Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Brain ; 146(6): 2275-2284, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36730056

RESUMEN

Tau accumulation in patients with Alzheimer's disease tracks closely with cognitive decline and plays a role in the later stages of disease progression. This phase 2 study evaluated the safety and efficacy of tilavonemab, an anti-tau monoclonal antibody, in patients with early Alzheimer's disease. In this 96-week, randomized, double-blind, placebo-controlled study (NCT02880956), patients aged 55-85 years meeting clinical criteria for early Alzheimer's disease with a Clinical Dementia Rating-Global Score of 0.5, a Mini-Mental State Examination score of 22 to 30, a Repeatable Battery for the Assessment of Neuropsychological Status-Delayed Memory Index score of ≤85, and a positive amyloid PET scan were randomized 1:1:1:1 to receive one of three doses of tilavonemab (300 mg, 1000 mg, or 2000 mg) or placebo via intravenous infusion every 4 weeks. The primary end point was the change from baseline up to Week 96 in the Clinical Dementia Rating-Sum of Boxes (CDR-SB) score. Safety evaluations included adverse event monitoring and MRI assessments. A total of 453 patients were randomized, of whom 337 were treated with tilavonemab (300 mg, n = 108; 1000 mg, n = 116; 2000 mg, n = 113) and 116 received placebo. Baseline demographics and disease characteristics were comparable across groups. The mean age was 71.3 (SD 7.0) years, 51.7% were female, and 96.5% were White. At baseline, the mean CDR-SB score was 3.0 (1.2), which worsened through Week 96 for all treatment groups. The least squares mean change from baseline at Week 96 in the CDR-SB score with tilavonemab was not significantly different compared with placebo [300 mg (n = 85): -0.07 (95% confidence interval, CI: -0.83 to 0.69); 1000 mg (n = 91): -0.06 (95% CI: -0.81 to 0.68); 2000 mg (n = 81): 0.16 (95% CI: -0.60 to 0.93); all P ≥ 0.05]. The incidence of any adverse event and MRI findings were generally comparable across groups. Tilavonemab was generally well tolerated but did not demonstrate efficacy in treating patients with early Alzheimer's disease. Further investigations of tilavonemab in early Alzheimer's disease are not warranted.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Femenino , Anciano , Masculino , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/psicología , Método Doble Ciego , Tomografía de Emisión de Positrones , Imagen por Resonancia Magnética , Resultado del Tratamiento
2.
J Biomed Sci ; 30(1): 83, 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37784171

RESUMEN

Alzheimer's disease (AD) is the leading cause of dementia, presenting a significant unmet medical need worldwide. The pathogenesis of AD involves various pathophysiological events, including the accumulation of amyloid and tau, neuro-inflammation, and neuronal injury. Clinical trials focusing on new drugs for AD were documented in 2020, but subsequent developments have emerged since then. Notably, the US-FDA has approved Aducanumab and Lecanemab, both antibodies targeting amyloid, marking the end of a nearly two-decade period without new AD drugs. In this comprehensive report, we review all trials listed in clinicaltrials.gov, elucidating their underlying mechanisms and study designs. Ongoing clinical trials are investigating numerous promising new drugs for AD. The main trends in these trials involve pathophysiology-based, disease-modifying therapies and the recruitment of participants in earlier stages of the disease. These trends underscore the significance of conducting fundamental research on pathophysiology, prevention, and intervention prior to the occurrence of brain damage caused by AD.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/uso terapéutico
3.
J Biomed Sci ; 27(1): 18, 2020 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-31906949

RESUMEN

Alzheimer disease (AD) accounts for 60-70% of dementia cases. Given the seriousness of the disease and continual increase in patient numbers, developing effective therapies to treat AD has become urgent. Presently, the drugs available for AD treatment, including cholinesterase inhibitors and an antagonist of the N-methyl-D-aspartate receptor, can only inhibit dementia symptoms for a limited period of time but cannot stop or reverse disease progression. On the basis of the amyloid hypothesis, many global drug companies have conducted many clinical trials on amyloid clearing therapy but without success. Thus, the amyloid hypothesis may not be completely feasible. The number of anti-amyloid trials decreased in 2019, which might be a turning point. An in-depth and comprehensive understanding of the contribution of amyloid beta and other factors of AD is crucial for developing novel pharmacotherapies.In ongoing clinical trials, researchers have developed and are testing several possible interventions aimed at various targets, including anti-amyloid and anti-tau interventions, neurotransmitter modification, anti-neuroinflammation and neuroprotection interventions, and cognitive enhancement, and interventions to relieve behavioral psychological symptoms. In this article, we present the current state of clinical trials for AD at clinicaltrials.gov. We reviewed the underlying mechanisms of these trials, tried to understand the reason why prior clinical trials failed, and analyzed the future trend of AD clinical trials.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Inhibidores de la Colinesterasa/uso terapéutico , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides , Ensayos Clínicos como Asunto , Humanos
4.
J Neurosci ; 36(49): 12425-12435, 2016 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-27927959

RESUMEN

Passive immunization with anti-tau monoclonal antibodies has been shown by several laboratories to reduce age-dependent tau pathology and neurodegeneration in mutant tau transgenic mice. These studies have used repeated high weekly doses of various tau antibodies administered systemically for several months and have reported reduced tau pathology of ∼40-50% in various brain regions. Here we show that direct intrahippocampal administration of the adeno-associated virus (AAV)-vectored anti-phospho-tau antibody PHF1 to P301S tau transgenic mice results in high and durable antibody expression, primarily in neurons. Hippocampal antibody levels achieved after AAV delivery were ∼50-fold more than those reported following repeated systemic administration. In contrast to systemic passive immunization, we observed markedly reduced (≥80-90%) hippocampal insoluble pathological tau species and neurofibrillary tangles following a single dose of AAV-vectored PHF1 compared with mice treated with an AAV-IgG control vector. Moreover, the hippocampal atrophy observed in untreated P301S mice was fully rescued by treatment with the AAV-vectored PHF1 antibody. Vectored passive immunotherapy with an anti-tau monoclonal antibody may represent a viable therapeutic strategy for treating or preventing such tauopathies as frontotemporal dementia, progressive supranuclear palsy, or Alzheimer's disease. SIGNIFICANCE STATEMENT: We have used an adeno-associated viral (AAV) vector to deliver the genes encoding an anti-phospho-tau monoclonal antibody, PHF1, directly to the brain of mice that develop neurodegeneration due to a tau mutation that causes frontotemporal dementia (FTD). When administered systemically, PHF1 has been shown to modestly reduce tau pathology and neurodegeneration. Since such antibodies do not readily cross the blood-brain barrier, we used an AAV vector to deliver antibody directly to the hippocampus and observed much higher antibody levels and a much greater reduction in tau pathology. Using AAV vectors to deliver antibodies like PHF1 directly to brain may constitute a novel approach to treating various neurodegenerative disorders, such as FTD and Alzheimer's disease.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Inmunización Pasiva/métodos , Tauopatías/inmunología , Tauopatías/prevención & control , Factores de Transcripción/inmunología , Proteínas tau/genética , Animales , Anticuerpos Monoclonales/administración & dosificación , Proteínas de Unión al ADN , Dependovirus/inmunología , Femenino , Hipocampo , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microinyecciones , Mutación/genética , Ovillos Neurofibrilares/patología , Proteínas del Grupo Polycomb , Distribución Tisular
5.
Cureus ; 16(3): e56105, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38618323

RESUMEN

Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by memory impairment, a loss of cholinergic neurons, and cognitive decline that insidiously progresses to dementia. The pathoetiology of AD is complex, as genetic predisposition, age, inflammation, oxidative stress, and dysregulated proteostasis all contribute to its development and progression. The histological hallmarks of AD are the formation and accumulation of amyloid-ß plaques and interfibrillar tau tangles within the central nervous system. These histological hallmarks trigger neuroinflammation and disrupt the physiological structure and functioning of neurons, leading to cognitive dysfunction. Most treatments currently available for AD focus only on symptomatic relief. Disease-modifying treatments (DMTs) that target the biology of the disease in hopes of slowing or reversing disease progression are desperately needed. This narrative review investigates novel DMTs and their therapeutic targets that are either in phase three of development or have been recently approved by the U.S. Food and Drug Administration (FDA). The target areas of some of these novel DMTs consist of combatting amyloid or tau accumulation, oxidative stress, neuroinflammation, and dysregulated proteostasis, metabolism, or circadian rhythm. Neuroprotection and neuroplasticity promotion were also key target areas. DMT therapeutic target diversity may permit improved therapeutic responses in certain subpopulations of AD, particularly if the therapeutic target of the DMT being administered aligns with the subpopulation's most prominent pathological findings. Clinicians should be cognizant of how these novel drugs differ in therapeutic targets, as this knowledge may potentially enhance the level of care they can provide to AD patients in the future.

6.
Curr Top Med Chem ; 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38566385

RESUMEN

About 60% to 70% of people with dementia have Alzheimer's Disease (AD), a neuro-degenerative illness. One reason for this disorder is the misfolding of naturally occurring proteins in the human brain, specifically ß-amyloid (Aß) and tau. Certain diagnostic imaging techniques, such as amyloid PET imaging, tau PET imaging, Magnetic Resonance Imaging (MRI), Comput-erized Tomography (CT), and others, can detect biomarkers in blood, plasma, and cerebral spinal fluids, like an increased level of ß-amyloid, plaques, and tangles. In order to create new pharma-cotherapeutics for Alzheimer's disease, researchers must have a thorough and detailed knowledge of amyloid beta misfolding and other related aspects. Dolopezil, rivastigmine, galantamine, and other acetylcholinesterase inhibitors are among the medications now used to treat Alzheimer's disease. Another medication that can temporarily alleviate dementia symptoms is memantine, which blocks the N-methyl-D-aspartate (NMDA) receptor. However, it is not able to halt or re-verse the progression of the disease. Medication now on the market can only halt its advance-ment, not reverse it. Interventions to alleviate behavioral and psychological symptoms, exhibit an-ti-neuroinflammation and anti-tau effects, induce neurotransmitter alteration and cognitive en-hancement, and provide other targets have recently been developed. For some Alzheimer's pa-tients, the FDA-approved monoclonal antibody, aducanumab, is an option; for others, phase 3 clinical studies are underway for drugs, like lecanemab and donanemab, which have demonstrat-ed potential in eliminating amyloid protein. However, additional study is required to identify and address these limitations in order to reduce the likelihood of side effects and maximize the thera-peutic efficacy.

7.
J Prev Alzheimers Dis ; 11(2): 428-434, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38374749

RESUMEN

Lithium has been approved and used for several decades in the treatment of psychiatric disorders, and its potential effect in neurodegenerative diseases has been subject to increasing research interest in recent years. Nanolithium is a new experimental product using a novel drug-delivery technology (Aonys®), which optimizes its bioavailability while reducing its toxicity profile. Therapeutic doses of lithium used in Nanolithium are more than 50 times lower than the minimal dose of classical lithium salts. In this review we report data from non-clinical pharmacology studies supporting Nanolithium efficacy and the mechanism of action in Alzheimer's disease. GSK-3ß inhibition is thought to be central to Nanolithium's mechanism of action, triggering a reduction of the production of toxic amyloid plaques and decrease in tau hyperphosphorylation, which could potentially benefit both neuropsychiatric symptoms and cognitive decline. We then summarize outcomes from non-clinical proof-of-concept studies. These data supported the initiation of a currently ongoing phase II proof-of-concept study to evaluate the safety and efficacy of Nanolithium in patients with mild-to-severe Alzheimer's disease. We highlight key aspects of the study design. We finish this review with a discussion on the potential place of Nanolithium in the current and future Alzheimer's disease treatment landscape.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Enfermedad de Alzheimer/diagnóstico , Litio/uso terapéutico , Glucógeno Sintasa Quinasa 3 beta , Cognición
8.
J Control Release ; 355: 604-621, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36738970

RESUMEN

Since the complex interactions of multiple mechanisms involved in Alzheimer's disease (AD) preclude the monotherapeutic approaches from clinical application, combination therapy has become an attractive strategy for AD treatment. However, to be emphasized, the realization of the edges of combination therapy greatly depends on the reasonable choice of targets and the rational design of combination scheme. Acknowledgedly, amyloid plaques and hyperphosphorylated tau (p-tau) are two main hallmarks in AD with close pathological correlations, implying the hopeful prospect of combined intervention in them for AD treatment. Herein, we developed the nano-combination system, neuron-targeting PEG-PLA nanoparticles (CT-NP) loading two peptide drugs H102, a ß-sheet breaker acting on Aß, and NAP, a microtubule stabilizer acting on p-tau. Compared with free peptide combination, nano-combination system partly aligned the in vivo behaviors of combined peptides and enhanced peptide accumulation in lesion neurons by the guidance of targeting peptide CGN and Tet1, facilitating the therapeutic performance of peptide combination. Further, to maximize the therapeutic potential of nano-combination system, the combination ratio and mode were screened by the quantitative evaluation with combination index and U test, respectively, in vitro and in vivo. The results showed that the separated-loading CT-NP at the combination molar ratio of 2:1 (H102:NAP), CT-NP/H102 + CT-NP/NAP(2:1), generated the strongest synergistic therapeutic effects on Aß, p-tau and their linkage, and effectually prevented neuroinflammation, reversed the neuronal damage and restored cognitive performance in 3 × Tg-AD transgenic mice. Our studies provide critical data on the effectiveness of nano-combination therapy simultaneously intervening in Aß and p-tau, confirming the promising application of nano-combination strategy in AD treatment.


Asunto(s)
Enfermedad de Alzheimer , Nanopartículas , Ratones , Animales , Enfermedad de Alzheimer/terapia , Encéfalo/metabolismo , Péptidos/uso terapéutico , Péptidos/farmacología , Ratones Transgénicos , Neuronas/metabolismo , Péptidos beta-Amiloides/metabolismo , Modelos Animales de Enfermedad
9.
J Am Geriatr Soc ; 70(11): 3281-3292, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36208415

RESUMEN

OBJECTIVE: To assess the cognitive effectiveness and safety of tau-targeting drugs for Alzheimer's disease (AD) METHODS: The MEDLINE, Embase, Cochrane Library, PsycINFO, ClinicalTrials.gov, and WHO International Clinical Trials Registry Platform databases were searched from inception to 22 November 2021. A systematic review and meta-analysis of randomized controlled trials were performed RESULTS: Thirty-four randomized controlled trials comprising 5549 participants, of which fifteen (51.7%) had a low risk of bias, were included. The meta-analysis showed no differences in the cognitive subscale of the AD: Assessment Scale (ADAS-Cog) between anti-tau drugs and placebo (mean difference [MD]: -0.77, 95% CI: -1.64 to 0.10; minimal important difference 3.1-3.8 points, moderate certainty evidence). For ADAS-Cog, the results subgroup analysis suggested a statistical effect of tau posttranslational modifications on drug inhibition (MD: -0.80, 95% CI: -1.43 to -0.17), which was not seen with tau aggregation inhibitors or immunotherapy (interaction p = 0.24). A total of 11.0%, 5.2%, and 4.8% of drugs inhibiting tau aggregation, immunotherapy, and drugs targeting posttranslational modifications, respectively, had a reduced risk of dropouts due to adverse events (AEs). DISCUSSION: Current evidence suggests that anti-tau drugs are unlikely to have an important impact on slowing cognitive impairment. Although the subgroup analysis suggested that inhibition of tau posttranslational modifications is statistically effective and generally safer because of reduced dropouts due to AEs, the analysis has limited credibility. Additional large-scale and well-designed randomized and placebo-controlled trials will be necessary to explore the benefit of a certain type of anti-tau drug for AD.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Enfermedad de Alzheimer/tratamiento farmacológico , Disfunción Cognitiva/tratamiento farmacológico
10.
Front Neurosci ; 16: 1003522, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36340772

RESUMEN

Background: Behavioural Variant Frontotemporal Dementia (bvFTD) is a rapidly progressing neurodegenerative proteinopathy. Perivascular spaces (PVS) form a part of the brain's glymphatic clearance system. When enlarged due to poor glymphatic clearance of toxic proteins, PVS become larger and more conspicuous on MRI. Therefore, enlarged PVS may be a useful biomarker of disease severity and progression in neurodegenerative proteinopathies such as bvFTD. This study aimed to determine the utility of PVS as a biomarker of disease progression in patients with bvFTD. Materials and methods: Serial baseline and week 52 MRIs acquired from ten patients with bvFTD prospectively recruited and followed in a Phase 1b open label trial of sodium selenate for bvFTD were used in this study. An automated algorithm quantified PVS on MRI, which was visually inspected and validated by a member of the study team. The number and volume of PVS were extracted and mixed models used to assess the relationship between PVS burden and other measures of disease (cognition, carer burden scale, protein biomarkers). Additional exploratory analysis investigated PVS burden in patients who appeared to not progress over the 12 months of selenate treatment (i.e., "non-progressors"). Results: Overall, PVS cluster number (ß = -3.27, CI [-7.80 - 1.27], p = 0.267) and PVS volume (ß = -36.8, CI [-84.9 - 11.3], p = 0.171) did not change over the paired MRI scans 12 months apart. There was association between cognition total composite scores and the PVS burden (PVS cluster ß = -0.802e-3, CI [9.45e - 3 - -6.60e - 3, p ≤ 0.001; PVS volume ß = -1.30e - 3, CI [-1.55e - 3 - -1.05e - 3], p ≤ 0.001), as well as between the change in the cognition total composite score and the change in PVS volume (ß = 4.36e - 3, CI [1.33e - 3 - 7.40e - 3], p = 0.046) over the trial period. There was a significant association between CSF t-tau and the number of PVS clusters (ß = 2.845, CI [0.630 - 5.06], p = 0.036). Additionally, there was a significant relationship between the change in CSF t-tau and the change in the number of PVS (ß = 1.54, CI [0.918 - 2.16], p < 0.001) and PVS volume (ß = 13.8, CI [6.37 - 21.1], p = 0.003) over the trial period. An association was found between the change in NfL and the change in PVS volume (ß = 1.40, CI [0.272 - 2.52], p = 0.045) over time. Within the "non-progressor" group (n = 7), there was a significant relationship between the change in the CSF total-tau (t-tau) levels and the change in the PVS burden (PVS cluster (ß = 1.46, CI [0.577 - 2.34], p = 0.014; PVS volume ß = 14.6, CI [3.86 - 25.4], p = 0.032) over the trial period. Additionally, there was evidence of a significant relationship between the change in NfL levels and the change in the PVS burden over time (PVS cluster ß = 0.296, CI [0.229 - 0.361], p ≤ 0.001; PVS volume ß = 3.67, CI [2.42 - 4.92], p = 0.002). Conclusion: Analysis of serial MRI scans 12 months apart in patients with bvFTD demonstrated a relationship between PVS burden and disease severity as measured by the total cognitive composite score and CSF t-tau. Further studies are needed to confirm PVS as a robust marker of neurodegeneration in proteinopathies.

11.
Pharmaceutics ; 14(2)2022 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-35214143

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disease that causes memory loss, cognitive decline, and eventually dementia. The etiology of AD and its pathological mechanisms remain unclear due to its complex pathobiology. At the same time, the number of patients with AD is increasing worldwide. However, no therapeutic agents for AD are currently available for definitive care. Several phase 3 clinical trials using agents targeting amyloid ß (Aß) and its related molecules have failed, with the exception of aducanumab, an anti-Aß monoclonal antibody (mAb), clinically approved by the US Food and Drug Administration in 2021, which could be modified for AD drug development due to controversial approval. Neurofibrillary tangles (NFTs) composed of tau rather than senile plaques composed of Aß are correlated with AD pathogenesis. Moreover, Aß and tau pathologies initially proceed independently. At a certain point in the progression of AD symptoms, the Aß pathology is involved in the alteration and spreading of the tau pathology. Therefore, tau-targeting therapies have attracted the attention of pharmaceutical scientists, as well as Aß-targeting therapies. In this review, I introduce the implementations and potential of AD immunotherapy using intravenously administered anti-tau and anti-receptor bispecific mAbs. These cross the blood-brain barrier (BBB) based on receptor-mediated transcytosis and are subsequently cleared by microglia based on Fc-mediated endocytosis after binding to tau and lysosomal degradation.

12.
Alzheimers Dement (N Y) ; 8(1): e12299, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35574563

RESUMEN

Introduction: Sodium selenate increases tau dephosphorylation through protein phosphatase 2 activation. Here we report an open-label Phase 1b study of sodium selenate as a disease-modifying treatment for behavioral variant frontotemporal dementia (bvFTD). Methods: Twelve participants with bvFTD received sodium selenate (15 mg, three times a day) for 52 weeks. Safety assessments were carried out throughout the trial. Primary outcomes were frequency of adverse events (AEs), serious adverse events (SAEs), and discontinuations. Secondary outcomes of potential efficacy included cognitive and behavioral assessments, magnetic resonance imaging (MRI) whole brain volume, and cerebrospinal fluid (CSF) and blood total tau (t-tau), phosphorylated tau (p-tau), and neurofilament light (NfL) levels, which were measured at baseline and at week 52. Results: Sodium selenate was safe and well tolerated. All participants completed the study, and the majority (64.7%) of reported AEs were mild. One SAE occurred, which was not treatment related. Small declines in MRI and cognitive and behavioral measures were observed over the treatment period. There was no evidence for change in CSF protein levels (t-tau, p-tau, or NfL). Further analysis showed two distinct groups when measuring disease progression markers over the course of the study-one (n = 4) with substantial brain atrophy (2.5% to 6.5% reduction) and cognitive and behavioral decline over the 12-month treatment period, and the second group (n = 7) with no detectable change in cognitive and behavioral measures and less brain atrophy (0.3% to 1.7% reduction). Conclusion: Sodium selenate is safe and well tolerated in patients with bvFTD. Randomized-controlled trials are warranted to investigate potential efficacy.

13.
J Prev Alzheimers Dis ; 8(3): 306-312, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34101788

RESUMEN

A diverse range of platforms has been established to increase the efficiency and speed of clinical trials for Alzheimer's disease (AD). These platforms enable parallel assessment of multiple therapeutics, treatment regimens, or participant groups; use uniform protocols and outcome measures; and may allow treatment arms to be added or dropped based on interim analyses of outcomes. The EU/US CTAD Task Force discussed the lessons learned from the Dominantly Inherited Alzheimer's Network Trials Unit (DIAN-TU) platform trial and the challenges addressed by other platform trials that have launched or are in the planning stages. The landscape of clinical trial platforms in the AD space includes those testing experimental therapies such as DIAN-TU, platforms designed to test multidomain interventions, and those designed to streamline trial recruitment by building trial-ready cohorts. The heterogeneity of the AD patient population, AD drugs, treatment regimens, and analytical methods complicates the design and execution of platform trials, yet Task Force members concluded that platform trials are essential to advance the search for effective AD treatments, including combination therapies.


Asunto(s)
Comités Consultivos , Enfermedad de Alzheimer , Anticuerpos Monoclonales Humanizados/uso terapéutico , Desarrollo de Medicamentos/normas , Proyectos de Investigación , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides , Enfermedades Asintomáticas , Biomarcadores , Humanos , Evaluación de Resultado en la Atención de Salud , Proteínas tau
14.
J Alzheimers Dis ; 77(1): 33-51, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32651325

RESUMEN

One of the major challenges of medical sciences has been finding a reliable compound for the pharmacological treatment of Alzheimer's disease (AD). As most of the drugs directed to a variety of targets have failed in finding a medical solution, natural products from Ayurvedic medicine or nutraceutical compounds emerge as a viable preventive therapeutics' pathway. Considering that AD is a multifactorial disease, nutraceutical compounds offer the advantage of a multitarget approach, tagging different molecular sites in the human brain, as compared with the single-target activity of most of the drugs used for AD treatment. We review in-depth important medicinal plants that have been already investigated for therapeutic uses against AD, focusing on a diversity of pharmacological actions. These targets include inhibition of acetylcholinesterase, ß-amyloid senile plaques, oxidation products, inflammatory pathways, specific brain receptors, etc., and pharmacological actions so diverse as anti-inflammatory, memory enhancement, nootropic effects, glutamate excitotoxicity, anti-depressants, and antioxidants. In addition, we also discuss the activity of nutraceutical compounds and phytopharmaceuticals formulae, mainly directed to tau protein aggregates mechanisms of action. These include compounds such as curcumin, resveratrol, epigallocatechin-3-gallate, morin, delphinidins, quercetin, luteolin, oleocanthal, and meganatural-az and other phytochemicals such as huperzine A, limonoids, azaphilones, and aged garlic extract. Finally, we revise the nutraceutical formulae BrainUp-10 composed of Andean shilajit and B-complex vitamins, with memory enhancement activity and the control of neuropsychiatric distress in AD patients. This integrated view on nutraceutical opens a new pathway for future investigations and clinical trials that are likely to render some results based on medical evidence.


Asunto(s)
Enfermedad de Alzheimer/dietoterapia , Enfermedad de Alzheimer/prevención & control , Suplementos Dietéticos , Fitoquímicos/uso terapéutico , Enfermedad de Alzheimer/metabolismo , Animales , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Humanos , Ovillos Neurofibrilares/efectos de los fármacos , Ovillos Neurofibrilares/metabolismo , Fitoquímicos/farmacología , Resultado del Tratamiento
15.
J Cent Nerv Syst Dis ; 12: 1179573520907397, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32165850

RESUMEN

Disease-modifying treatment strategies for Alzheimer disease (AD) are still under extensive research. Nowadays, only symptomatic treatments exist for this disease, all trying to counterbalance the neurotransmitter disturbance: 3 cholinesterase inhibitors and memantine. To block the progression of the disease, therapeutic agents are supposed to interfere with the pathogenic steps responsible for the clinical symptoms, classically including the deposition of extracellular amyloid ß plaques and intracellular neurofibrillary tangle formation. Other underlying mechanisms are targeted by neuroprotective, anti-inflammatory, growth factor promotive, metabolic efficacious agents and stem cell therapies. Recent therapies have integrated multiple new features such as novel biomarkers, new neuropsychological outcomes, enrollment of earlier populations in the course of the disease, and innovative trial designs. In the near future different specific agents for every patient might be used in a "precision medicine" context, where aberrant biomarkers accompanied with a particular pattern of neuropsychological and neuroimaging findings could determine a specific treatment regimen within a customized therapeutic framework. In this review, we discuss potential disease-modifying therapies that are currently being studied and potential individualized therapeutic frameworks that can be proved beneficial for patients with AD.

16.
Expert Opin Drug Discov ; 15(1): 1-6, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31526140

RESUMEN

Introduction: Alzheimer's disease (AD) vaccination is one of the last therapeutic options after two decades of stagnation in terms of drug development. About 140 (85%) immunization procedures against Aß deposition and 25 (15%) against Tau have been reported, but no Food and Drug Administration approval of any AD vaccine has been achieved. This might be attributed to deficient pathogenic targets, inappropriate models, defective immunotherapeutic procedures, and inadequate clinical trial design.Areas covered: The issues covered include the following: AD pathogenic mechanisms, rationale for active and passive immunization, vaccine targets, anti-Aß/Tau vaccines, vaccine technologies, animal models, and clinical trials.Expert opinion: A vaccine against AD is technically feasible; however, important methodological aspects should be changed for a tentative clinical success, including (i) the development of multitarget AD immunotherapies; (ii) the optimization of antibody titers and epitopes; (iii) the pharmacogenetic/pharmacoepigenetic validation of the immunization procedure; (iv) the prophylactic treatment of genetically stratified patients at a pre-symptomatic stage; and (v) the definition of primary endpoints in prevention, based on objective/multifactorial biomarkers. Even with exquisite protocols, a successful vaccine would be potentially useful in at most 20-30% of defined cases, according to the genetic, epigenetic, and pharmacogenetic background of AD patients.


Asunto(s)
Enfermedad de Alzheimer/terapia , Vacunas contra el Alzheimer/inmunología , Vacunas contra el Alzheimer/uso terapéutico , Humanos , Inmunoterapia , Proteínas tau
17.
World J Clin Cases ; 7(14): 1764-1774, 2019 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-31417922

RESUMEN

Alzheimer's disease (AD) is still a major public health challenge without an effective treatment to prevent or stop it. Routinely used acetylcholinesterase inhibitors and memantine seem to slow disease progression only to a limited extend. Therefore, many investigations on new drugs and other treatment modalities are ongoing in close association with increasing knowledge of the pathophysiology of the disease. Here, we review the studies about the new treatment modalities in AD with a classification based on their main targets, specifically pathologic structures of the disease, amyloid and tau, neural network dysfunction with special interest to the regulation of gamma oscillations, and attempts for the restoration of neural tissue via regenerative medicine. Additionally, we describe the evolving modalities related to gut microbiota, modulation, microglial function, and glucose metabolism.

18.
Expert Opin Drug Discov ; 13(6): 523-538, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29607687

RESUMEN

INTRODUCTION: Alzheimer's disease (AD) is the most important neurodegenerative disorder with a global cost worldwide of over $700 billion. Pharmacological treatment accounts for 10-20% of direct costs; no new drugs have been approved during the past 15 years; and the available medications are not cost-effective. Areas covered: A massive scrutiny of AD-related PubMed publications (ps)(2013-2017) identified 42,053ps of which 8,380 (19.60%) were associated with AD treatments. The most prevalent pharmacological categories included neurotransmitter enhancers (11.38%), multi-target drugs (2.45%), anti-Amyloid agents (13.30%), anti-Tau agents (2.03%), natural products and derivatives (25.58%), novel drugs (8.13%), novel targets (5.66%), other (old) drugs (11.77%), anti-inflammatory drugs (1.20%), neuroprotective peptides (1.25%), stem cell therapy (1.85%), nanocarriers/nanotherapeutics (1.52%), and others (<1% each). Expert opinion: Unsuccessful outcomes in AD therapeutics are attributed to pathogenic misconceptions, erratic procedures in drug development and inappropriate regulations. Recommendations for the future are as follows: (i) the reconsideration of dominant pathogenic theories, (ii) the identification of reliable biomarkers, (iii) the redefinition of diagnostic criteria, (iv) new guidelines for disease management, (v) the reorientation of drug discovery programs, (vi) the updating of regulatory requirements, (vii) the introduction of pharmacogenomics in drug development and personalized treatments, and (viii) the implementation of preventive programs.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Desarrollo de Medicamentos/métodos , Descubrimiento de Drogas/métodos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/fisiopatología , Biomarcadores/metabolismo , Humanos , Farmacogenética , Medicina de Precisión/métodos
19.
Alzheimers Dement (N Y) ; 4: 521-534, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30386817

RESUMEN

INTRODUCTION: The abnormal hyperphosphorylation of the microtubule-associated protein tau plays a crucial role in neurodegeneration in Alzheimer's disease (AD) and other tauopathies. METHODS: Highly specific and selective anti-pS396-tau antibodies have been generated using peptide immunization with screening against pathologic hyperphosphorylated tau from rTg4510 mouse and AD brains and selection in in vitro and in vivo tau seeding assays. RESULTS: The antibody C10.2 bound specifically to pS396-tau with an IC50 of 104 pM and detected preferentially hyperphosphorylated tau aggregates from AD brain with an IC50 of 1.2 nM. C10.2 significantly reduced tau seeding of P301L human tau in HEK293 cells, murine cortical neurons, and mice. AD brain extracts depleted with C10.2 were not able to seed tau in vitro and in vivo, demonstrating that C10.2 specifically recognized pathologic seeding-competent tau. DISCUSSION: Targeting pS396-tau with an antibody like C10.2 may provide therapeutic benefit in AD and other tauopathies.

20.
Vaccine ; 35(16): 2015-2024, 2017 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-28320590

RESUMEN

BACKGROUND: By the time clinical symptoms of Alzheimer's disease (AD) manifest in patients there is already substantial tau pathology in the brain. Recent evidence also suggests that tau pathology can become self-propagating, further accelerating disease progression. Over the last decade several groups have tested the efficacy of protein-based anti-tau immunotherapeutics in various animal models of tauopathy. Here we report on the immunological and therapeutic potency of the first anti-tau DNA vaccine based on the MultiTEP platform, AV-1980D, in THY-Tau22 transgenic mice. METHODS: Starting at 3months of age, mice were immunized intramuscularly with AV-1980D vaccine targeting a tau B cell epitope spanning aa2-18 followed by electroporation (EP). Humoral and cellular immune responses in vaccinated animals were analyzed by ELISA and ELISpot, respectively. Neuropathological changes in the brains of experimental and control mice were then analyzed by biochemical (WB and ELISA) and immunohistochemical (IHC) methods at 9months of age. RESULTS: EP-mediated AV-1980D vaccinations of THY-Tau22 mice induced activation of Th cells specific to the MultiTEP vaccine platform and triggered robust humoral immunity response specific to tau. Importantly, no activation of potentially harmful autoreactive Th cell responses specific to endogenous tau species was detected. The maximum titers of anti-tau antibodies were reached after two immunizations and remained slightly lower, but steady during five subsequent monthly immunizations. Vaccinations with AV-1980D followed by EP significantly reduced total tau and pS199 and AT180 phosphorylated tau levels in the brains extracts of vaccinated mice, but produced on subtle non-significant effects on other phosphorylated tau species. CONCLUSIONS: These data demonstrate that MultiTEP-based DNA epitope vaccination targeting the N-terminus of tau is highly immunogenic and therapeutically potent in the THY-Tau22 mouse model of tauopathy and indicate that EP-mediated DNA immunization is an attractive alternative to protein-based adjuvanted vaccines for inducing high concentrations of anti-tau antibodies.


Asunto(s)
Enfermedad de Alzheimer/prevención & control , Enfermedad de Alzheimer/terapia , Epítopos/inmunología , Vacunas de ADN/inmunología , Proteínas tau/inmunología , Inmunidad Adaptativa , Enfermedad de Alzheimer/patología , Animales , Anticuerpos/sangre , Western Blotting , Encéfalo/patología , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Ensayo de Immunospot Ligado a Enzimas , Epítopos/genética , Femenino , Humanos , Inmunohistoquímica , Inyecciones Intramusculares , Linfocitos/inmunología , Ratones Transgénicos , Resultado del Tratamiento , Vacunas de ADN/administración & dosificación , Vacunas de ADN/genética , Proteínas tau/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda