Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Plant J ; 116(3): 942-961, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37517071

RESUMEN

Arabidopsis thaliana diverged from A. arenosa and A. lyrata at least 6 million years ago. The three species differ by genome-wide polymorphisms and morphological traits. The species are to a high degree reproductively isolated, but hybridization barriers are incomplete. A special type of hybridization barrier is based on the triploid endosperm of the seed, where embryo lethality is caused by endosperm failure to support the developing embryo. The MADS-box type I family of transcription factors is specifically expressed in the endosperm and has been proposed to play a role in endosperm-based hybridization barriers. The gene family is well known for its high evolutionary duplication rate, as well as being regulated by genomic imprinting. Here we address MADS-box type I gene family evolution and the role of type I genes in the context of hybridization. Using two de-novo assembled and annotated chromosome-level genomes of A. arenosa and A. lyrata ssp. petraea we analyzed the MADS-box type I gene family in Arabidopsis to predict orthologs, copy number, and structural genomic variation related to the type I loci. Our findings were compared to gene expression profiles sampled before and after the transition to endosperm cellularization in order to investigate the involvement of MADS-box type I loci in endosperm-based hybridization barriers. We observed substantial differences in type-I expression in the endosperm of A. arenosa and A. lyrata ssp. petraea, suggesting a genetic cause for the endosperm-based hybridization barrier between A. arenosa and A. lyrata ssp. petraea.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Endospermo/genética , Endospermo/metabolismo , Semillas/genética , Factores de Transcripción/metabolismo , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , Regulación de la Expresión Génica de las Plantas/genética
2.
Int J Mol Sci ; 22(11)2021 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-34063996

RESUMEN

Methylation systems have been conserved during the divergence of plants and animals, although they are regulated by different pathways and enzymes. However, studies on the interactions of the epigenomes among evolutionarily distant organisms are lacking. To address this, we studied the epigenetic modification and gene expression of plant chromosome fragments (~30 Mb) in a human-Arabidopsis hybrid cell line. The whole-genome bisulfite sequencing results demonstrated that recombinant Arabidopsis DNA could retain its plant CG methylation levels even without functional plant methyltransferases, indicating that plant DNA methylation states can be maintained even in a different genomic background. The differential methylation analysis showed that the Arabidopsis DNA was undermethylated in the centromeric region and repetitive elements. Several Arabidopsis genes were still expressed, whereas the expression patterns were not related to the gene function. We concluded that the plant DNA did not maintain the original plant epigenomic landscapes and was under the control of the human genome. This study showed how two diverging genomes can coexist and provided insights into epigenetic modifications and their impact on the regulation of gene expressions between plant and animal genomes.


Asunto(s)
Arabidopsis/genética , Cromosomas de las Plantas/genética , Epigénesis Genética/genética , Células Híbridas/fisiología , Línea Celular , Metilación de ADN/genética , ADN de Plantas/genética , Epigenoma/genética , Epigenómica/métodos , Genoma de Planta/genética , Humanos , Metiltransferasas/genética , Secuencias Repetitivas de Ácidos Nucleicos/genética
3.
Plant J ; 83(6): 1114-22, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26227242

RESUMEN

We present a high-resolution map of genomic transformation-competent artificial chromosome (TAC) clones extending over all Arabidopsis thaliana (Arabidopsis) chromosomes. The Arabidopsis genomic TAC clones have been valuable genetic tools. Previously, we constructed an Arabidopsis genomic TAC library consisting of more than 10,000 TAC clones harboring large genomic DNA fragments extending over the whole Arabidopsis genome. Here, we determined 13,577 end sequences from 6987 Arabidopsis TAC clones and mapped 5937 TAC clones to precise locations, covering approximately 90% of the Arabidopsis chromosomes. We present the large-scale data set of TAC clones with high-resolution mapping information as a Java application tool, the Arabidopsis TAC Position Viewer, which provides ready-to-go transformable genomic DNA clones corresponding to certain loci on Arabidopsis chromosomes. The TAC clone resources will accelerate genomic DNA cloning, positional walking, complementation of mutants and DNA transformation for heterologous gene expression.


Asunto(s)
Arabidopsis/genética , Cromosomas Artificiales , Mapeo Físico de Cromosoma/métodos , Cloroplastos/genética , Genoma Mitocondrial , Genoma de Planta , Biblioteca Genómica , Datos de Secuencia Molecular , Programas Informáticos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda