phosphoglycolipid, unidentified glycolipids and unidentified lipids. The major fatty acids were summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c), C16 : 0 and C16 : 1 ω7c. MK-8 was the predominant respiratory quinone. The digital DNA-DNA hybridization and average nucleotide identity values between strain ZS9-10T and its close relative D. marmoris DSM 12784T were 27.4 and 83.9 %, respectively. Based on phenotypic, phylogenetic and genotypic data, a novel species, named Deinococcus arenicola sp. nov., is proposed. The type strain iis ZS9-10T (=CCTCC AB 2019392T=KCTC43192T).


Asunto(s)
Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano , Deinococcus , Ácidos Grasos , Hibridación de Ácido Nucleico , Fosfolípidos , Filogenia , ARN Ribosómico 16S , Análisis de Secuencia de ADN , Microbiología del Suelo , Regiones Antárticas , ARN Ribosómico 16S/genética , Deinococcus/genética , Deinococcus/clasificación , Deinococcus/aislamiento & purificación , Ácidos Grasos/análisis , Ácidos Grasos/química , ADN Bacteriano/genética , Fosfolípidos/análisis , Fosfolípidos/química , Vitamina K 2/análogos & derivados , Vitamina K 2/análisis , Vitamina K 2/química , Arena/microbiología
12.
Microb Cell Fact ; 23(1): 140, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760827

RESUMEN

BACKGROUND: Quantum Dots (QDs) are fluorescent nanoparticles with exceptional optical and optoelectronic properties, finding widespread utility in diverse industrial applications. Presently, chemically synthesized QDs are employed in solar cells, bioimaging, and various technological domains. However, many applications demand QDs with prolonged lifespans under conditions of high-energy radiation. Over the past decade, microbial biosynthesis of nanomaterials has emerged as a sustainable and cost-effective process. In this context, the utilization of extremophile microorganisms for synthesizing QDs with unique properties has recently been reported. RESULTS: In this study, UV-resistant bacteria were isolated from one of the most extreme environments in Antarctica, Union Glacier at the Ellsworth Mountains. Bacterial isolates, identified through 16 S sequencing, belong to the genera Rhodococcus, Pseudarthrobacter, and Arthrobacter. Notably, Rhodococcus sp. (EXRC-4 A-4), Pseudarthrobacter sp. (RC-2-3), and Arthrobacter sp. (EH-1B-1) tolerate UV-C radiation doses ≥ 120 J/m². Isolated UV-resistant bacteria biosynthesized CdS QDs with fluorescence intensities 4 to 8 times higher than those biosynthesized by E. coli, a mesophilic organism tolerating low doses of UV radiation. Transmission electron microscopy (TEM) analysis determined QD sizes ranging from 6 to 23 nm, and Fourier-transform infrared (FTIR) analysis demonstrated the presence of biomolecules. QDs produced by UV-resistant Antarctic bacteria exhibit high photostability after exposure to UV-B radiation, particularly in comparison to those biosynthesized by E. coli. Interestingly, red fluorescence-emitting QDs biosynthesized by Rhodococcus sp. (EXRC-4 A-4) and Arthrobacter sp. (EH-1B-1) increased their fluorescence emission after irradiation. Analysis of methylene blue degradation after exposure to irradiated QDs biosynthesized by UV-resistant bacteria, indicates that the QDs transfer their electrons to O2 for the formation of reactive oxygen species (ROS) at different levels. CONCLUSIONS: UV-resistant Antarctic bacteria represent a novel alternative for the sustainable generation of nanostructures with increased radiation tolerance-two characteristics favoring their potential application in technologies requiring continuous exposure to high-energy radiation.


Asunto(s)
Compuestos de Cadmio , Puntos Cuánticos , Rhodococcus , Rayos Ultravioleta , Puntos Cuánticos/química , Regiones Antárticas , Compuestos de Cadmio/metabolismo , Compuestos de Cadmio/química , Rhodococcus/metabolismo , Rhodococcus/genética , Arthrobacter/metabolismo , Arthrobacter/genética , Sulfuros/metabolismo , Sulfuros/química
13.
Conserv Biol ; 38(4): e14264, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38563105

RESUMEN

Antarctica terrestrial ecosystems are facing the most threats from global climate change, which is altering plant composition greatly. These transformations may cause major reshuffling of soil community composition, including functional traits and diversity, and therefore affect ecosystem processes in Antarctica. We used high-throughput sequencing analysis to investigate soil nematodes under 3 dominant plant functional groups (lichens, mosses, and vascular plants) and bare ground in the Antarctic region. We calculated functional diversity of nematodes based on their diet, life histories, and body mass with kernel density n-dimensional hypervolumes. We also calculated taxonomic and functional beta diversity of the nematode communities based on Jaccard dissimilarity. The presence of plants had no significant effect on the taxonomic richness of nematodes but significantly increased nematode functional richness. The presence of plants also significantly decreased taxonomic beta diversity (homogenization). Only mosses and vascular plants decreased nematode functional beta diversity, which was mostly due to a decreased effect of the richness difference component. The presence of plants also increased the effect of deterministic processes potentially because environmental filtering created conditions favorable to nematodes at low trophic levels with short life histories and small body size. Increasing plant cover in the Antarctic due to climate change may lead to increased diversity of nematode species that can use the scarce resources and nematode taxonomic and functional homogenization. In a future under climate change, community restructuring in the region is possible.


Efectos de la posición taxonómica de las plantas sobre las comunidades de nemátodos del suelo en la Antártida Resumen Los ecosistemas terrestres de la Antártida enfrentan las mayores amenazas del cambio climático global, que está alterando gravemente la composición de plantas. Estas transformaciones pueden provocar una reorganización importante de la composición de la comunidad del suelo, incluyendo atributos y diversidad funcionales, y por lo tanto afectar los procesos ecosistémicos en la Antártida. Utilizamos análisis de secuenciación de alto rendimiento para investigar nemátodos del suelo debajo de tres grupos funcionales de plantas dominantes (líquenes, musgos y plantas vasculares) y de suelo desnudo en la región de la Antártida. Calculamos la diversidad funcional de nemátodos con base en su dieta, historia de vida y masa corporal mediante hipervolúmenes n­dimensionales de densidad del núcleo. También calculamos la diversidad beta taxonómica y funcional de las comunidades de nemátodos con base en la disimilitud de Jacard. La presencia de plantas no tuvo efecto significativo sobre la riqueza taxonómica de nemátodos, pero incrementó su riqueza funcional significativamente. La presencia de plantas también disminuyó la diversidad beta taxonómica (homogenización) significativamente. Solo musgos y plantas vasculares disminuyeron la diversidad beta funcional de nemátodos, lo cual se debió principalmente a un menor efecto del componente de diferencia de riqueza. La presencia de plantas también incrementó el efecto de los procesos determinísticos posiblemente porque el filtrado ambiental creó condiciones favorables para los nemátodos de niveles tróficos inferiores con historias de vida corta y tamaño corporal pequeño. El incremento de la cobertura de plantas en la Antártida debido al cambio climático puede conducir a una mayor diversidad de especies de nemátodos que pueden utilizar los escasos recursos y a la homogenización taxonómica y funcional de los nemátodos. En un futuro bajo el cambio climático, es posible la reestructuración comunitaria en la región.


Asunto(s)
Biodiversidad , Nematodos , Plantas , Suelo , Animales , Regiones Antárticas , Nematodos/fisiología , Plantas/clasificación
14.
Environ Sci Technol ; 58(6): 2762-2773, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38294849

RESUMEN

Upwelling plays a pivotal role in supplying methylmercury (MeHg) to the upper oceans, contributing to the bioaccumulation of MeHg in the marine food web. However, the influence of the upwelling of Circumpolar Deep Water (CDW), the most voluminous water mass in the Southern Ocean, on the MeHg cycle in the surrounding oceans and marine biota of Antarctica remains unclear. Here, we study the mercury (Hg) isotopes in an ornithogenic sedimentary profile strongly influenced by penguin activity on Ross Island, Antarctica. Results indicate that penguin guano is the primary source of Hg in the sediments, and the mass-independent isotope fractionation of Hg (represented by Δ199Hg) can provide insights on the source of marine MeHg accumulated by penguin. The Δ199Hg in the sediments shows a significant decrease at ∼1550 CE, which is primarily attributed to the enhanced upwelling of CDW that brought more MeHg with lower Δ199Hg from the deeper seawater to the upper ocean. We estimate that the contribution of MeHg from the deeper seawater may reach more than 38% in order to explain the decline in Δ199Hg at ∼1550 CE. Moreover, we found that the intensified upwelling may have increased the MeHg exposure for marine organisms, highlighting the importance of CDW upwelling on the MeHg cycle in Antarctic coastal ecosystems.


Asunto(s)
Mercurio , Compuestos de Metilmercurio , Contaminantes Químicos del Agua , Compuestos de Metilmercurio/análisis , Isótopos de Mercurio/análisis , Regiones Antárticas , Ecosistema , Agua , Monitoreo del Ambiente/métodos , Mercurio/análisis , Océanos y Mares , Cadena Alimentaria , Contaminantes Químicos del Agua/análisis
15.
Environ Sci Technol ; 58(15): 6716-6724, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38573586

RESUMEN

Wildfires in Australia have attracted extensive attention in recent years, especially for the devastating 2019-2020 fire season. Remote forcing, such as those from tropical oceans, plays an important role in driving the abnormal weather conditions associated with wildfires. However, whether high latitude climate change can impact Australian fires is largely unclear. In this study, we reveal a robust relationship between Antarctic sea ice concentration (SIC), primarily over the Amundsen Sea region, with Australian springtime fire activity, by using reanalysis data sets, AMIP simulation results, and a state-of-the-art climate model simulation. Specifically, a diminished Amundsen SIC leads to the formation of a high-pressure system above Australia as a result of the eastward propagation of Rossby waves. Meanwhile, two strengthened meridional cells originating from the tropic and polar regions also enhance subsiding airflow in Australia, resulting in prolonged arid and high-temperature conditions. This mechanism explains about 28% of the variability of Australian fire weather and contributed more than 40% to the 2019 extreme burning event, especially in the eastern hotspots. These findings contribute to our understanding of polar-low latitude climate teleconnection and have important implications for projecting Australian fires as well as the global environment.


Asunto(s)
Incendios , Incendios Forestales , Australia , Cubierta de Hielo , Océanos y Mares
16.
Environ Sci Technol ; 58(19): 8490-8500, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38696308

RESUMEN

Persistent organic pollutants (POPs) tend to accumulate in cold regions by cold condensation and global distillation. Soil organic matter is the main storage compartment for POPs in terrestrial ecosystems due to deposition and repeated air-surface exchange processes. Here, physicochemical properties and environmental factors were investigated for their role in influencing POPs accumulation in soils of the Tibetan Plateau and Antarctic and Arctic regions. The results showed that the soil burden of most POPs was closely coupled to stable mineral-associated organic carbon (MAOC). Combining the proportion of MAOC and physicochemical properties can explain much of the soil distribution characteristics of the POPs. The background levels of POPs were estimated in conjunction with the global soil database. It led to the proposition that the stable soil carbon pools are key controlling factors affecting the ultimate global distribution of POPs, so that the dynamic cycling of soil carbon acts to counteract the cold-trapping effects. In the future, soil carbon pool composition should be fully considered in a multimedia environmental model of POPs, and the risk of secondary release of POPs in soils under conditions such as climate change can be further assessed with soil organic carbon models.


Asunto(s)
Carbono , Contaminantes del Suelo , Suelo , Suelo/química , Contaminantes Orgánicos Persistentes , Monitoreo del Ambiente , Regiones Árticas , Ecosistema
17.
Appl Microbiol Biotechnol ; 108(1): 325, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38717668

RESUMEN

Actinomycetota have been widely described as valuable sources for the acquisition of secondary metabolites. Most microbial metabolites are produced via metabolic pathways encoded by biosynthetic gene clusters (BGCs). Although many secondary metabolites are not essential for the survival of bacteria, they play an important role in their adaptation and interactions within microbial communities. This is how bacteria isolated from extreme environments such as Antarctica could facilitate the discovery of new BGCs with biotechnological potential. This study aimed to isolate rare Actinomycetota strains from Antarctic soil and sediment samples and identify their metabolic potential based on genome mining and exploration of biosynthetic gene clusters. To this end, the strains were sequenced using Illumina and Oxford Nanopore Technologies platforms. The assemblies were annotated and subjected to phylogenetic analysis. Finally, the BGCs present in each genome were identified using the antiSMASH tool, and the biosynthetic diversity of the Micrococcaceae family was evaluated. Taxonomic annotation revealed that seven strains were new and two were previously reported in the NCBI database. Additionally, BGCs encoding type III polyketide synthases (T3PKS), beta-lactones, siderophores, and non-ribosomal peptide synthetases (NRPS) have been identified, among others. In addition, the sequence similarity network showed a predominant type of BGCs in the family Micrococcaceae, and some genera were distinctly grouped. The BGCs identified in the isolated strains could be associated with applications such as antimicrobials, anticancer agents, and plant growth promoters, among others, positioning them as excellent candidates for future biotechnological applications and innovations. KEY POINTS: • Novel Antarctic rare Actinomycetota strains were isolated from soil and sediments • Genome-based taxonomic affiliation revealed seven potentially novel species • Genome mining showed metabolic potential for novel natural products.


Asunto(s)
Sedimentos Geológicos , Familia de Multigenes , Filogenia , Microbiología del Suelo , Regiones Antárticas , Sedimentos Geológicos/microbiología , Metabolismo Secundario/genética , Actinobacteria/genética , Actinobacteria/metabolismo , Actinobacteria/clasificación , Genoma Bacteriano , Biotecnología/métodos , Vías Biosintéticas/genética , Péptido Sintasas/genética , Péptido Sintasas/metabolismo , Sintasas Poliquetidas/genética , Sintasas Poliquetidas/metabolismo
18.
Mar Drugs ; 22(2)2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38393060

RESUMEN

Marine microorganisms have been demonstrated to be an important source for bioactive molecules. In this paper we report the synthesis of Ni nanoparticles (NiSNPs) used as reducing and capping agents for five bacterial strains isolated from an Antarctic marine consortium: Marinomonas sp. ef1, Rhodococcus sp. ef1, Pseudomonas sp. ef1, Brevundimonas sp. ef1, and Bacillus sp. ef1. The NiSNPs were characterized by Ultraviolet-visible (UV-vis) spectroscopy, Dynamic Light Scattering (DLS), Transmission Electron Microscopy (TEM), X-ray diffraction (XRD) and Fourier Transform Infrared (FTIR) spectroscopic analysis. The maximum absorbances in the UV-Vis spectra were in the range of 374 nm to 422 nm, corresponding to the Surface plasmon resonance (SPR) of Nickel. DLS revealed NiSNPs with sizes between 40 and 45 nm. All NiSNPs were polycrystalline with a face-centered cubic lattice, as revealed by XRD analyses. The NiSNPs zeta potential values were highly negative. TEM analysis showed that the NiSNPs were either spherical or rod shaped, well segregated, and with a size between 20 and 50 nm. The FTIR spectra revealed peaks of amino acid and protein binding to the NiSNPs. Finally, all the NiSNPs possess significant antimicrobial activity, which may play an important role in the management of infectious diseases affecting human health.


Asunto(s)
Antibacterianos , Nanopartículas del Metal , Humanos , Antibacterianos/farmacología , Antibacterianos/química , Plata/química , Níquel , Regiones Antárticas , Nanopartículas del Metal/química , Difracción de Rayos X , Espectroscopía Infrarroja por Transformada de Fourier , Extractos Vegetales/química
19.
Mar Drugs ; 22(7)2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39057431

RESUMEN

High Fischer ratio oligopeptides (HFOs) have a variety of biological activities, but their mechanisms of action for anti-fatigue are less systematically studied at present. This study aimed to systematically evaluate the anti-fatigue efficacy of HFOs from Antarctic krill (HFOs-AK) and explore its mechanism of action through establishing the fatigue model of endurance swimming in mice. Therefore, according to the comparison with the endurance swimming model group, HFOs-AK were able to dose-dependently prolong the endurance swimming time, reduce the levels of the metabolites (lactic acid, blood urea nitrogen, and blood ammonia), increase the content of blood glucose, muscle glycogen, and liver glycogen, reduce lactate dehydrogenase and creatine kinase extravasation, and protect muscle tissue from damage in the endurance swimming mice. HFOs-AK were shown to enhance Na+-K+-ATPase and Ca2+-Mg2+-ATPase activities and increase ATP content in muscle tissue. Meanwhile, HFOs-AK also showed significantly antioxidant ability by increasing the activities of superoxide dismutase and glutathione peroxidase in the liver and decreasing the level of malondialdehyde. Further studies showed that HFOs-AK could regulate the body's energy metabolism and thus exert its anti-fatigue effects by activating the AMPK signaling pathway and up-regulating the expression of p-AMPK and PGC-α proteins. Therefore, HFOs-AK can be used as an auxiliary functional dietary molecules to exert its good anti-fatigue activity and be applied to anti-fatigue functional foods.


Asunto(s)
Euphausiacea , Fatiga , Oligopéptidos , Animales , Ratones , Fatiga/tratamiento farmacológico , Euphausiacea/química , Oligopéptidos/farmacología , Masculino , Natación , Metabolismo Energético/efectos de los fármacos , Condicionamiento Físico Animal , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Antioxidantes/farmacología
20.
Mar Drugs ; 22(6)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38921549

RESUMEN

Antarctica, one of the most extreme environments on Earth, hosts diverse microbial communities. These microbes have evolved and adapted to survive in these hostile conditions, but knowledge on the molecular mechanisms underlying this process remains limited. The Italian Collection of Antarctic Bacteria (Collezione Italiana Batteri Antartici (CIBAN)), managed by the University of Messina, represents a valuable repository of cold-adapted bacterial strains isolated from various Antarctic environments. In this study, we sequenced and analyzed the genomes of 58 marine Gammaproteobacteria strains from the CIBAN collection, which were isolated during Italian expeditions from 1990 to 2005. By employing genome-scale metrics, we taxonomically characterized these strains and assigned them to four distinct genera: Pseudomonas, Pseudoalteromonas, Shewanella, and Psychrobacter. Genome annotation revealed a previously untapped functional potential, including secondary metabolite biosynthetic gene clusters and antibiotic resistance genes. Phylogenomic analyses provided evolutionary insights, while assessment of cold-shock protein presence shed light on adaptation mechanisms. Our study emphasizes the significance of CIBAN as a resource for understanding Antarctic microbial life and its biotechnological potential. The genomic data unveil new horizons for insight into bacterial existence in Antarctica.


Asunto(s)
Gammaproteobacteria , Genoma Bacteriano , Genómica , Filogenia , Regiones Antárticas , Gammaproteobacteria/genética , Gammaproteobacteria/aislamiento & purificación , Genómica/métodos , Psychrobacter/genética , Psychrobacter/aislamiento & purificación , Pseudoalteromonas/genética , Familia de Multigenes
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda