Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Development ; 149(22)2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36305487

RESUMEN

During flowering plant reproduction, anthers produce pollen grains, the development of which is supported by the tapetum, a nourishing maternal tissue that also contributes non-cell-autonomously to the pollen wall, the resistant external layer on the pollen surface. How the anther restricts movement of the tapetum-derived pollen wall components, while allowing metabolites such as sugars and amino acids to reach the developing pollen, remains unknown. Here, we show experimentally that in arabidopsis thaliana the tapetum and developing pollen are symplastically isolated from each other, and from other sporophytic tissues, from meiosis onwards. We show that the peritapetal strip, an apoplastic structure, separates the tapetum and the pollen grains from other anther cell layers and can prevent the apoplastic diffusion of fluorescent proteins, again from meiosis onwards. The formation and selective barrier functions of the peritapetal strip require two NADPH oxidases, RBOHE and RBOHC, which play a key role in pollen formation. Our results suggest that, together with symplastic isolation, gating of the apoplast around the tapetum may help generate metabolically distinct anther compartments.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Flores , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Polen/metabolismo , Reproducción , Regulación de la Expresión Génica de las Plantas
2.
Plant Physiol ; 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39196772

RESUMEN

Rice (Oryza sativa L.) and many other wetland plants form an apoplastic barrier in the outer parts of the roots to restrict radial O2 loss to the rhizosphere during soil flooding. This barrier facilitates longitudinal internal O2 diffusion via gas-filled tissues from shoot to root apices, enabling root growth in anoxic soils. We tested the hypothesis that Leaf Gas Film 1 (LGF1), which influences leaf hydrophobicity in rice, plays a crucial role in tight outer apoplastic barriers formation in rice roots. We examined the roots of a rice mutant (dripping wet leaf 7, drp7) lacking functional LGF1, its wild type, and an LGF1 overexpression line for their capacity to develop outer apoplastic barriers that restrict radial O2 loss. We quantified the chemical composition of the outer part of the root and measured radial O2 diffusion from intact roots. The drp7 mutant exhibited a weak barrier to radial O2 loss compared to the wild type. However, introducing functional LGF1 into the mutant fully restored tight barrier function. The formation of a tight barrier to radial O2 loss was associated with increased glycerol ester levels in exodermal cells, rather than differences in total root suberization or lignification. These results demonstrate that, in addition to its role in leaf hydrophobicity regulation, LGF1 plays an important role in controlling the function of the outer apoplastic barriers in roots. Our study suggests that increased deposition of glycerol esters in the suberized root exodermis establishes a tight barrier to radial O2 loss in rice roots.

3.
Plant J ; 116(2): 467-477, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37422899

RESUMEN

The Casparian strip (CS) is a cell wall modification made of lignin that functions as an apoplastic barrier in the root endodermis to restrict nutrient and water transport between the soil and stele. CS formation is affected by nutritional conditions, and its physiological roles have been discussed. This study found that low K condition affects CS permeability, lignin deposition, and MYB36 mRNA accumulation. To understand the mechanism underlying these findings, we focused on nitric oxide (NO). NO is known to act as a signaling molecule and participates in cell wall synthesis, especially for lignin composition. However, the mechanism by which NO affects lignin deposition and corrects CS formation in the plant roots remains unclear. Through combining fluorescent observation with histological stains, we demonstrated that the root endodermal cell lignification response to low-potassium (K) conditions is mediated by NO through the MYB36-associated lignin-polymerizing pathway. Furthermore, we discovered the noteworthy ability of NO to maintain nutrient homeostasis for adaptation to low K conditions by affecting the correct apoplastic barrier formation of CS. Collectively, our results suggest that NO is required for the lignification and apoplastic barrier formation in the root endodermis during adaptation to low K conditions, which revealing the novel physiological roles of CS under low nutrient conditions and making a significant contribution to CS biology.


Asunto(s)
Arabidopsis , Arabidopsis/genética , Óxido Nítrico/metabolismo , Lignina/metabolismo , Raíces de Plantas/metabolismo , Pared Celular/metabolismo , Diferenciación Celular
4.
Ann Bot ; 133(7): 931-940, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38448365

RESUMEN

BACKGROUND AND AIMS: Internal root aeration is essential for root growth in waterlogged conditions. Aerenchyma provides a path for oxygen to diffuse to the roots. In most wetland species, including rice, a barrier to radial oxygen loss (ROL) allows more of the oxygen to diffuse to the root tip, enabling root growth into anoxic soil. Most dryland crops, including barley, do not form a root ROL barrier. We previously found that abscisic acid (ABA) signalling is involved in the induction of ROL barrier formation in rice during waterlogging. Although rice typically does not form a tight ROL barrier in roots in aerated conditions, an ROL barrier with suberized exodermis was induced by application of exogenous ABA. Therefore, we hypothesized that ABA application could also trigger root ROL barrier formation with hypodermal suberization in barley. METHODS: Formation of an ROL barrier was examined in roots in different exogenous ABA concentrations and at different time points using cylindrical electrodes and Methylene Blue staining. Additionally, we evaluated root porosity and observed suberin and lignin modification. Suberin, lignin and Casparian strips in the cell walls were observed by histochemical staining. We also evaluated the permeability of the apoplast to a tracer. KEY RESULTS: Application of ABA induced suberization and ROL barrier formation in the adventitious roots of barley. The hypodermis also formed lignin-containing Casparian strips and a barrier to the infiltration of an apoplastic tracer (periodic acid). However, ABA application did not affect root porosity. CONCLUSIONS: Our results show that in artificial conditions, barley can induce the formation of ROL and apoplastic barriers in the outer part of roots if ABA is applied exogenously. The difference in ROL barrier inducibility between barley (an upland species) and rice (a wetland species) might be attributable to differences in ABA signalling in roots in response to waterlogging conditions.


Asunto(s)
Ácido Abscísico , Hordeum , Lignina , Oxígeno , Raíces de Plantas , Hordeum/efectos de los fármacos , Hordeum/metabolismo , Hordeum/crecimiento & desarrollo , Ácido Abscísico/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Oxígeno/metabolismo , Lignina/metabolismo , Pared Celular/metabolismo , Pared Celular/efectos de los fármacos , Reguladores del Crecimiento de las Plantas/metabolismo , Lípidos
5.
Plant Mol Biol ; 111(1-2): 73-88, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36372837

RESUMEN

Sweet sorghum [Sorghum bicolor (L.) Moench], a C4 crop with high biomass and strong resistance to multiple stresses, can grow and reproduce in saline-alkaline soil and is an ideal raw material for biofuels. Under high-salinity conditions, sweet sorghum shows extensive salt exclusion. However, the specific molecular mechanism of the apoplastic barrier in salt exclusion is unknown. In this study, SbCASP-LP1C1 (a CASP-like protein1C1) was localized in the plasma membrane of sweet sorghum root endodermal cells, and its function was further studied by heterologous expression in Arabidopsis (35 S:SbCASP-LP1C1-GFP). When germinated and grown on 50 mM NaCl, the SbCASP-LP1C1-expressing lines had longer roots and a higher salinity threshold compared with wild-type (Col-0) plant and the casp-lp T-DNA insertion mutant in Arabidopsis. The 35 S:SbCASP-LP1C1-GFP lines also suffered less oxidative damage as determined by DAB and NBT staining, and the expression levels of several antioxidant genes were higher in these lines. Moreover, the stele of 35 S:SbCASP-LP1C1-GFP lines was less permeable to propidium iodide, and these plants contained less Na+ in their shoots and roots compared to wild type and casp-lp. In the 35 S:SbCASP-LP1C1-GFP lines, the expression levels of two Casparian strip synthesis genes, MYB36 and ESB1, were increased. These results indicate that SbCASP-LP1C1 may be involved in the polymerization of lignin monomers in the Casparian strip of sweet sorghum, thereby regulating salt tolerance. These results provide a theoretical basis to understand the role of plant roots in salt exclusion and a means by which to improve the salt tolerance of crops.


Asunto(s)
Sorghum , Arabidopsis/metabolismo , Pared Celular/metabolismo , Grano Comestible/metabolismo , Estrés Oxidativo , Raíces de Plantas/metabolismo , Tolerancia a la Sal/genética , Sorghum/genética , Sorghum/metabolismo , Proteínas de Plantas
6.
New Phytol ; 238(5): 1825-1837, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36928886

RESUMEN

The root barrier to radial O2 loss (ROL) is a key root trait preventing O2 loss from roots to anoxic soils, thereby enabling root growth into anoxic, flooded soils. We hypothesized that the ROL barrier can also prevent intrusion of hydrogen sulphide (H2 S), a potent phytotoxin in flooded soils. Using H2 S- and O2 -sensitive microsensors, we measured the apparent permeance to H2 S of rice roots, tested whether restricted H2 S intrusion reduced its adverse effects on root respiration, and whether H2 S could induce the formation of a ROL barrier. The ROL barrier reduced apparent permeance to H2 S by almost 99%, greatly restricting H2 S intrusion. The ROL barrier acted as a shield towards H2 S; O2 consumption in roots with a ROL barrier remained unaffected at high H2 S concentration (500 µM), compared to a 67% decline in roots without a barrier. Importantly, low H2 S concentrations induced the formation of a ROL barrier. In conclusion, the ROL barrier plays a key role in protecting against H2 S intrusion, and H2 S can act as an environmental signalling molecule for the induction of the barrier. This study demonstrates the multiple functions of the suberized/lignified outer part of the rice root beyond that of restricting ROL.


Asunto(s)
Sulfuro de Hidrógeno , Oryza , Oxígeno , Sulfuro de Hidrógeno/farmacología , Raíces de Plantas , Suelo
7.
New Phytol ; 233(2): 655-669, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34725822

RESUMEN

To acclimate to waterlogged conditions, wetland plants form a barrier to radial oxygen loss (ROL) that can enhance oxygen transport to the root apex. We hypothesized that one or more hormones are involved in the induction of the barrier and searched for such hormones in rice. We previously identified 98 genes that were tissue-specifically upregulated during ROL barrier formation in rice. The RiceXPro database showed that most of these genes were highly enhanced by exogenous abscisic acid (ABA). We then examined the effect of ABA on ROL barrier formation by using an ABA biosynthesis inhibitor (fluridone, FLU), by applying exogenous ABA and by examining a mutant with a defective ABA biosynthesis gene (osaba1). FLU suppressed barrier formation in a stagnant solution that mimics waterlogged soil. Under aerobic conditions, rice does not naturally form a barrier, but 24 h of ABA treatment induced barrier formation. osaba1 did not form a barrier under stagnant conditions, but the application of ABA rescued the barrier. In parallel with ROL barrier formation, suberin lamellae formed in the exodermis. These findings strongly suggest that ABA is an inducer of suberin lamellae formation in the exodermis, resulting in an ROL barrier formation in rice.


Asunto(s)
Oryza , Ácido Abscísico/farmacología , Lignina , Oryza/genética , Oxígeno , Raíces de Plantas/genética
8.
New Phytol ; 235(3): 848-866, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35510799

RESUMEN

Outer protective barriers of animals use a variety of bio-polymers, based on either proteins (e.g. collagens), or modified sugars (e.g. chitin). Plants, however, have come up with a particular solution, based on the polymerisation of lipid-like precursors, giving rise to cutin and suberin. Suberin is a structural lipophilic polyester of fatty acids, glycerol and some aromatics found in cell walls of phellem, endodermis, exodermis, wound tissues, abscission zones, bundle sheath and other tissues. It deposits as a hydrophobic layer between the (ligno)cellulosic primary cell wall and plasma membrane. Suberin is highly protective against biotic and abiotic stresses, shows great developmental plasticity and its chemically recalcitrant nature might assist the sequestration of atmospheric carbon by plants. The aim of this review is to integrate the rapidly accelerating genetic and cell biological discoveries of recent years with the important chemical and structural contributions obtained from very diverse organisms and tissue layers. We critically discuss the order and localisation of the enzymatic machinery synthesising the presumed substrates for export and apoplastic polymerisation. We attempt to explain observed suberin linkages by diverse enzyme activities and discuss the spatiotemporal relationship of suberin with lignin and ferulates, necessary to produce a functional suberised cell wall.


Asunto(s)
Pared Celular , Raíces de Plantas , Pared Celular/metabolismo , Ácidos Grasos/metabolismo , Lignina/metabolismo , Lípidos , Raíces de Plantas/metabolismo , Plantas
9.
Plant J ; 104(3): 567-580, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32985026

RESUMEN

The seed coat is specialized dead tissue protecting the plant embryo from mechanical and oxidative damage. Tannins, a type of flavonoids, are antioxidants known to accumulate in the Arabidopsis seed coat and transparent testa mutant seeds, deficient in flavonoid synthesis, exhibit low viability. However, their precise contribution to seed coat architecture and biophysics remains evasive. A seed coat cuticle, covering the endosperm outer surface and arising from the seed coat inner integument 1 cell layer was, intriguingly, previously shown to be more permeable in transparent testa mutants deficient not in cuticular component synthesis, but rather in flavonoid synthesis. Investigating the role of flavonoids in cuticle permeability led us to identify periclinal inner integument 1 tannic cell walls being attached, together with the cuticle, to the endosperm surface upon seed coat rupture. Hence, inner integument 1 tannic cell walls and the cuticle form two fused layers present at the surface of the exposed endosperm upon seed coat rupture, regulating its permeability. Their potential physiological role during seed germination is discussed.


Asunto(s)
Arabidopsis/metabolismo , Pared Celular/metabolismo , Endospermo/metabolismo , Semillas/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas/fisiología
10.
Breed Sci ; 71(1): 40-50, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33762875

RESUMEN

Internal aeration is crucial for root growth under waterlogged conditions. Many wetland plants have a structural barrier that impedes oxygen leakage from the basal part of roots called a radial oxygen loss (ROL) barrier. ROL barriers reduce the loss of oxygen transported via the aerenchyma to the root tips, enabling long-distance oxygen transport for cell respiration at the root tip. Because the root tip does not have an ROL barrier, some of the transferred oxygen is released into the waterlogged soil, where it oxidizes and detoxifies toxic substances (e.g., sulfate and Fe2+) around the root tip. ROL barriers are located at the outer part of roots (OPRs). Their main component is thought to be suberin. Suberin deposits may block the entry of potentially toxic compounds in highly reduced soils. The amount of ROL from the roots depends on the strength of the ROL barrier, the length of the roots, and environmental conditions, which causes spatiotemporal changes in the root system's oxidization pattern. We summarize recent achievements in understanding how ROL barrier formation is regulated and discuss opportunities for breeding waterlogging-tolerant crops.

11.
Int J Mol Sci ; 22(11)2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-34206144

RESUMEN

The Casparian strip domain protein 1 (OsCASP1) is necessary for the formation of the Casparian strip (CS) in the rice endodermis. It also controls Ca2+ transport to the stele. Here, we demonstrated that OsCASP1 overexpression enhanced Ca tolerance in rice. Under normal conditions, OsCASP1-overexpressed lines showed similar concentrations of essential metals in the roots and shoots compared to the wild type, while under high Ca conditions, Ca in the roots, shoots, and xylem sap of the OsCASP1-overexpressed lines was significantly decreased. This did not apply to other essential metals. Ca-inhibited growth was significantly alleviated in the OsCASP1-overexpressed lines. Furthermore, OsCASP1 overexpression resulted in earlier formation of both the CS and functional apoplastic barrier in the endodermis but did not induce ectopic CS formation in non-endodermal cell layers and affect suberin accumulation in the endodermis. These results indicate that the overexpression of OsCASP1 promotes CS formation in endodermal cells and inhibits Ca2+ transport by the apoplastic pathway, restricting Ca accumulation in the roots and shoots under high Ca conditions. Taken together, the results suggest that OsCASP1 overexpression is an effective way to improve rice adaptation to high Ca environments.


Asunto(s)
Calcio/metabolismo , Caspasa 1/genética , Oryza/genética , Caspasa 1/metabolismo , Pared Celular/genética , Regulación de la Expresión Génica de las Plantas/genética , Oryza/crecimiento & desarrollo , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo
12.
J Environ Sci (China) ; 78: 257-266, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30665644

RESUMEN

The revegetation of mined areas poses a great challenge to the iron ore mining industry. The initial recovery process in degraded areas might rely on the use of Fe-resistant grasses. Tropical grasses, such as Paspalum densum and Echinochloa crus-galli, show different resistance strategies to iron toxicity; however, these mechanisms are poorly understood. The Fe-resistance mechanisms and direct iron toxicity as a function of root apex removal were investigated. To achieve this purpose, both grass species were grown for up to 480 hr in a nutrient solution containing 0.019 or 7 mmol/L Fe-EDTA after the root apices had been removed or maintained. Cultivation in the presence of excess iron-induced leaf bronzing and the formation of iron plaque on the root surfaces of both grass species, but was more significant on those plants whose root apex had been removed. Iron accumulation was higher in the roots, but reached phytotoxic levels in the aerial parts as well. It did not hinder the biosynthesis of chloroplastidic pigments. No significant changes in gas exchange and chlorophyll a fluorescence occurred in either grass when their roots were kept intact; the contrary was true for plants with excised root apices. In both studied grasses, the root apoplastic barriers had an important function in the restriction of iron translocation from the root to the aerial plant parts, especially in E. crus-galli. Root apex removal negatively influenced the iron toxicity resistance mechanisms (tolerance in P. densum and avoidance in E. crus-galli).


Asunto(s)
Adaptación Fisiológica/fisiología , Biodegradación Ambiental , Hierro/toxicidad , Poaceae/metabolismo , Contaminantes del Suelo/toxicidad , Clorofila A/metabolismo , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo , Brotes de la Planta/metabolismo , Clima Tropical
13.
Proc Natl Acad Sci U S A ; 112(36): 11401-6, 2015 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-26283388

RESUMEN

Requirement of mineral elements in different plant tissues is not often consistent with their transpiration rate; therefore, plants have developed systems for preferential distribution of mineral elements to the developing tissues with low transpiration. Here we took silicon (Si) as an example and revealed an efficient system for preferential distribution of Si in the node of rice (Oryza sativa). Rice is able to accumulate more than 10% Si of the dry weight in the husk, which is required for protecting the grains from water loss and pathogen infection. However, it has been unknown for a long time how this hyperaccumulation is achieved. We found that three transporters (Lsi2, Lsi3, and Lsi6) located at the node are involved in the intervascular transfer, which is required for the preferential distribution of Si. Lsi2 was polarly localized to the bundle sheath cell layer around the enlarged vascular bundles, which is next to the xylem transfer cell layer where Lsi6 is localized. Lsi3 was located in the parenchyma tissues between enlarged vascular bundles and diffuse vascular bundles. Similar to Lsi6, knockout of Lsi2 and Lsi3 also resulted in decreased distribution of Si to the panicles but increased Si to the flag leaf. Furthermore, we constructed a mathematical model for Si distribution and revealed that in addition to cooperation of three transporters, an apoplastic barrier localized at the bundle sheath cells and development of the enlarged vascular bundles in node are also required for the hyperaccumulation of Si in rice husk.


Asunto(s)
Proteínas de Transporte de Membrana/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Haz Vascular de Plantas/metabolismo , Silicio/metabolismo , Secuencia de Aminoácidos , Animales , Transporte Biológico/genética , Femenino , Regulación de la Expresión Génica de las Plantas , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Proteínas de Transporte de Membrana/genética , Microscopía Confocal , Modelos Biológicos , Datos de Secuencia Molecular , Mutación , Cebollas/citología , Oocitos/metabolismo , Oryza/genética , Epidermis de la Planta/citología , Epidermis de la Planta/metabolismo , Proteínas de Plantas/genética , Haz Vascular de Plantas/citología , Haz Vascular de Plantas/genética , Plantas Modificadas Genéticamente , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido , Xenopus , Xilema/citología , Xilema/genética , Xilema/metabolismo
14.
Plant J ; 80(1): 40-51, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25041515

RESUMEN

Suberin is a complex polymer composed of aliphatic and phenolic compounds. It is a constituent of apoplastic plant interfaces. In many plant species, including rice (Oryza sativa), the hypodermis in the outer part of roots forms a suberized cell wall (the Casparian strip and/or suberin lamellae), which inhibits the flow of water and ions and protects against pathogens. To date, there is no genetic evidence that suberin forms an apoplastic transport barrier in the hypodermis. We discovered that a rice reduced culm number1 (rcn1) mutant could not develop roots longer than 100 mm in waterlogged soil. The mutated gene encoded an ATP-binding cassette (ABC) transporter named RCN1/OsABCG5. RCN1/OsABCG5 gene expression in the wild type was increased in most hypodermal and some endodermal roots cells under stagnant deoxygenated conditions. A GFP-RCN1/OsABCG5 fusion protein localized at the plasma membrane of the wild type. Under stagnant deoxygenated conditions, well suberized hypodermis developed in wild types but not in rcn1 mutants. Under stagnant deoxygenated conditions, apoplastic tracers (periodic acid and berberine) were blocked at the hypodermis in the wild type but not in rcn1, indicating that the apoplastic barrier in the mutant was impaired. The amount of the major aliphatic suberin monomers originating from C(28) and C(30) fatty acids or ω-OH fatty acids was much lower in rcn1 than in the wild type. These findings suggest that RCN1/OsABCG5 has a role in the suberization of the hypodermis of rice roots, which contributes to formation of the apoplastic barrier.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Oryza/genética , Agua/fisiología , Transportadoras de Casetes de Unión a ATP/genética , Transporte Biológico , Membrana Celular/metabolismo , Pared Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes Reporteros , Lignina/metabolismo , Lípidos/química , Mutación , Oryza/citología , Oryza/fisiología , Epidermis de la Planta/citología , Epidermis de la Planta/genética , Epidermis de la Planta/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/citología , Raíces de Plantas/genética , Raíces de Plantas/fisiología , Regiones Promotoras Genéticas/genética , Proteínas Recombinantes de Fusión
16.
J Plant Physiol ; 282: 153921, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36780757

RESUMEN

Anatomical, histochemical, chemical, and biosynthetic similarities and differences of cutinized and suberized plant cell walls are presented and reviewed in brief. Based on this, the functional properties of cutinized and suberized plant cell walls acting as transport barriers are compared and discussed in more detail. This is of general importance because fundamental misconceptions about relationships in plant-environment water relations are commonly encountered in the scientific literature. It will be shown here, that cuticles represent highly efficient apoplastic transport barriers significantly reducing the diffusion of water and dissolved compounds. The transport barrier of cuticles is mainly established by the deposition of cuticular waxes. Upon wax extraction, with the cutin polymer remaining, cuticular permeability for water and dissolved non-ionized and lipophilic solutes are increasing by 2-3 orders of magnitude, whereas polar and charged substances (e.g., nutrient ions) are only weakly affected (2- to 3-fold increases in permeability). Suberized apoplastic barriers without the deposition of wax are at least as permeable as the cutin polymer matrix without waxes and hardly offer any resistance to the free movement of water. Only upon the deposition of significant amounts of wax, as it is the case with suberized periderms exposed to the atmosphere, an efficient transport barrier for water can be established by suberized cell walls. Comparing the driving forces (gradients between water potentials inside leaves and roots and the surrounding environment) for water loss acting on leaves and roots, it is shown that leaves must have a genetically pre-defined highly efficient transpiration barrier fairly independent from rapidly changing environmental influences. Roots, in most conditions facing a soil environment with relative humidities very close to 100%, are orders of magnitude more permeable to water than leaf cuticles. Upon desiccation, the permanent wilting point of plants is defined as -1.5 MPa, which still corresponds to nearly 99% relative humidity in soil. Thus, the main reason for plant water stress leading to dehydration is the inability of root tissues to decrease their internal water potential to values more negative than -1.5 MPa and not the lack of a transport barrier for water in roots and leaves. Taken together, the commonly mentioned concepts that a drought-induced increase of cuticular wax or root suberin considerably strengthens the apoplastic leaf or root transport barriers and thus aids in water conservation appears highly questionable.


Asunto(s)
Plantas , Ceras , Transporte Biológico , Difusión , Hojas de la Planta/química , Polímeros
17.
Curr Biol ; 31(5): 965-977.e5, 2021 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-33529644

RESUMEN

Plants deposit hydrophobic polymers, such as lignin or suberin, in their root cell walls to protect inner tissues and facilitate selective uptake of solutes. Insights into how individual root tissues contribute to polymer formation are important for elucidation of ultrastructure, function, and development of these protective barriers. Although the pathways responsible for production of the barrier constituents are established, our models lack spatiotemporal resolution-especially in roots-thus, the source of monomeric barrier components is not clear. This is mainly due to our restricted ability to manipulate synthesis of the broadly important phenylpropanoid pathway, as mutants in this pathway display lethal or pleiotropic phenotypes. Here, we overcome this challenge by exploiting highly controlled in vivo repression systems. We provide strong evidence that autonomous production of phenylpropanoids is essential for establishment of the endodermal Casparian strip as well as adherence of the suberin matrix to the cell wall of endodermis and cork. Our work highlights that, in roots, the phenylpropanoid pathway is under tight spatiotemporal control and serves distinct roles in barrier formation across tissues and developmental zones. This becomes evident in the late endodermis, where repression of phenylpropanoid production leads to active removal of suberin in pre-suberized cells, indicating that endodermal suberin depositions might embody a steady state between continuous synthesis and degradation.


Asunto(s)
Fenilpropionatos/metabolismo , Raíces de Plantas/citología , Raíces de Plantas/metabolismo , Plantas/metabolismo , Transporte Biológico , Pared Celular/química , Pared Celular/metabolismo
18.
Plant Signal Behav ; 15(3): 1724465, 2020 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-32024414

RESUMEN

Apoplastic barriers in the endodermis, such as Casparian strips and suberin lamellae, control the passage of water and minerals into the stele. Apoplastic barriers are thus thought to contribute to salt exclusion in salt-excluding plants such as sweet sorghum (Sorghum bicolor). However, little is known about the genes involved in the development of the apoplastic barrier. Here, we identified candidate genes involved in Casparian strip and suberin lamella development in the roots of a sweet sorghum line (M-81E). Three distinct developmental regions (no differentiation, developing, and mature) were identified based on Casparian strip and suberin lamella staining in root cross sections. Sequencing of RNA extracted from these distinct sections identified key genes participating in the differentiation of the apoplastic barrier. The different sections were structurally distinct, presumably due to differences in gene expression. Genes controlling the phenylpropanoid pathway, fatty acid elongation, and fatty acid ω-hydroxylation appeared to be directly responsible for the formation of the apoplastic barrier. Our dataset elucidates the molecular processes underpinning apoplastic barrier development and provides a basis for future research on molecular mechanisms of apoplastic barrier formation and salt exclusion.Abbreviations: SHR, SHORTROOT; MYB, MYB DOMAIN PROTEIN; CIFs, Casparian strip integrity factors; CASP, Casparian strip domain proteins; PER, peroxidase; ESB1, ENHANCED SUBERIN1; CS, Casparian strip; RPKM, reads per kilobase per million reads; DEGs, differentially expressed genes; FDR, false discovery rate; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; RNA-seq, RNA sequencing; PAL, phenylalanine ammonia-lyase; CYP, cytochrome P450 monooxygenases; 4CL, 4-coumarate-CoA ligase; AAE5, ACYL-ACTIVATING ENZYME5; CCR, cinnamoyl CoA reductase; TKPR, TETRAKETIDE ALPHA-PYRONE REDUCTASE1; CAD, cinnamyl alcohol dehydrogenase; HST, shikimate O-hydroxycinnamoyltransferase; PMAT2, PHENOLIC GLUCOSIDE MALONYLTRANSFERASE2; CCOAOMT, caffeoyl-CoA O-methyltransferase; KCS, ß-ketoacyl-CoA synthase; CUT1, CUTICULAR PROTEIN1; DET2, 5-alpha-reductase; TAX, 3'-N-debenzoyl-2'-deoxytaxol N-benzoyltransferase; CER1, ECERIFERUM1; FAR, fatty acyl reductase; AF-CoA, alcohol-forming fatty acyl-CoA reductase; ABCG, ATP-binding cassette, subfamily G; ERF, ethylene-responsive transcription factor; HSF, heat stress transcription factor; NTF, NUCLEAR TRANSCRIPTION FACTOR Y SUBUNIT B-5; GPAT, glycerol 3-phosphate acyltransferase.


Asunto(s)
Sorghum/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Sorghum/genética , Transcriptoma/genética
19.
Plants (Basel) ; 9(7)2020 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-32668711

RESUMEN

A barrier to radial oxygen loss (ROL), which reduces the loss of oxygen transported via the aerenchyma to the root tips, enables the roots of wetland plants to grow into anoxic/hypoxic waterlogged soil. However, little is known about its genetic regulation. Quantitative trait loci (QTLs) mapping can help to understand the factors that regulate barrier formation. Rice (Oryza sativa) inducibly forms an ROL barrier under stagnant conditions, while a few wetland plants constitutively form one under aerated conditions. Here, we evaluated the formation of a constitutive ROL barrier in a total of four accessions from two wild rice species. Three of the accessions were wetland accessions of O. glumaepatula, and the fourth was a non-wetland species of O. rufipogon. These species have an AA type genome, which allows them to be crossed with cultivated rice. The three O. glumaepatula accessions (W2165, W2149, and W1183) formed an ROL barrier under aerated conditions. The O. rufipogon accession (W1962) did not form a constitutive ROL barrier, but it formed an inducible ROL barrier under stagnant conditions. The three O. glumaepatula accessions should be useful for QTL mapping to understand how a constitutive ROL barrier forms. The constitutive barrier of W2165 was closely associated with suberization and resistance to penetration by an apoplastic tracer (periodic acid) at the exodermis but did not include lignin at the sclerenchyma.

20.
Front Plant Sci ; 9: 193, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29503659

RESUMEN

The present review examines recent experimental findings in root transport phenomena in terms of the composite transport model (CTM). It has been a well-accepted conceptual model to explain the complex water and solute flows across the root that has been related to the composite anatomical structure. There are three parallel pathways involved in the transport of water and solutes in roots - apoplast, symplast, and transcellular paths. The role of aquaporins (AQPs), which facilitate water flows through the transcellular path, and root apoplast is examined in terms of the CTM. The contribution of the plasma membrane bound AQPs for the overall water transport in the whole plant level was varying depending on the plant species, age of roots with varying developmental stages of apoplastic barriers, and driving forces (hydrostatic vs. osmotic). Many studies have demonstrated that the apoplastic barriers, such as Casparian bands in the primary anticlinal walls and suberin lamellae in the secondary cell walls, in the endo- and exodermis are not perfect barriers and unable to completely block the transport of water and some solute transport into the stele. Recent research on water and solute transport of roots with and without exodermis triggered the importance of the extension of conventional CTM adding resistances that arrange in series (epidermis, exodermis, mid-cortex, endodermis, and pericycle). The extension of the model may answer current questions about the applicability of CTM for composite water and solute transport of roots that contain complex anatomical structures with heterogeneous cell layers.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda