Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
1.
J Environ Manage ; 354: 120477, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38417362

RESUMEN

The Indian coastal waters are stressed due to a multitude of factors, such as the discharge of industrial effluents, urbanization (municipal sewage), agricultural runoff, and river discharge. The coastal waters along the eastern and western seaboard of India exhibit contrasting characteristics in terms of seasonality, the magnitude of river influx, circulation pattern, and degree of anthropogenic activity. Therefore, understanding these processes and forecasting their occurrence is highly necessary to secure the health of coastal waters, habitats, marine resources, and the safety of tourists. This article introduces an integrated buoy-satellite based Water Quality Nowcasting System (WQNS) to address the unique challenges of water quality monitoring in Indian coastal waters and to boost the regional blue economy. The Indian National Centre for Ocean Information Services (INCOIS) has launched a first-of-its-kind WQNS, and positioned the buoys at two important locations along the east (Visakhapatnam) and west (Kochi) coast of India, covering a range of environmental conditions and tourist-intensive zones. These buoys are equipped with different physical-biogeochemical sensors, data telemetry systems, and integration with satellite-based observations for real-time data transmission to land. The sensors onboard these buoys continuously measure 22 water quality parameters, including surface current (speed and direction), salinity, temperature, pH, dissolved oxygen, phycocyanin, phycoerythrin, Coloured Dissolved Organic Matter, chlorophyll-a, turbidity, dissolved methane, hydrocarbon (crude and refined), scattering, pCO2 (water and air), and inorganic macronutrients (nitrite, nitrate, ammonium, phosphate, silicate). This real-time data is transmitted to a central processing facility at INCOIS, and after necessary quality control, the data is disseminated through the INCOIS website. Preliminary results from the WQNS show promising outcomes, including the short-term changes in the water column oxic and hypoxic regimes within a day in coastal waters off Kochi during the monsoon period, whereas effluxing of high levels of CO2 into the atmosphere associated with the mixing of water, driven by local depression in the coastal waters off Visakhapatnam. The system has demonstrated its ability to detect changes in the water column properties due to episodic events and mesoscale processes. Additionally, it offers valuable data for research, management, and policy development related to coastal water quality.


Asunto(s)
Ecosistema , Calidad del Agua , India , Océanos y Mares , Naciones Unidas , Monitoreo del Ambiente , Agua de Mar/química
2.
Mol Genet Genomics ; 298(3): 627-651, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36933058

RESUMEN

Deep-sea sediments provide important information on oceanic biogeochemical processes mediated by the microbiome and their functional roles which could be unravelled using genomic tools. The present study aimed to delineate microbial taxonomic and functional profiles from Arabian Sea sediment samples through whole metagenome sequencing using Nanopore technology. Arabian Sea is considered as a major microbial reservoir with significant bio-prospecting potential which needs to be explored extensively using recent advances in genomics. Assembly, co-assembly, and binning methods were used to predict Metagenome Assembled Genomes (MAGs) which were further characterized by their completeness and heterogeneity. Nanopore sequencing of Arabian Sea sediment samples generated around 1.73 tera basepairs of data. Proteobacteria (78.32%) was found to be the most dominant phylum followed by Bacteroidetes (9.55%) and Actinobacteria (2.14%) in the sediment metagenome. Further, 35 MAGs from assembled and 38 MAGs of co-assembled reads were generated from long-read sequence dataset with major representations from the genera Marinobacter, Kangiella, and Porticoccus. RemeDB analysis revealed a high representation of pollutant-degrading enzymes involved in hydrocarbon, plastic and dye degradation. Validation of enzymes with long nanopore reads using BlastX resulted in better characterization of complete gene signatures involved in hydrocarbon (6-monooxygenase and 4-hydroxyacetophenone monooxygenase) and dye degradation (Arylsulfatase). Enhancing the cultivability of deep-sea microbes predicted from the uncultured WGS approaches by I-tip method resulted in isolation of facultative extremophiles. This study presents a comprehensive insight into the taxonomic and functional profiles of Arabian Sea sediments, indicating a potential hotspot for bioprospection.


Asunto(s)
Metagenómica , Microbiota , Metagenómica/métodos , Biodegradación Ambiental , Microbiota/genética , Bacterias/genética , Hidrocarburos/metabolismo
3.
Microb Ecol ; 85(2): 357-371, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35195736

RESUMEN

Arabian Sea harbours one of the largest oxygen minimal zones (OMZs) among the global oceans wherein biogeochemical cycles are regulated through dominant and complex microbial processes. The present study investigated the bacterial communities at various depths of the Arabian Sea OMZ using high-throughput sequencing of the v3-v4 hyper variable region of 16S rRNA gene. A total of 10 samples which included water samples from 8 different depths and 2 sediment samples were analyzed in this study. About 2.7 million sequences were obtained from all the samples. The sequence analysis revealed high bacterial diversity at deep waters and sediment samples and comparatively less species richness at the core OMZ depths. Number of OTUs ranged from 114 to 14441.Taxonomic assignments of the obtained OTUs showed dominant presence of Proteobacteria, Bacteriodetes, and Chloroflexi across all the samples. The identified OTUs were further affiliated to the phyla Marinimicrobia, Colwellia, Nitrospina, Tepidicaulis, Shewanella, Pseudoalteromonas, Woeseia at various depths along the water column. Correlation with abiotic factors suggested distinct variation in bacterial community composition with change in depth and dissolved oxygen (DO) levels. Predictive functional annotation based on bacterial phylotypes suggested presence of active nitrogen, sulphur, carbon, and methane metabolic cycles along the vertical transect of the studied region. Presence of nitrogen reduction bacterial group below the core OMZ depths may potentially provide insight into the expansion of OMZ region in Arabian Sea. Functional profiling further revealed presence of genes related to xenobiotic degradation in the water and sediment samples indicating a potential hotspot for bio-prospection.


Asunto(s)
Oxígeno , Agua de Mar , Agua de Mar/microbiología , Oxígeno/metabolismo , ARN Ribosómico 16S/genética , Biodiversidad , Bacterias , Agua/metabolismo , Nitrógeno/metabolismo
4.
J Fish Biol ; 103(1): 113-117, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37170471

RESUMEN

The deep-sea spiny eels of the genus Notacanthus Bloch 1788 are currently represented by six valid species, of which only one, Notacanthus indicus, has been described so far from the Arabian Sea, part of the Western Indian Ocean. This paper reports the discovery of a new species, described herein as Notacanthus laccadiviensis, from the outer reef drop-off, off the Kavaratti Island, Lakshadweep Archipelago, Arabian Sea. The new species differs from its congeners in the shape of the head; morphology of dorsal, pectoral and anal fins; number of gill rakers; number of vertebrae; and body colour, and specifically from N. indicus (the only known congener from the Indian Ocean) in the unusual morphology of the dorsal fin, and number of rays in the dorsal and pectoral fins.


Asunto(s)
Peces , Perciformes , Animales , Océano Índico , Branquias , Anguilas , Perciformes/anatomía & histología
5.
Environ Monit Assess ; 195(4): 528, 2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37000347

RESUMEN

Phytoplankton communities from pelagic systems were assessed to explore the potential of using commonly used traits (such as cell geometry and taxa) as ecological function indicators from the data generated during the winter monsoon in the eastern Arabian Sea (AS). Altogether, data from two oceanic, i.e., convective mixing influenced non-oligotrophic northeastern-AS (NEAS-O) and Rossby wave-influenced oligotrophic southeastern-AS (SEAS-O) and one coastal (NEAS-C) cruises were utilized to decipher the ecological inferences. Overall phytoplankton shapes showed a high level of redundancy by selecting only a few dominant shapes (5 of 22 shapes), though taxonomic diversity was rich (164 species). The taxonomic and morphological approach adopted revealed high species and shape diversity in NEAS-O than in high-abundance NEAS-C and low-abundance SEAS-O. Also, the shape diversity and dominant shapes (cylinder, elliptic-prism, and prism-on-parallelogram) remained the same in oceans than NEAS-C where combined (cylinder + 2 half-sphere) and simple (elliptic-prism) shapes dominated. Additionally, the Rossby-wave front and its reminiscence in SEAS-O and sea-surface-temperature fronts in NEAS-C favored simple and combine shaped phytoplankton, respectively. The morphological properties assessment revealed that the dominant shapes adapted the strategy to conserve the optimal surface-to-volume ratio (S:V) irrespective of changes in greatest-axial-linear-dimension (GALD) in NEAS-O and SEAS-O but not in NEAS-C. However, the dominant shapes in the NEAS-O and SEAS-O opted for high S:V with low GALD and low S:V with high GALD, respectively, while high S:V with no relation with GALD in NEAS-C suggests the prevalence of different adaptive strategies to cope with the respective hydrographic conditions, particularly nutrient availability.


Asunto(s)
Monitoreo del Ambiente , Fitoplancton , Prevalencia , Océanos y Mares , Estaciones del Año
6.
Environ Monit Assess ; 195(10): 1238, 2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37736823

RESUMEN

The dynamics of physico-chemical, nutrient, and chlorophyll-a variables were studied in the bloom and non-bloom locations along the off-Gujarat coastal waters to understand the variability in biogeochemistry using multivariate analytical tests. The dissolved oxygen was significantly lower in the bloom stations (3.89 ± 0.44 mgL-1) than in the non-bloom stations (5.50 ± 0.70 mg L-1), due to the biological degradation of organic matter in addition to anaerobic microbial respiration. Nutrients (PO4 and NO3) and Chl-a concentrations were recorded higher in the bloom locations at 0.83 ± 0.21 µmol L-1, 4.47 ± 0.69 µmol L-1, 4.14 ± 1.49 mg m-3, respectively. PO4 and NO3 have shown a significantly higher positive correlation of r = 0.73 and r = 0.69 with Chl-a for bloom data than the non-bloom data. The percentage variance contributed by PC1 and PC2 for both bloom and non-bloom locations were estimated at 52.33%. The variable PO4 explains the highest 24.19% variability in PC1, followed by Chl-a (19.89%). The PO4 triggers the bloom formation and also correlates to the higher concentrations of Chl-a in the bloom locations. The bloom concentration ranges from 9553 to 12,235 trichomes L-1. The bloom intensity has shown a significant positive correlation with Chl-a (r = 0.77), NO3 (r = 0.56), and PO4 (r = 0.30), but a negative correlation was noticed with DO (r = - 0.63) and pH (r = - 0.49). The study also initiates a way forward research investigation on ocean-color technologies to identify and monitor blooms and climate change-driven factors for bloom formation. The occurrence of bloom and its influence on fishery resources and other marine biotas will open many research windows in marine fisheries, oceanography, remote sensing, marine biology, and trophodynamics.


Asunto(s)
Monitoreo del Ambiente , Eutrofización , Incidencia , Biota , Clorofila A
7.
Environ Monit Assess ; 195(3): 414, 2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36808010

RESUMEN

Different fractions of organic matter in surface sediments from three transects along the eastern margin of the Arabian Sea (AS) were quantified to determine the sources of organic matter, and also to study its impact on microbial community structure. From the extensive analyses of different biochemical parameters, it was evident that the distribution of total carbohydrate (TCHO), total neutral carbohydrate (TNCHO), proteins, lipids, and uronic acids (URA) concentrations and yield (% TCHO-C/TOC) are affected by organic matter (OM) sources and microbial degradation of sedimentary OM. Monosaccharide compositions from surface sediment was quantified to assess the sources and diagenetic fate of carbohydrates, suggesting that the deoxysugars (rhamnose plus fucose) had significant inverse relationship (r = 0.928, n = 13, p < 0.001) with hexoses (mannose plus galactose plus glucose) and positive relationship (r = 0.828, n = 13, p < 0.001) with pentoses (ribose plus arabinose plus xylose). This shows that marine microorganisms are the source of carbohydrates and there is no influence of terrestrial OM along the eastern margin of AS. During the degradation of algal material, the hexoses seem to be preferentially used by heterotrophic organisms in this region. Arabinose plus galactose (glucose free wt %) values between 28 and 64 wt% indicate that OM was derived from phytoplankton, zooplankton, and non-woody tissues. In the principal component analysis, rhamnose, fucose, and ribose form one cluster of positive loadings while glucose, galactose, and mannose form another cluster of negative loadings which suggest that during OM sinking process, hexoses were removed resulting in increase in bacterial biomass and microbial sugars. Results indicate sediment OM to be derived from marine microbial source along the eastern margin of AS.


Asunto(s)
Galactosa , Manosa , Arabinosa , Ribosa , Fucosa , Ramnosa , Monitoreo del Ambiente , Hexosas , Glucosa , Ácidos Urónicos , Sedimentos Geológicos/análisis
8.
Environ Monit Assess ; 195(6): 635, 2023 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-37133635

RESUMEN

Gonyaulax polygramma, a bloom-forming dinoflagellate, has been repeatedly observed along the southeastern Arabian Sea in recent years. During our study in October 2021, a patch of reddish-brown water was observed in the nearshore waters off Kannur (southwest coast of India) and later identified as Gonyaulax polygramma using scanning electron microscopy (SEM) and HPLC-based phytoplankton marker pigments. Gonyaulax polygramma accounted for 99.4% of the phytoplankton abundance at the bloom location, with high concentrations of peridinin and chlorophyll-a at the study site. High concentration of SiO42- was observed at the bloom site, while other nutrients were lower than the previously reported values. The bloom of Gonyaulax polygramma also resulted in high concentrations of dimethylsulfide, an anti-greenhouse gas, at the bloom site. In addition to onsite observation, Sentinel-3 satellite data was also used in the detection and validation of the observed bloom using the NDCI index. From the satellite image, it was evident that the bloom persisted at the mouth of the rivers during the study period. Since the red tide of Gonyaulax polygramma has been observed recurrently in the southeastern Arabian Sea, it is proposed to use satellites to detect and monitor the bloom on a routine basis.


Asunto(s)
Dinoflagelados , Monitoreo del Ambiente , Monitoreo del Ambiente/métodos , Fitoplancton , Floraciones de Algas Nocivas , Clorofila A
9.
J Fish Biol ; 100(3): 775-782, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35107172

RESUMEN

A new congrid eel species, Ariosoma maurostigma sp. nov., is described on the basis of 24 specimens collected from the deep-sea trawl by-catch, Kalamukku Fishing Harbour, off Kerala, Arabian Sea. The new species differs from all other congeners in having the following combination of characters: dark mark or spot on the posterodorsal margin of the eyes; dorsal surface of head with two faint darkish bands across the anterior and posterior margin of the eye; origin of the dorsal fin before the pectoral-fin base; short vomerine teeth patch, ST pores 3, 1 median pore and 1 lateral pore on each side just behind the median pore; preanal vertebrae 47-51; precaudal vertebrae 54-57; total vertebrae 136-142; total pores 129-134. The phylogenetic analysis reveals that the new species is closely related to Ariosoma melanospilos and Ariosoma anale, with divergences of 13.8% and 14.9%, respectively.


Asunto(s)
Anguilas , Columna Vertebral , Animales , Ojo , India , Filogenia
10.
J Fish Biol ; 100(6): 1447-1454, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35415845

RESUMEN

Ariosoma indicum sp. nov. is described herein based on 12 specimens [(335-433 mm total length (TL)] collected off the Arabian Sea of southwest coast of India and 7 specimens from Digha Mohana, off the Bay of Bengal of northeast coast of India. The new species is distinguished from congeners in having the following combination of the characters: anus positioned anterior to middle of total length, pre-anal length 40.0%-43.1% of TL; short wedge-shaped pointed vomerine teeth patch, three or four rows in anterior portion, tapering posteriorly with four uniserial teeth; supraorbital canal with four or five pores; pre-dorsal vertebrae 9-10; pre-anal vertebrae 49-53; total vertebrae 141-146; body greenish-brown in colour; extremities of the lower jaw with minute dark pigmentation patches before the rictus, bicoloured pectoral fin. A. indicum shares few characters with the Indian water species, Ariosoma gnanadossi, but readily differs from the latter in having more pre-anal vertebrae (49-53 vs. 47 in A. gnanadossi); fewer lateral-line pores (130-137 vs. 145); shorter tail (54.9%-57.9% TL vs. 60.1% TL); smaller eye (15.1%-17.7% HL vs. 19.2% HL); smaller interorbital width (11.8%-15.7% HL vs. 18.2% HL); longer upper jaw (26.9%-30.2% HL vs. 19.2% HL). In addition, molecular analysis using partial mitochondrial COI gene suggests that A. indicum is genetically closer to Ariosoma maurostigma and Ariosoma melanospilos with a divergence of 15.0% and 15.8%, respectively, and forms a well-supported monophyletic clade.


Asunto(s)
Anguilas , Cabeza , Animales , India , Pigmentación , Columna Vertebral
11.
Environ Monit Assess ; 194(10): 716, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-36048260

RESUMEN

The seasonal and spatial distribution of total organic carbon (TOC) is presented for the coastal waters of the eastern Arabian Sea, which experiences seasonal suboxia during the late southwest monsoon (SWM). This study reveals that high TOC was observed off Kochi as compared to Goa and Mangalore transects, and may be attributed to stronger upwelling along the Kerala coast. This is also supported by the excess carbon due to upwelling during the late SWM that varied from 37 µM (Goa), 39 µM (Mangalore), to 51 µM (Kochi). Our seasonal data from 2014 to 2020 at the Goa transect indicates that high TOC is seen during late SWM to fall inter monsoon (FIM) and between the late northeast monsoon (NEM) to the early spring inter monsoon (SIM). The high TOC concentrations and C/N ratios observed during the FIM are a combination of high primary production, the buildup of remnant organic matter from the previous season (due to prevailing low oxygen conditions), accumulation of refractory organic carbon, and release from diatoms (especially Chaetoceros sp.). Inter-annual variations indicate that phytoplankton blooms resulted in higher TOC concentrations, especially during the year 2020. Based on a comparison with an Elnino-Southern Oscillation (ENSO) year (2015), we can infer that the partitioning of carbon may increase from particulate to dissolved phase in future warming scenarios.


Asunto(s)
Carbono , Diatomeas , Monitoreo del Ambiente , Fitoplancton , Estaciones del Año
12.
Environ Monit Assess ; 195(1): 161, 2022 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-36443481

RESUMEN

This study analyzed the diversity and abundance of diatom frustules including the ancillary parameters using the core top sediments from five locations (21, 19, 15, 13, and 11°N) along the central Arabian Sea (64°E), an area profoundly influenced by atmospheric forcing (monsoons) and oxygen minimum zone (OMZ) with high spatial variability. Significantly higher organic carbon (0.97 ± 0.05%) and diatom frustules (5.92 ± 0.57 × 104 valves g-1) were noticed in the north (21, 19, 15°N) where natural nutrient enrichment via open-ocean upwelling, winter convection, and lateral advection support large diatom-dominated phytoplankton blooms and intense OMZ. Conversely, the south (13, 11°N) depicted significantly lower organic carbon (0.74 ± 0.08%) as well as frustules (4.02 ± 0.87 × 104 valves g-1) as this area mostly remains nutrient-poor dominated by small-medium-sized phytoplankton. The north was dominated by large-sized diatoms like Coscinodiscus that could escape grazing and sink consequently due to higher ballasting. Furthermore, the presence of the intense OMZ in the north might reduce grazing pressure (low zooplankton stock) and mineralization speed facilitating higher phytodetritus transport. Relatively smaller chain-forming centric (Thalassiosira) and pennate diatoms (Pseudo-nitzschia, Fragilaria, Nitzschia, etc.) were found throughout the transect with higher abundance in the south. The euphotic diatom diversity from the existing literature was compared with the frustule diversity from the sediments suggesting not all diatoms make their way to the abyss. Such distinct spatial north-south variability in diatom frustule size as well as abundance could be attributed to cell size, grazing, and water column mineralization rates related to OMZ.


Asunto(s)
Diatomeas , Oxígeno , Monitoreo del Ambiente , Fitoplancton , Carbono
13.
Environ Monit Assess ; 194(9): 656, 2022 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-35941250

RESUMEN

Particulate organic carbon (POC) and its variability were studied to assess the accuracy of ocean colour retrieval algorithms over the eastern Arabian Sea (EAS) as it controls the carbon sequestration, oxygen minimum zone and biogeochemical (C, N and P) cycles. The seasonality in the physical and biological processes strongly influenced the distribution of POC along the EAS. Higher POC and chlorophyll a (chl a) during the spring inter monsoon (SIM) in the north EAS were due to detrainment bloom. The lower POC:chl a ratios during the winter monsoon (WM) (299.8 ± 190.8) than the SIM (482.1 ± 438.3) were due to the influence of freshly derived organic matter with high nutrient levels. The moderate coefficient of regression values of POC with chl a (R2 = 0.49, N = 59) suggests the importance of dead organic materials in controlling the POC distribution in the EAS. Validation between satellite and in situ POC using the four ocean colour retrieval algorithms showed that the algorithm based on the ratio of remote sensing reflectance (Rrs) performed better (R2 = 0.6, N = 17). It also showed a linear trend of POC with absorption coefficients suggesting it as an optical proxy for the POC retrieval.


Asunto(s)
Carbono , Fitoplancton , Algoritmos , Carbono/análisis , Clorofila A , Polvo , Monitoreo del Ambiente
14.
J Environ Manage ; 288: 112390, 2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-33773214

RESUMEN

Oligotrophic waters (OW), generally favour longer food chain facilitated by the microbial loop. In such ecosystems, physical mixing (e.g. upwelling, and winter convection) inject nutrients and propagules from subsurface to the photic zone. Such events are expected to alter the food chain through shifts in the plankton community. Mesocosm experiments were carried out to evaluate the influence of nutrient enrichment from the deep (100-150 m) on the surface plankton community for the first time in the Arabian Sea, through custom-designed enclosures in OW of the central-eastern Arabian Sea (CEAS). Surface water was characterized by low nutrients and phytoplankton biomass (chlorophyll-a of <0.2 µg m-3) and upon nutrient enrichment yielded differing response. Higher abundance of picophytoplankton, bacteria and protists was noticed at a depth of ~100 m than at surface. The inoculation of such a population to the surface, resulted in a significant enhancement of autotrophic (picophytoplankton) and heterotrophic (bacteria and protists) populations. However, significant changes in the abundance of larger plankton was not evident till three days of incubation. Even though autotrophic picophytoplankton responded positively, a distinct increase in chlorophyll-a was not evident. This study points out that the lack of sufficient viable microphytoplankton propagules, neither at the surface nor at the depth (inoculum) are the possible reasons for the lack of their distinct positive response. These experiments suggest the dominance of microbial community response to physical mixing in the OW regions of the Arabian Sea and the importance of propagule diversity. The insights from this experiment will serve as a precursor for appropriate modifications in ocean modelling and forecasting studies and help in building global environmental management tools.


Asunto(s)
Ecosistema , Plancton , Biomasa , Procesos Heterotróficos , Nutrientes , Fitoplancton
15.
Environ Monit Assess ; 194(1): 5, 2021 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-34873662

RESUMEN

The lesser known coastal upwelling in the North Eastern Arabian Sea (NEAS) during summer monsoon, its associated dynamics and forcing mechanisms is elucidated for the first time using basin scale monthly time-series in-situ and satellite data. The presence of cool upwelled waters along northwest coast of India from July to early October with an associated increase in productivity was evident in both data. The low level Findlater jet blows towards west coast of India with high wind magnitude (10-12 m/s) during summer monsoon generates strong Ekman transport (1416 kg/m/s) at offshore and Ekman pumping velocity (1.349 m/s) at coastal region initiates upwelling. It was identified that the currents and remote forcing also regulate upwelling along the region. Although upwelling seems to exist along the northwest coast, it was weaker (25.5 °C) compared to the southwest coast where the SST dropped to 24 °C. The upwelling was observed in the south during June as a surface process, while it was observed along the northwest coast of India by the end of August. Even though the onset of upwelling in the NEAS and South Eastern Arabian Sea (SEAS) had a lag of two months, the recession of upwelling happened during late and early September respectively. The cause for the lag in the onset and cessation of upwelling between SEAS and NEAS is attributed to the propagation of Kelvin waves and southwest monsoon winds. The study also reveals that temperature and chlorophyll profiles show bi-modal peaks of high and low associated with winter cooling (winter) and upwelling (summer).


Asunto(s)
Monitoreo del Ambiente , Viento , Clorofila/análisis , Océanos y Mares , Estaciones del Año
16.
Environ Monit Assess ; 193(3): 144, 2021 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-33629200

RESUMEN

Coccolithophores are unique primary producers in the ocean with the ability to calcify. They are known to produce calcareous scales, which form the significant part of calcite oozes or chalk deposits on the seafloor. Coccolithophores are very noteworthy and they are explored to a great extent as nannofossils to reconstruct the past climate. Calcite plates in coccolithophores make them a vital tool in global climate change studies specifically with ocean acidification. These microscopic plants are the major contributor of the carbonate rain that controls the inorganic carbon pump in the ocean, which in turn influences both carbon and carbonate cycles. The emergence of advanced techniques enables us to study the biological aspects of this pelagic calcifier with improved precision. But still, they are understudied world over compared to any other phytoplankton groups. The northern Indian Ocean, being landlocked in three sides and vulnerable to climate change and ocean acidification, severely lacks focused studies on coccolithophores, though the US JGOFS in the 1990s have outlined the ecological significance of coccolithophores in the Arabian Sea. This paper reviews and outlines our understanding of coccolithophores as well as the nix in the northern Indian Ocean.


Asunto(s)
Fitoplancton , Agua de Mar , Monitoreo del Ambiente , Concentración de Iones de Hidrógeno , Océano Índico
17.
Environ Monit Assess ; 192(11): 686, 2020 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-33029673

RESUMEN

The paper describes the hydrography and vertical current structure along the shelf edge of South East Arabian Sea (SEAS) during summer and winter monsoons based on current profiles from moving Acoustic Doppler Current Profiler (ADCP). During summer monsoon, SEAS was characterized by upwelling with low saline water at the surface along the southern sector (8° N to 11° N). During winter, thermal structure was vertically homogeneous in the upper 80 m, and intrusion of low saline Bay of Bengal waters were found up to 14° N. In the southern sector, turbidity was more than the northern sector during winter and summer seasons. ADCP-derived current profiles during summer along 200-m isobath show dominant northward flow in the south, and southeasterly in the north as part of the West India Coastal Current (WICC). A comparison between ADCP current profiles and Ekman currents during summer indicates dominance of remote forcing (coastal Kelvin waves) over the local wind forcing in the 8-9° N sector whereas a combined influence of both remote forcing and wind in the 9-15° N sector. During winter, the direction of surface current reversed and was poleward generally except at the southern sector (7-8° N) where the flow was southwestward. Sector-wise comparison of ADCP and Ekman current showed less influence of wind on current fields throughout the sector except at south; wind has a major role in the current generation, whereas along the 8-15° N sector, the remote forcing dominates over the wind.


Asunto(s)
Tormentas Ciclónicas , Monitoreo del Ambiente , Océanos y Mares , Estaciones del Año , Viento
18.
J Phycol ; 55(1): 84-103, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30179255

RESUMEN

A new thecate, photosynthetic, sand-dwelling marine dinoflagellate, Laciniporus arabicus gen. et sp. nov., is described from the subtidal sediments of the Omani coast in the Arabian Sea, northern Indian Ocean, based on detailed morphological and molecular data. Cells of L. arabicus are small (16.2-30.1 µm long and 13.1-23.2 µm wide), dorsoventrally compressed, with a small apical flap-shaped projection pointing to the left. The thecal plate pattern is distinguished by minute first precingular plate and sulcus, which extends into the epitheca, with large anterior and right sulcal plates. The Kofoidian thecal tabulation is Po, X, 4', 2a, 7'', 6c, 6s, 5''', 2''''. Morphologically, the revealed plate pattern has an affinity to the Peridiniales, and LSU rDNA based phylogenetic analyses placed L. arabicus within the Thoracosphaeraceae, close to calcareous-cyst producing scrippsielloids, predatory pfiesteriaceans, and photosynthetic freshwater peridinioids Chimonodinium lomnickii and Apocalathium spp. However, the thecal plate arrangement of L. arabicus differs noticeably from any currently described dinoflagellates, and the species stands out from closely related taxa by extensive differences in physiology and ecology.


Asunto(s)
Dinoflagelados , ADN Ribosómico , Océano Índico , Filogenia , Arena
19.
Environ Geochem Health ; 40(4): 1377-1383, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29305741

RESUMEN

This study examined microplastic particles present in the benthic invertebrates Sternaspis scutata, Magelona cinta (deposit feeders) and Tellina sp. (suspension feeder) from the surface sediments of off-Kochi, southwest coast of India. The microplastic particles and thread-like fibres detected in these organisms were identified to be polystyrene by using DXR Raman microscope. Examination of the microplastic particle in Sternaspis scutata by epifluorescent microscopy showed fragmentation marks on the surface suggesting that the microplastic particle was degraded/weathered in nature. The study provides preliminary evidence of the presence of microplastics in benthic fauna from the coastal waters of India. However, further studies are required to understand the sources, distribution, fate and toxicity of the different types of microplastics in benthic invertebrates in order to identify any potential threats to higher trophic level organisms.


Asunto(s)
Invertebrados , Plásticos , Contaminación del Agua , Animales , Ecosistema , Monitoreo del Ambiente/métodos , India , Océanos y Mares
20.
J Basic Microbiol ; 57(12): 1010-1017, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28949417

RESUMEN

We examined the diversity of Planctomycetes in the sediment sample collected from an oxygen minimum zone (OMZ) in the southeast Arabian Sea. A 16SrRNA gene library was constructed using the forward primer specific for Planctomycetes and a universal reverse primer. The 237 sequences obtained were grouped into 130 operational taxonomic units, and the majority of them were clustered with phylum Planctomycetes (45.0%) and unclassified bacteria (27.0%). There were sequences that clustered with distantly separated monophyletic groups such as Latescibacteria (9%), Actinobacteria (6%), Proteobacteria (5%), and others (8%). Among Planctomycetes, 55.7% belonged to family Planctomycetaceae, followed by unclassified Planctomycetes (25.0%) and family candidatus Brocadiaceae (19.2%). The family Planctomycetaceae included the genera Blastopirellula (11.5%), Rhodopirellula (3.8%), and a large number unclassified Planctomycetaceae sequences (40.4%). The members of family candidatus Brocadiaceae included the genera candidatus Scalindua (11.5%), candidatus Brocadia (1.9%) and unclassified genera (5.8). Our study indicates the relatively large diversity of Planctomycetes in sediments underlying the oxygen minimum zone of Arabian Sea. Also, the sequence data generated in the present study may support the efforts on isolation and purification of Planctomycetes from marine environment for understanding their biogeochemical significance.


Asunto(s)
Sedimentos Geológicos , Planctomycetales/clasificación , Planctomycetales/aislamiento & purificación , Anaerobiosis , Análisis por Conglomerados , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Océanos y Mares , Filogenia , Planctomycetales/genética , Planctomycetales/fisiología , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda