RESUMEN
OBJECTIVE: A 3D-printed vertebral prosthesis can be used to reconstruct a bone defect more precisely because of its tailored shape, with its innermost porous structure inducing bone ingrowth. The aim of this study was to evaluate the clinical outcomes of using a 3D-printed artificial vertebral body for spinal reconstruction after en bloc resection of thoracolumbar tumors. METHODS: This was a retrospective analysis of 23 consecutive patients who underwent surgical treatment for thoracolumbar tumors at our hospital. En bloc resection was performed in all cases, based on the Weinstein-Boriani-Biagini surgical staging system, and anterior reconstruction was performed using a 3D-printed artificial vertebral body. Prosthesis subsidence, fusion status, and instrumentation-related complications were evaluated. Stability of the anterior reconstruction method was evaluated by CT, and CT Hounsfield unit (HU) values were measured to evaluate fusion status. RESULTS: The median follow-up was 37 (range 24-58) months. A customized 3D-printed artificial vertebral body was used in 10 patients, with an off-the-shelf 3D-printed artificial vertebral body used in the other 13 patients. The artificial vertebral body was implanted anteriorly in 5 patients and posteriorly in 18 patients. The overall fusion rate was 87.0%. The average prosthesis subsidence at the final follow-up was 1.60 ± 1.79 mm. Instrument failure occurred in 2 patients, both of whom had substantial subsidence (8.47 and 3.69 mm, respectively). At 3 months, 6 months, and 1 year postoperatively, the mean CT HU values within the artificial vertebral body were 1930 ± 294, 1997 ± 336, and 1994 ± 257, respectively, with each of these values being significantly higher than the immediate postoperative value of 1744 ± 321 (p < 0.05). CONCLUSIONS: The use of a 3D-printed artificial vertebral body for anterior reconstruction after en bloc resection of the thoracolumbar spinal tumor may be a feasible and reliable option. The low incidence of prosthesis subsidence of 3D-printed endoprostheses can provide good stability instantly. Measurement of HU values with CT is a valuable method to evaluate the osseointegration at the bone-metal interface of a 3D-printed vertebral prosthesis.
RESUMEN
The aim of the current study was to compare outcomes between lateral access vertebral reconstruction (LAVR) using a rectangular footplate cage and the conventional procedure using a cylindrical footplate cage in patients with osteoporotic vertebral fracture (OVF). We included 46 patients who underwent anterior-posterior combined surgery for OVF: 24 patients underwent LAVR (Group L) and 22 underwent the conventional procedure (Group C). Preoperative, postoperative, and 1- and 2-year follow-up X-ray images were used to measure local lordotic angle, correction loss, and cage subsidence (>2 mm in vertebral endplate depression). In anterior surgery, the operation time was significantly shorter (183 vs. 248 min, p < 0.001) and the blood loss was significantly less (148 vs. 406 mL, p = 0.01) in Group L than in Group C. In Group C, two patients had anterior instrumentation failure. Correction loss was significantly smaller in Group L than in Group C (1.9° vs. 4.9° at 1 year, p = 0.02; 2.5° vs. 6.5° at 2 years, p = 0.04, respectively). Cage subsidence was significantly less in Group L than in Group C (29% vs. 80%, p < 0.001). LAVR using a rectangular footplate cage is an effective treatment for OVF to minimize surgical invasiveness and postoperative correction loss.
RESUMEN
INTRODUCTION: En bloc resection of high-cervical chordomas is a technically challenging procedure associated with significant morbidity. Two key components of this procedure include the approach and the method of spinal reconstruction. A limited number of reported cases of en bloc resection of high-cervical chordomas have been reported in the literature. CASE PRESENTATION: We report a novel case using an expandable cage to reconstruct the anterior spinal column above C2 with fixation to the clivus. We also report a novel anterior approach to the high-cervical spine via a midline labiomandibular glossotomy. We detail the management of complications related to 2 instances of wound dehiscence and hardware exposure requiring two additional operations. The final surgical procedure involved explantation of the anterior cervical plate and use of a vascularized radial graft to close the posterior pharyngeal defect and protect the hardware. At 26-month follow-up, the patient remained disease free without any neurologic deficit. DISCUSSION: We report the novel use of the midline labiomandibular glossotomy for surgical approach and reconstruction of the anterior column to the clivus with an expandable cage. The unique features of this operative strategy allowed the surgical team to tailor the construct intraoperatively, resulting in solid arthrodesis without significant neurologic sequelae. CONCLUSIONS: Labiomandibular glossotomy for approach to high anterior cervical chordomas followed by craniospinal reconstruction to the clivus with an expandable cage represents a novel technique for managing high cervical chordomas.