Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Virus Genes ; 60(1): 65-70, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38103104

RESUMEN

Members of the genus Armillaria belong to the group of pathogenic and facultative saprotrophic fungi that are generally known as one of the causative agents of white root rot in infected plants including deciduous and evergreen trees and shrubs. Although several single-stranded RNA mycoviruses were previously described in different Armillaria species, there is no report on mitoviruses (one of the simplest RNA viruses of fungal hosts) known to infect Armillaria taxa. In this study, a new mitovirus denominated "Armillaria mellea mitovirus 1" (AmMV1) was identified in the sporophore samples of Armillaria mellea, commonly known as honey mushroom. AmMV1 has a genome length of 4440 nucleotides and a G + C content of 48%. It encompasses a single open reading frame (ORF) that encodes an RNA-dependent RNA polymerase (RdRp). Comparison through BLASTp analysis revealed that the RdRp domain of AmMV1 shares a sequence identity ranging from 33.43% to 43.27% with RdRp domains of Duamitovirus genus members, having the highest similarity (43.27%) to Rhizoctonia solani mitovirus 94. According to phylogenetic analysis, AmMV1 is classified as a member of the genus Duamitovirus belonging to the Mitoviridae family. This marks the initial instance of a mitovirus identified in Armillaria spp..


Asunto(s)
Armillaria , Virus Fúngicos , Virus ARN , Armillaria/genética , Filogenia , Genoma Viral , ARN Polimerasa Dependiente del ARN/genética , Sistemas de Lectura Abierta , ARN Viral/genética
2.
Appl Microbiol Biotechnol ; 108(1): 462, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39264460

RESUMEN

Bioinformatic analysis revealed that the genomes of ubiquitous Penicillium spp. might carry dozens of biosynthetic gene clusters (BGCs), yet many clusters have remained uncharacterized. In this study, a detailed investigation of co-culture fermentation including the basidiomycete Armillaria mellea CPCC 400891 and the P. brasilianum CGMCC 3.4402 enabled the isolation of five new compounds including two bisabolene-type sesquiterpenes (arpenibisabolanes A and B), two carotane-type sesquiterpenes (arpenicarotanes A and B), and one polyketide (arpenichorismite A) along with seven known compounds. The assignments of their structures were deduced by the extensive analyses of detailed spectroscopic data, electronic circular dichroism spectra, together with delimitation of the biogenesis. Most new compounds were not detected in monocultures under the same fermentation conditions. Arpenibisabolane A represents the first example of a 6/5-fused bicyclic bisabolene. The bioassay of these five new compounds exhibited no cytotoxic activities in vitro against three human cancer cell lines (A549, MCF-7, and HepG2). Moreover, sequence alignments and bioinformatic analysis to other metabolic pathways, two BGCs including Pb-bis and Pb-car, responsible for generating sesquiterpenoids from co-culture were identified, respectively. Furthermore, based on the chemical structures and deduced gene functions of the two clusters, a hypothetic metabolic pathway for biosynthesizing induced sesquiterpenoids was proposed. These results demonstrated that the co-culture approach would facilitate bioprospecting for new metabolites even from the well-studied microbes. Our findings would provide opportunities for further understanding of the biosynthesis of intriguing sesquiterpenoids via metabolic engineering strategies. KEY POINTS: • Penicillium and Armillaria co-culture facilitates the production of diverse secondary metabolites • Arpenibisabolane A represents the first example of 6/5-fused bicyclic bisabolenes • A hypothetic metabolic pathway for biosynthesizing induced sesquiterpenoids was proposed.


Asunto(s)
Armillaria , Técnicas de Cocultivo , Fermentación , Penicillium , Metabolismo Secundario , Sesquiterpenos , Armillaria/metabolismo , Armillaria/genética , Penicillium/metabolismo , Penicillium/genética , Penicillium/química , Sesquiterpenos/metabolismo , Sesquiterpenos/química , Humanos , Familia de Multigenes , Línea Celular Tumoral , Vías Biosintéticas/genética , Policétidos/metabolismo , Policétidos/química , Policétidos/aislamiento & purificación , Células Hep G2
3.
Molecules ; 28(24)2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38138434

RESUMEN

Armillaria mellea (Vahl) P. Kumm is commonly used for food and pharmaceutical supplements due to its immune regulatory function, and polysaccharides are one of its main components. The aim of this research is to study the immunological activity of the purified acidic polysaccharide fraction, namely, AMPA, isolated from Armillaria mellea crude polysaccharide (AMP). In this study, a combination of the immune activity of mouse macrophages in vitro and serum metabonomics in vivo was used to comprehensively explore the cell viability and metabolic changes in immune-deficient mice in the AMPA intervention, with the aim of elucidating the potential mechanisms of AMPA in the treatment of immunodeficiency. The in vitro experiments revealed that, compared with LPS-induced RAW264.7, the AMPA treatment elevated the levels of the cellular immune factors IL-2, IL-6, IgM, IgA, TNF-α, and IFN-γ; promoted the expression of immune proteins; and activated the TLR4/MyD88/NF-κB signaling pathway to produce immunological responses. The protein expression was also demonstrated in the spleen of the cyclophosphamide immunosuppressive model in vivo. The UHPLC-MS-based metabolomic analysis revealed that AMPA significantly modulated six endogenous metabolites in mice, with the associated metabolic pathways of AMPA for treating immunodeficiency selected as potential therapeutic biomarkers. The results demonstrate that phosphorylated acetyl CoA, glycolysis, and the TCA cycle were mainly activated to enhance immune factor expression and provide immune protection to the body. These experimental results are important for the development and application of AMPA as a valuable health food or drug that enhances immunity.


Asunto(s)
Armillaria , Polisacáridos , Animales , Ratones , Cromatografía Líquida de Alta Presión , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico , Polisacáridos/farmacología , Ciclofosfamida/efectos adversos
4.
Zhongguo Zhong Yao Za Zhi ; 47(9): 2309-2314, 2022 May.
Artículo en Zh | MEDLINE | ID: mdl-35531677

RESUMEN

This study aims to explore the resource utilization of used fungus-growing materials produced in the cultivation of Gastrodia elata. To be specific, based on the production practice, this study investigated the recycling mechanism of used fungus-growing materials of G. elata by Phallus inpudicus. To screen edible fungi with wide adaptability, this study examined the allelopathic effects of Armillaria mellea secretions on P. impudicus and 6 kinds of large edible fungi and the activities of enzymes related to degradation of the used fungus-growing materials of G. elata. The results showed that P. impudicus can effectively degrade cellulose, hemicellulose, and lignin in used fungus-growing materials of G. elata. The cellulase activity of A. mellea was significantly higher than that of P. impudicus, and the activities of lignin peroxidase, polyphenol oxidase, and xylanase of P. impudicus were significantly higher than those of A. mellea, which was the important reason why A. mellea and P. impudicus used different parts and components of the used fungus-growing materials to absorb carbon sources and develop ecological niche differences. The growth of P. impudicus was significantly inhibited on the used fungus-growing materials of G. elata. The secretions of A. mellea had allelopathic effects on P. impudicus and other edible fungi, and the allelopathic effects were related to the concentration of allelopathy substances. The screening result showed that the growth and development of L. edodes and A. auricular were not significantly affected by 30% of A. mellea liquid, indicating that they had high resistance to the allelopathy of A. mellea. The results showed that the activities of extracellular lignin peroxidase, polyphenol oxidase, and xylanase of the two edible fungi were similar to those of P. impudicus, and the cellulase activity was higher than that of P. impudicus. This experiment can be further verified by small-scale production tests.


Asunto(s)
Agaricales , Ascomicetos , Basidiomycota , Celulasas , Gastrodia , Catecol Oxidasa
5.
J Appl Microbiol ; 131(1): 392-403, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33219581

RESUMEN

AIMS: To isolate endophytic Trichoderma species and investigate the potential for biological control of the root rot pathogen Armillaria mellea. METHODS AND RESULTS: In all, 40 Trichoderma isolates were obtained from a range of host plants and identities were confirmed by ITS, rpb2 and tef1 sequence. When tested in dual culture assays for antagonism against A. mellea, Trichoderma isolates overgrew the A. mellea colonies within four days and by eight days 38 Trichoderma isolates significantly reduced A. mellea colony size. Armillaria mellea was unable to be recovered from five of eight co-cultivations tested, suggesting Trichoderma had killed the A. mellea in these cases. Pre-colonized hazel disks were used to determine what happens in a more heterogeneous situation with A. mellea and a refined set of eight Trichoderma isolates. Similar to plate-based assays, Trichoderma quickly covered A. mellea stopping any further growth and two Trichoderma isolates were able to eradicate A. mellea. CONCLUSIONS: Of the Trichoderma spp. tested, endophytic isolates of Trichoderma virens and T. hamatum offered the greatest antagonism towards A. mellea. Using pre-colonized hazel disks was of great importance for this work to demonstrate the fungal interactions in plant material. SIGNIFICANCE AND IMPACT OF THE STUDY: Controlling Armillaria root rot is difficult with chemical treatments, thus an environmentally benign and cost-effective alternative is required. This study highlights the prospect of biological control as an effective, environmentally friendly alternative to chemicals.


Asunto(s)
Antibiosis , Armillaria/fisiología , Corylus/microbiología , Endófitos/fisiología , Trichoderma/fisiología , Endófitos/aislamiento & purificación , Tallos de la Planta/microbiología , Trichoderma/aislamiento & purificación
6.
Plant Dis ; 104(2): 483-492, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31746694

RESUMEN

Armillaria root rot (ARR) is a serious disease of woody plants caused by several species of Armillaria. Armillaria isolates from diagnostic samples received in 2017 were identified by genus- and species-specific PCR and compared with isolates from an earlier survey (2004 to 2007). The results were comparable and, therefore, were combined for further analysis. Three species were identified: Armillaria mellea (83%), A. gallica (15%), and A. ostoyae (2%). Their wide host range makes choice of resistant plants in management of the disease difficult. We used the Royal Horticultural Society diagnostic dataset of ARR records from U.K. gardens to compare the susceptibility of different host genera to the disease. The dataset was compared with an earlier experiment at the University of California. An index-based approach was used to separate genera into three categories: 77 low-index (<0.99), 37 medium-index (0.99 to 1.76), and 56 high-index (>1.76) genera were recorded. All three species were associated with both angiosperms and gymnosperms; moreover, A. ostoyae did not show the host preference for gymnosperms that has been reported elsewhere. A. gallica was particularly common on herbaceous perennials and showed a trend to occur on resistant hosts that may be under other stress, supporting its description as an opportunistic pathogen. Four monocotyledons grown as trees or shrubs in U.K. gardens had a very low ARR index according to indices associated with A. mellea and A. ostoyae. Genera in the order Myrtales were almost always low index, while those in the Saxifragales and Fagales were mostly high index. These results provide confidence in the use of host resistance as part of the integrated management of ARR.


Asunto(s)
Armillaria , Jardines , Plantas , Reacción en Cadena de la Polimerasa , Árboles
7.
Molecules ; 24(4)2019 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-30781874

RESUMEN

Searching for the new anticancer compounds we prepared three new ß-cyclocitral-derived hydroxyl-γ-lactones by microbial hydroxylation of tetramethyl-substituted bicyclic γ-lactone. The substrate was transformed by the enzymatic system of filamentous fungi. Three out of fifteen strains were selected as effective biocatalysts (Fusarium culmorum AM10, Armillaria mellea AM296, Trametes versicolor AM536). The hydroxylation processes were not only regioselective but also stereoselective. The hydroxylation products of each secondary carbon atom in the cyclohexane ring were obtained by the application of the selected fungal strains. The Fusarium culmorum AM10 introduced the hydroxy function at C-3 and C-4, Armillaria mellea AM296 incorporated the hydroxy function at C-3 and C-5 and Trametes versicolor AM536 transformed the substrate to the mixture of C-3, C-4 and C-5 hydroxylactones. The hydroxylactones obtained were enantiomericaly enriched (ee values in the range 17⁻99%). The in vitro antiproliferative activities of the functionalization products were also evaluated. Regardless of the hydroxy substituent location all tested lactones exhibited similar, significant activity towards selected cancer cell lines (IC50 in the range 22.8⁻33.9 µg/mL).


Asunto(s)
Aldehídos/química , Antineoplásicos/química , Diterpenos/química , Lactonas/química , Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Armillaria/química , Armillaria/metabolismo , Línea Celular Tumoral , Proliferación Celular , Fusarium/metabolismo , Humanos , Radical Hidroxilo/química , Hidroxilación , Lactonas/síntesis química , Lactonas/farmacología , Neoplasias/tratamiento farmacológico , Especificidad por Sustrato , Trametes/química , Trametes/metabolismo
8.
Zhongguo Zhong Yao Za Zhi ; 42(15): 2905-2914, 2017 Aug.
Artículo en Zh | MEDLINE | ID: mdl-29139256

RESUMEN

Medicinal Polyporus umbellatus is the dry sclerotia of P. umbellatus, with the effect of diuresis; Armillaria mellea is a parasitic fungus which can infect plants up to 300 genera, with sedative, anticonvulsant and some other biological activities. As the medicinal value of P. umbellatus and A. mellea is increasingly wide concerned, the market quantity demanded of them is gradually increased and the demand outstrips the supply. The symbiotic A. mellea and P. umbellatus are both the medicinal and edible fungi with diverse activities, including hypoglycemic action, improve immunity and antitumor and so on. The growth of the sclerotia forming from the mycelium of P. umbellatus is related to the infection of the symbiotic A. mellea and their secondary products. In this study, by comparing the chemical constituents of the mycelium and sclerotia of P. umbellatus and A. mellea, we found that they all produced steroids and nitrogen-containing heterocycles. The sclerotia of P. umbellatus and A. mellea also produced triterpenes secondary metabolites. In addition, the mycelium and infected sclerotia of P. umbellatus mainly produced different steroids, and the sclerotia produced some other special secondary metabolites, such as long-chain fatty acids, ceramides, phenol and so on. By analyzing above all kinds of differences, speculated that these may be caused by the infection of the symbiotic A. mellea which mainly produced sesquiterpenes, diterpenes and other secondary metabolites. The contents and types of compounds of P. umbellatus and A. mellea are closely related to their symbiosis and reproduction, therefore, many symbiosis mechanisms should be found by utilizing more molecular biology technology to elucidate this complex symbiotic infection and provide scientific basis for improving the yield and quality of P. umbellatus and A. mellea.


Asunto(s)
Armillaria/química , Productos Biológicos/química , Polyporus/química , Micelio/química
9.
Molecules ; 20(6): 9994-10003, 2015 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-26035099

RESUMEN

Three new sesquiterpene aryl esters and eight known compounds were isolated from the EtOH extract of the mycelium of Armillaria mellea. The structures of new compounds were established by analysis of their spectroscopic data. Some of the isolates showed cytotoxicity to a variety of cancer cell lines, including MCF-7, H460, HT-29, and CEM.


Asunto(s)
Antineoplásicos/farmacología , Armillaria/química , Micelio/química , Sesquiterpenos/farmacología , Antineoplásicos/química , Antineoplásicos/aislamiento & purificación , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Doxorrubicina/farmacología , Ésteres , Etanol/química , Células HT29 , Humanos , Células MCF-7 , Estructura Molecular , Sesquiterpenos/química , Sesquiterpenos/aislamiento & purificación , Extracción en Fase Sólida , Solventes/química
10.
Int J Biol Macromol ; 259(Pt 1): 129175, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38181916

RESUMEN

Armillaria mellea (Vahl) P. Kumm. is a well-known homoeopathic plant with medicinal and culinary uses. Modern phytochemical researchers have successfully extracted and purified over 40 types of A. mellea polysaccharides (AMPs) from the fruiting bodies, hyphae and fermentation broth of A. mellea, and some of them have been analyzed and identified by their chemical structures. The impressive biological activity of these polysaccharides has been recognized by scientists worldwide. Many studies show that AMPs have remarkable antioxidant, anti-diabetic, anti-tumor, anti-inflammatory, immunoregulatory, hypolipidemic, thrombectomy, anti-aging, pulmonary protective, hepatic protective, anti-Alzheimer's properties, etc. However, the current understanding of the relationships between their chemical structure and biological activity, toxicological effects and pharmacokinetics remains limited. This article provides a systematic review of the research conducted over the past decades on the extraction and purification methods, structural characteristics, biological activity and mechanism of action of AMPs. The aim is to provide a research base that will benefit the future application of AMPs as therapeutic drugs and functional foods, and also provide insights for the further development of AMPs.


Asunto(s)
Armillaria , Polisacáridos , Armillaria/química , Polisacáridos/química , Polisacáridos/farmacología , Polisacáridos/aislamiento & purificación , Humanos , Antioxidantes/farmacología , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/química , Antiinflamatorios/aislamiento & purificación
11.
Front Biosci (Landmark Ed) ; 28(9): 228, 2023 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-37796687

RESUMEN

BACKGROUND: Disorders of purine metabolism are the main cause of hyperuricemia. Current drugs for the treatment of hyperuricemia usually cause a degree of cardiovascular damage. METHODS: This study aimed to investigate the therapeutic effects of Armillaria mellea fruiting body (AFB), Armillaria rhizomorph (AR) and Armillaria mellea fermentation product (after rhizomorphs removal) (AFP) on hyperuricemic mice. The hyperuricemia mouse model was established by oral administration of potassium oxonate 0.9 g⋅kg-1 and hypoxanthine 0.5 g⋅kg-1 for two weeks. Starting from the third week, the intragastric administration of the intervention drug group was as follows: Allopurinol 0.013 g⋅kg-1, AFB (3.9 and 7.8 g⋅kg-1), AR (3.9 and 7.8 g⋅kg-1), AFP (1.95 and 3.9 g⋅kg-1) once daily for 14 days. RESULTS: Results showed that AFB, AR, and AFP reduced the contents of serum uric acid, serum creatinine, and blood urea nitrogen in hyperuricemic mice and the mechanism of action might be through up-regulation of the expression levels of organic anion transporter 1/organic anion transporter 3 proteins in kidney tissue. AR and AFP both exhibited better uric acid-lowering effects than AFB, which may be due to the higher purine content of AFB. CONCLUSIONS: Armillaria mellea and its fermentation products can treat hyperuricemia by up-regulating OAT1 protein and OAT3 protein, reducing uric acid content in mice.


Asunto(s)
Armillaria , Miel , Hiperuricemia , Transportadores de Anión Orgánico , Ratones , Animales , Hiperuricemia/inducido químicamente , Hiperuricemia/tratamiento farmacológico , Hiperuricemia/metabolismo , Proteína 1 de Transporte de Anión Orgánico/genética , Proteína 1 de Transporte de Anión Orgánico/metabolismo , Armillaria/metabolismo , Riñón , Ácido Úrico/metabolismo , Ácido Úrico/farmacología , Fermentación , alfa-Fetoproteínas , Transportadores de Anión Orgánico/metabolismo , Transportadores de Anión Orgánico/farmacología , Transportadores de Anión Orgánico/uso terapéutico , Purinas/metabolismo , Purinas/farmacología , Purinas/uso terapéutico
12.
Ultrason Sonochem ; 95: 106370, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36965312

RESUMEN

Armillaria mellea polysaccharides (AMPs) were obtained by ultrasonic assisted extraction (U), enzyme assisted extraction (E) and ultrasonic-enzyme assisted extraction (UE), respectively. The yield of UE-AMPs (6.32 ± 0.14%) was 1.64 times higher than that of U-AMPs (3.86 ± 0.11%) and 1.21 times higher than that of E-AMPs (5.21 ± 0.09%); meanwhile, the highest total sugar content and the lowest protein content were found in UE-AMPs. AMPs obtained from the three extraction methods had the same monosaccharide composition but in different proportions, allowing UE-AMPs to have the most potent antioxidant activity. The antidiabetic activity of UE-AMPs was investigated in streptozotocin (STZ)-induced diabetic mice. UE-AMPs, when given by gavage, greatly prevented weight loss, increased water intake, and considerably decreased blood glucose levels in diabetic mice, which were dose-dependent (P < 0.05). In addition, UE-AMPs also had a positive effect on the reduction of lipid levels in the blood, oxidative damage and liver function impairment. The pathological observation by hematoxylin-eosin staining (HE) revealed that UE-AMPs protected the organs of mice from diabetic complications (liver disease and nephropathy). Hence, our findings demonstrate that UE-AMPs are a suitable choice for improving diabetes and its complications and have great application prospects in the fields of natural medicine and functional food.


Asunto(s)
Diabetes Mellitus Experimental , Hipoglucemiantes , Ratones , Animales , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Ultrasonido , Diabetes Mellitus Experimental/tratamiento farmacológico , Polisacáridos/farmacología , Antioxidantes/farmacología
13.
Front Pharmacol ; 13: 919920, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35924065

RESUMEN

Arm illaria mellea has been known and used in traditional medicine in East Asia for hundreds of years. It has already been reported that A. mellea extracts have various pharmacological effects, and the polysaccharides of A. mellea exhibit antioxidant and anti-apoptotic activities. In this study, a water-soluble polysaccharide (AMP-N-a-1), with an average molecular weight of 17 kD, was isolated and purified from the water extract of A. mellea using DEAE-52, Sepharose CL-4B, and Sephadex G-100 column chromatography. AMP-N-a-1 was mainly composed of Man (1.65%), Glca (1.64%), Rha (1.82%), Gala (2.49%), Glc (90.48%), Gal (0.89%), Xyl (0.42%), and Ara (0.61%). AMP-N-a-1 was used to study the effect on the learning and memory of mice and its underlying mechanisms. The results showed that AMP-N-a-1 could significantly increase the activities of catalase (CAT) and superoxide dismutase (SOD) and reduce the content of nitric oxide (NO) in mouse brain tissue. Meanwhile, AMP-N-a-1 could reduce the contents of norepinephrine (NE) and dopamine (DA) but could increase the content of 5-hydroxytryptamine (5-HT) in mouse brain tissue. In addition, the immunofluorescence experiment showed that AMP-N-a-1 could promote the proliferation of hippocampal dentate gyrus neurons. The above results indicate that AMP-N-a-1 can significantly improve the learning and memory of mice, and the mechanism may be that AMP-N-a-1 can participate in the regulation of learning and memory through a variety of ways.

14.
Int J Mol Sci ; 12(10): 6367-84, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22072892

RESUMEN

Antioxidant components, ascorbic acid, total flavonoids and total phenols are produced effectively by Armillaria mellea submerged cultures. Dried mycelia and mycelia-free broths obtained by A. mellea submerged cultures are extracted with methanol and hot water and investigated for antioxidant properties. Methanolic extracts from dried mycelia (MEM) and mycelia-free broth (MEB) and hot water extracts from dried mycelia (HWEM) by A. mellea submerged cultures show good antioxidant properties as evidenced by low EC(50) values (<10 mg/mL). Total flavonoid is mainly found in hot water extracts; however, total phenol is rich in methanol and hot water extracts from mycelia. Ascorbic acid and total phenol contents are well correlated with the reducing power and the scavenging effect on superoxide anions. Total flavonoid content is dependent on the antioxidant activity and the chelating effect on ferrous ions. Total antioxidant component contents are closely related to the antioxidant activity and the scavenging superoxide anion ability. Results confirm that extracts with good antioxidant properties from fermenting products by A. mellea are potential good substitutes for synthetic antioxidants and can be applied to antioxidant-related functional food and pharmaceutical industries.


Asunto(s)
Antioxidantes/química , Armillaria/metabolismo , Antioxidantes/aislamiento & purificación , Armillaria/química , Técnicas de Cultivo Celular por Lotes , Compuestos Ferrosos/química , Flavonoides/química , Flavonoides/aislamiento & purificación , Metanol/química , Fenoles/química , Fenoles/aislamiento & purificación , Superóxidos/química , Agua/química
15.
J Fungi (Basel) ; 7(5)2021 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-34068650

RESUMEN

The present study aimed to explore whether water and ethanol extracts of Armillaria mellea mycelia produce sedative and hypnotic effects in rats. Male Sprague-Dawley rats were surgically implanted with two electroencephalogram electrodes on the skull and an electromyogram electrode on neck muscle to evaluate the alterations in rapid eye movement (REM) and non-REM (NREM) sleep after oral administration of the water and ethanol extracts. Following post-surgical recovery, thirty-six rats were randomly divided into four treatment groups and two control groups. They were treated orally with vehicle, 75 and 150 mg/kg doses of water and ethanolic extracts 15 min prior to the onset of dark (active) period. Electroencephalography results showed that the low dose of A. mellea mycelia water extract increased REM sleep time while the high dose enhanced both REM and NREM sleep times during the subsequent light (rest) period. On the other hand, although the low dose of A. mellea mycelia ethanolic extract did not alter both NREM sleep and REM sleep during the dark and light periods, the high dose increased both REM and NREM sleep during the light periods in naive rats. The HPLC-DAD analyses of both extracts allowed the identification of GABA and seven sesquiterpenoids. Based on these findings, the present study showed for the first time that water and ethanolic extracts of A. mellea mycelia, containing a source of biologically active compounds, could increase both NREM sleep and REM sleep during the rest period and may be useful for the treatment of insomnia.

16.
Biomolecules ; 11(4)2021 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-33920034

RESUMEN

The present study aimed to investigate the chemical composition, bioactive compounds, and antioxidant activity of two wild edible mushrooms, the honey fungus (Armillaria mellea) and the parasol mushroom (Macrolepiota procera), collected from Northern Morocco (MA) and Portugal (PT). Those species were chosen due to their edibility, nutraceutical, and medicinal properties. Bioactive compounds (ascorbic acid, tannin, total phenolic, total flavonoid, ß-carotene, and lycopene) and their antioxidant activity were determined by spectrophotometric methods. Herein, the fruiting body of the samples revealed a significantly higher amount of bioactive compounds, and values varied between the Moroccan and the Portuguese ones. Methanolic extracts shown a strong antioxidant capacity: Using DPPH free radical-scavenging activity radicals (IC50 1.06-1.32 mg/mL); inhibition of ß-carotene bleaching radicals (IC50 0.09-0.53 mg/mL); and, reducing power radicals (IC50 0.52-1.11 mg/mL). The mushroom species with the highest antioxidant capacity was A. mellea from MA. Chemical composition was analyzed by GC-MS and LC-MS methodologies. GC-MS analysis showed that the most abundant biomolecules group was sugar compositions in the four samples (62.90%, 48.93%, 59.00%, and 53.71%) and the main components were galactitol 16.74%, petroselinic acid 19.83%, d-galactose 38.43%, and glycerol 24.43% in A. mellea (MA), A. mellea (PT), M. procera (MA), and M. procera (PT), respectively. LC-MS analysis of individual phenolic compounds revealed that vanillic acid (198.40 ± 2.82 µg/g dry weight (dw) and cinnamic acid (155.20 ± 0.97 µg/g dw) were the main compounds detected in A. mellea, while protocatechuic acid (92.52 ± 0.45 and 125.50 ± 0.89 µg/g dw) was predominated in M. procera for MA and PT samples, respectively. In general, the results of this comparative study demonstrate that the geographic and climatic conditions of the collection site can influence biomolecule compounds and antioxidant properties of wild mushrooms. This study contributes to the elaboration of nutritional, nutraceutical, and pharmaceutical databases of the worldwide consumed mushrooms.


Asunto(s)
Agaricales/química , Antioxidantes/química , Armillaria/química , Productos Biológicos/química , Ácido Ascórbico/análisis , Flavonoides/análisis , Hidroxibenzoatos/análisis , Licopeno/análisis , Taninos/análisis , beta Caroteno/análisis
17.
Front Microbiol ; 12: 792530, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35185819

RESUMEN

Sclerotia, the medicinal part of Polyporus umbellatus, play important roles in diuresis and renal protection, with steroids and polysaccharides as the main active ingredients. The sclerotia grow and develop only after symbiosis with Armillaria sp. In this study, a systematic metabolomics based on non-targeted UPLC-MS method was carried out between the infected part of the separated cavity wall of the sclerotia (QR) and the uninfected part (the control group, CK) to find and identify differential metabolites. The biosynthetic pathway of characteristic steroids in sclerotia of P. umbellatus was deduced and the content of ergosterol, polyporusterone A and B in the QR and CK groups were detected with the High Performance Liquid Chromatography (HPLC). Furthermore, the expression patterns of putative genes associated with steroid biosynthesis pathway were also performed with quantitative real-time PCR. The results showed that a total of 258 metabolites originated from fungi with the fragmentation score more than 45 and high resolution mass were identified, based on UPLC-MS metabolomic analysis, and there were 118 differentially expressed metabolites (DEMs) between both groups. The metabolic pathways indicated that steroids, fatty acid and carbohydrate were active and enriched during P. umbellatus sclerotia infected by A. mellea. The content of ergosterol, polyporusterone A and B in the QR group increased by 32.2, 75.0, and 20.0%, in comparison to that of the control group. The qRT-PCR analysis showed that series of enzymes including C-8 sterol isomerase (ERG2), sterol C-24 methyltransferase (ERG6) and sterol 22-desaturase (ERG5), which played important roles in the final steps of ergosterol biosynthesis, all presented up-regulated patterns in the QR group in P. umbellatus. The comprehensive metabolomic and transcriptomic information will contribute to further study concerning the mechanisms of P. umbellatus sclerotial formation infected by A. mellea in the future.

18.
J Ethnopharmacol ; 265: 113395, 2021 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-32956757

RESUMEN

ETHNOPHARMACOLOGY RELEVANCE: Armillaria mellea (Vahl) P. Kumm. (AM) is an edible mushroom that has been reported as treatment for several neurological disorders, such as dizziness and epilepsy in Asia. Importantly, AM shares a symbiotic relationship with Gastrodia elata Blume (GE), a medicinal herb with antidepressant-like properties. Researchers believe that AM may possess pharmacological properties similar to GE due to their symbiosis, however, few studies have investigated the pharmacological effect of AM. AIM OF THE STUDY: The aim of this study was to explore the potential of AM as an antidepressant in forced-swimming test (FST) and unpredictable chronic mild stress (UCMS) rodent models and investigate its possible underlying mechanism. MATERIALS AND METHODS: Rats were orally administrated with 250, 500, and 1000 mg/kg body weight (bw) water extract of AM (WAM) for 28 and 35 consecutive days prior to the FST and UCMS protocols, respectively. The cerebral serotonin (5-HT) and the metabolites in the frontal cortex of rats were measured. The brain was dissected and the blood was collected to investigate the levels of inflammatory-related signaling pathway. RESULTS: All doses of WAM reduced the immobility time in the FST without disturbing autonomic locomotion. All doses of WAM prevented stress-induced abnormal behaviors in the UCMS model, including decreased sucrose preference and hypoactivity. 500 and 1000 mg/kg bw WAM attenuated the stress-induced increases in IL-1ß and TNF-α in the serum and cerebrum. 1000 mg/kg bw WAM alleviated brain inflammation by reducing the protein expression of ionized calcium binding adaptor molecule 1. CONCLUSION: WAM exhibited acute and chronic antidepressant-like effects, and may result from the anti-inflammatory actions. Therefore, the development of AM as a dietary therapy or adjuvant for depression treatment should be considered.


Asunto(s)
Antiinflamatorios/farmacología , Antidepresivos/farmacología , Armillaria/química , Depresión/tratamiento farmacológico , Animales , Antiinflamatorios/administración & dosificación , Antiinflamatorios/aislamiento & purificación , Antidepresivos/administración & dosificación , Antidepresivos/aislamiento & purificación , Conducta Animal/efectos de los fármacos , Depresión/fisiopatología , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Inflamación/tratamiento farmacológico , Inflamación/patología , Masculino , Ratas , Ratas Sprague-Dawley , Serotonina/metabolismo , Estrés Psicológico/tratamiento farmacológico , Estrés Psicológico/fisiopatología , Natación , Agua
19.
Nat Prod Res ; 35(6): 1042-1045, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31135223

RESUMEN

Armillaria mellea, also known as Hazel mushroom, is a delicious food material and traditional herbal medicine in East Asia. Protoilludane sesquiterpenoid aromatic esters from A. mellea (PSAM) are the main active components with antibacterial and anticancer activities. This study explored the antidepressant-like activities of PSAM and its possible mechanisms of action using the open field test (OFT), tail suspension test (TST) and forced swimming test (FST) in mice for the first time. The results revealed that PSAM (1 mg/kg, i.p.) exhibited markedly antidepressant-like activity, which could be reversed by pretreatment with haloperidol (a non-selective D2 receptor antagonist), bicuculline (a competitive GABA antagonist), NMDA (an agonist at the glutamate site). Meanwhile, PSAM also effectively increased the hippocampus dopamine (DA) and γ-aminobutyric acid (GABA) and decreased the hippocampus glutamate (Glu) levels of mice, indicating that the antidepressant-like effect of PSAM might be mediated by the DAergic, GABAergic and Gluergic systems.


Asunto(s)
Antidepresivos/uso terapéutico , Armillaria/química , Ésteres/uso terapéutico , Sesquiterpenos Policíclicos/uso terapéutico , Sesquiterpenos/uso terapéutico , Animales , Antidepresivos/farmacología , Conducta Animal/efectos de los fármacos , Depresión/tratamiento farmacológico , Depresión/fisiopatología , Dopamina/metabolismo , Fluoxetina/farmacología , Fluoxetina/uso terapéutico , Ácido Glutámico/metabolismo , Suspensión Trasera , Masculino , Ratones , Actividad Motora/efectos de los fármacos , Prueba de Campo Abierto , Sesquiterpenos Policíclicos/farmacología , Reboxetina/farmacología , Reboxetina/uso terapéutico , Natación , Ácido gamma-Aminobutírico/metabolismo
20.
Toxics ; 7(4)2019 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-31546986

RESUMEN

Cork quality is crucial for the fabrication of corks intended to be used to seal wine bottles. This work has focused on the determination of chloroanisoles (CAs)-exogenous compounds with a low perception threshold-in cork. The identification and quantification of these compounds was carried out with Bond Elut-ENV solid phase extraction and gas chromatography with mass spectrometry detection. Cork samples were obtained from oaks from Catalonia, Extremadura and Italy, and the presence of CAs was evaluated. Moreover, cork affected by the presence of yellow stains (a defect present in cork, mainly originated from the growth of the fungus Armillaria mellea) was analysed separately. The results obtained from cork macerates revealed the presence of trichloroanisole (TCA) in Catalan and Italian cork. Furthermore, TCA concentration was not statistically different when comparing cork affected and non-affected by the growth of A. mellea. Other chlorinated compounds were identified by comparison of their mass spectra with the data from the NIST library.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda