Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 802
Filtrar
Más filtros

Publication year range
1.
Circ Res ; 134(1): 46-59, 2024 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-38095085

RESUMEN

BACKGROUND: Brugada syndrome is associated with loss-of-function SCN5A variants, yet these account for only ≈20% of cases. A recent genome-wide association study identified a novel locus within MAPRE2, which encodes EB2 (microtubule end-binding protein 2), implicating microtubule involvement in Brugada syndrome. METHODS: A mapre2 knockout zebrafish model was generated using CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeat-associated protein 9) and validated by Western blot. Larval hearts at 5 days post-fertilization were isolated for voltage mapping and immunocytochemistry. Adult fish hearts were used for ECG, patch clamping, and immunocytochemistry. Morpholinos were injected into embryos at 1-cell stage for knockdown experiments. A transgenic zebrafish line with cdh2 tandem fluorescent timer was used to study adherens junctions. Microtubule plus-end tracking and patch clamping were performed in human induced pluripotent stem cell derived cardiomyocytes (iPSC-CMs) with MAPRE2 knockdown and knockout, respectively. RESULTS: Voltage mapping of mapre2 knockout hearts showed a decrease in ventricular maximum upstroke velocity of the action potential and conduction velocity, suggesting loss of cardiac voltage-gated sodium channel function. ECG showed QRS prolongation in adult knockout fish, and patch clamping showed decreased sodium current density in knockout ventricular myocytes and arrhythmias in knockout iPSC-CMs. Confocal imaging showed disorganized adherens junctions and mislocalization of mature Ncad (N-cadherin) with mapre2 loss of function, associated with a decrease of detyrosinated tubulin. MAPRE2 knockdown in iPSC-CMs led to an increase in microtubule growth velocity and distance, indicating changes in microtubule dynamics. Finally, knockdown of ttl encoding tubulin tyrosine ligase in mapre2 knockout larvae rescued tubulin detyrosination and ventricular maximum upstroke velocity of the action potential. CONCLUSIONS: Genetic ablation of mapre2 led to a decrease in voltage-gated sodium channel function, a hallmark of Brugada syndrome, associated with disruption of adherens junctions, decrease of detyrosinated tubulin as a marker of microtubule stability, and changes in microtubule dynamics. Restoration of the detyrosinated tubulin fraction with ttl knockdown led to rescue of voltage-gated sodium channel-related functional parameters in mapre2 knockout hearts. Taken together, our study implicates microtubule dynamics in the modulation of ventricular conduction.


Asunto(s)
Síndrome de Brugada , Células Madre Pluripotentes Inducidas , Canales de Sodio Activados por Voltaje , Animales , Humanos , Potenciales de Acción , Síndrome de Brugada/genética , Síndrome de Brugada/metabolismo , Estudio de Asociación del Genoma Completo , Células Madre Pluripotentes Inducidas/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos/metabolismo , Miocitos Cardíacos/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/genética , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Canales de Sodio Activados por Voltaje/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo
2.
Circ Res ; 135(7): 722-738, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39166328

RESUMEN

BACKGROUND: The KCNQ1+KCNE1 (IKs) potassium channel plays a crucial role in cardiac adaptation to stress, in which ß-adrenergic stimulation phosphorylates the IKs channel through the cyclic adenosine monophosphate (cAMP)/PKA (protein kinase A) pathway. Phosphorylation increases the channel current and accelerates repolarization to adapt to an increased heart rate. Variants in KCNQ1 can cause long-QT syndrome type 1 (LQT1), and those with defective cAMP effects predispose patients to the highest risk of cardiac arrest and sudden death. However, the molecular connection between IKs channel phosphorylation and channel function, as well as why high-risk LQT1 mutations lose cAMP sensitivity, remain unclear. METHODS: Regular patch clamp and voltage clamp fluorometry techniques were utilized to record pore opening and voltage sensor movement of wild-type and mutant KCNQ1/IKs channels. The clinical phenotypic penetrance of each LQT1 mutation was analyzed as a metric for assessing their clinical risk. The patient-specific-induced pluripotent stem-cell model was used to test mechanistic findings in physiological conditions. RESULTS: By systematically elucidating mechanisms of a series of LQT1 variants that lack cAMP sensitivity, we identified molecular determinants of IKs channel regulation by phosphorylation. These key residues are distributed across the N-terminus of KCNQ1 extending to the central pore region of IKs. We refer to this pattern as the IKs channel PKA phosphorylation axis. Next, by examining LQT1 variants from clinical databases containing 10 579 LQT1 carriers, we found that the distribution of the most high-penetrance LQT1 variants extends across the IKs channel PKA phosphorylation axis, demonstrating its clinical relevance. Furthermore, we found that a small molecule, ML277, which binds at the center of the phosphorylation axis, rescues the defective cAMP effects of multiple high-risk LQT1 variants. This finding was then tested in high-risk patient-specific induced pluripotent stem cell-derived cardiomyocytes, where ML277 remarkably alleviates the beating abnormalities. CONCLUSIONS: Our findings not only elucidate the molecular mechanism of PKA-dependent IKs channel phosphorylation but also provide an effective antiarrhythmic strategy for patients with high-risk LQT1 variants.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico , Células Madre Pluripotentes Inducidas , Canal de Potasio KCNQ1 , Humanos , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Fosforilación , Canal de Potasio KCNQ1/genética , Canal de Potasio KCNQ1/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Síndrome de Romano-Ward/genética , Síndrome de Romano-Ward/metabolismo , AMP Cíclico/metabolismo , Miocitos Cardíacos/metabolismo , Mutación , Síndrome de QT Prolongado/genética , Síndrome de QT Prolongado/metabolismo , Células HEK293 , Canales de Potasio con Entrada de Voltaje
3.
Circ Res ; 134(10): 1306-1326, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38533639

RESUMEN

BACKGROUND: Ventricular arrhythmias (VAs) demonstrate a prominent day-night rhythm, commonly presenting in the morning. Transcriptional rhythms in cardiac ion channels accompany this phenomenon, but their role in the morning vulnerability to VAs and the underlying mechanisms are not understood. We investigated the recruitment of transcription factors that underpins transcriptional rhythms in ion channels and assessed whether this mechanism was pertinent to the heart's intrinsic diurnal susceptibility to VA. METHODS AND RESULTS: Assay for transposase-accessible chromatin with sequencing performed in mouse ventricular myocyte nuclei at the beginning of the animals' inactive (ZT0) and active (ZT12) periods revealed differentially accessible chromatin sites annotating to rhythmically transcribed ion channels and distinct transcription factor binding motifs in these regions. Notably, motif enrichment for the glucocorticoid receptor (GR; transcriptional effector of corticosteroid signaling) in open chromatin profiles at ZT12 was observed, in line with the well-recognized ZT12 peak in circulating corticosteroids. Molecular, electrophysiological, and in silico biophysically-detailed modeling approaches demonstrated GR-mediated transcriptional control of ion channels (including Scn5a underlying the cardiac Na+ current, Kcnh2 underlying the rapid delayed rectifier K+ current, and Gja1 responsible for electrical coupling) and their contribution to the day-night rhythm in the vulnerability to VA. Strikingly, both pharmacological block of GR and cardiomyocyte-specific genetic knockout of GR blunted or abolished ion channel expression rhythms and abolished the ZT12 susceptibility to pacing-induced VA in isolated hearts. CONCLUSIONS: Our study registers a day-night rhythm in chromatin accessibility that accompanies diurnal cycles in ventricular myocytes. Our approaches directly implicate the cardiac GR in the myocyte excitability rhythm and mechanistically link the ZT12 surge in glucocorticoids to intrinsic VA propensity at this time.


Asunto(s)
Ritmo Circadiano , Miocitos Cardíacos , Receptores de Glucocorticoides , Animales , Receptores de Glucocorticoides/metabolismo , Receptores de Glucocorticoides/genética , Ratones , Miocitos Cardíacos/metabolismo , Masculino , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatología , Arritmias Cardíacas/genética , Ratones Endogámicos C57BL , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/genética , Conexina 43/metabolismo , Conexina 43/genética , Ratones Noqueados , Potenciales de Acción
4.
Circ Res ; 134(6): 659-674, 2024 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-38484028

RESUMEN

Circadian rhythms in physiology and behavior are ≈24-hour biological cycles regulated by internal biological clocks (ie, circadian clocks) that optimize organismal homeostasis in response to predictable environmental changes. These clocks are present in virtually all cells in the body, including cardiomyocytes. Many decades ago, clinicians and researchers became interested in studying daily patterns of triggers for sudden cardiac death, the incidence of sudden cardiac death, and cardiac arrhythmias. This review highlights historical and contemporary studies examining the role of day/night rhythms in the timing of cardiovascular events, delves into changes in the timing of these events over the last few decades, and discusses cardiovascular disease-specific differences in the timing of cardiovascular events. The current understanding of the environmental, behavioral, and circadian mechanisms that regulate cardiac electrophysiology is examined with a focus on the circadian regulation of cardiac ion channels and ion channel regulatory genes. Understanding the contribution of environmental, behavioral, and circadian rhythms on arrhythmia susceptibility and the incidence of sudden cardiac death will be essential in developing future chronotherapies.


Asunto(s)
Arritmias Cardíacas , Relojes Circadianos , Humanos , Ritmo Circadiano , Miocitos Cardíacos , Muerte Súbita Cardíaca/etiología , Electrofisiología Cardíaca
5.
Circ Res ; 134(4): 346-350, 2024 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-38359093

RESUMEN

Transient receptor potential (TRP) cation channels are a diverse family of channels whose members play prominent roles as cellular sensors and effectors. The important role of TRP channels (and mechanosensitive piezo channels) in the complex interaction of our senses with the environment was underlined by the award of the Nobel Prize in Physiology or Medicine to 2 pioneers in this field, David Julius and Ardem Patapoutian. There are many competent and comprehensive reviews on many aspects of the TRP channels, and there is no intention to expand on them. Rather, after an introduction to the nomenclature, the molecular architecture of native TRP channel/protein complexes in vivo will be summarized using TRP channels of the canonical transient receptor potential subfamily as an example. This molecular architecture provides the basis for the signatures of native canonical transient receptor potential currents and their control by endogenous modulators and potential drugs.


Asunto(s)
Canales de Potencial de Receptor Transitorio
6.
Circ Res ; 134(7): 892-912, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38415360

RESUMEN

BACKGROUND: Viral cardiac infection represents a significant clinical challenge encompassing several etiological agents, disease stages, complex presentation, and a resulting lack of mechanistic understanding. Myocarditis is a major cause of sudden cardiac death in young adults, where current knowledge in the field is dominated by later disease phases and pathological immune responses. However, little is known regarding how infection can acutely induce an arrhythmogenic substrate before significant immune responses. Adenovirus is a leading cause of myocarditis, but due to species specificity, models of infection are lacking, and it is not understood how adenoviral infection may underlie sudden cardiac arrest. Mouse adenovirus type-3 was previously reported as cardiotropic, yet it has not been utilized to understand the mechanisms of cardiac infection and pathology. METHODS: We have developed mouse adenovirus type-3 infection as a model to investigate acute cardiac infection and molecular alterations to the infected heart before an appreciable immune response or gross cardiomyopathy. RESULTS: Optical mapping of infected hearts exposes decreases in conduction velocity concomitant with increased Cx43Ser368 phosphorylation, a residue known to regulate gap junction function. Hearts from animals harboring a phospho-null mutation at Cx43Ser368 are protected against mouse adenovirus type-3-induced conduction velocity slowing. Additional to gap junction alterations, patch clamping of mouse adenovirus type-3-infected adult mouse ventricular cardiomyocytes reveals prolonged action potential duration as a result of decreased IK1 and IKs current density. Turning to human systems, we find human adenovirus type-5 increases phosphorylation of Cx43Ser368 and disrupts synchrony in human induced pluripotent stem cell-derived cardiomyocytes, indicating common mechanisms with our mouse whole heart and adult cardiomyocyte data. CONCLUSIONS: Together, these findings demonstrate that adenoviral infection creates an arrhythmogenic substrate through direct targeting of gap junction and ion channel function in the heart. Such alterations are known to precipitate arrhythmias and likely contribute to sudden cardiac death in acutely infected patients.


Asunto(s)
Células Madre Pluripotentes Inducidas , Miocarditis , Humanos , Ratones , Animales , Conexina 43/genética , Arritmias Cardíacas/genética , Arritmias Cardíacas/patología , Miocitos Cardíacos/fisiología , Uniones Comunicantes , Adenoviridae/genética , Muerte Súbita Cardíaca
7.
Circ Res ; 134(10): 1379-1397, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38723031

RESUMEN

Chagas cardiomyopathy caused by infection with the intracellular parasite Trypanosoma cruzi is the most common and severe expression of human Chagas disease. Heart failure, systemic and pulmonary thromboembolism, arrhythmia, and sudden cardiac death are the principal clinical manifestations of Chagas cardiomyopathy. Ventricular arrhythmias contribute significantly to morbidity and mortality and are the major cause of sudden cardiac death. Significant gaps still exist in the understanding of the pathogenesis mechanisms underlying the arrhythmogenic manifestations of Chagas cardiomyopathy. This article will review the data from experimental studies and translate those findings to draw hypotheses about clinical observations. Human- and animal-based studies at molecular, cellular, tissue, and organ levels suggest 5 main pillars of remodeling caused by the interaction of host and parasite: immunologic, electrical, autonomic, microvascular, and contractile. Integrating these 5 remodeling processes will bring insights into the current knowledge in the field, highlighting some key features for future management of this arrhythmogenic disease.


Asunto(s)
Arritmias Cardíacas , Cardiomiopatía Chagásica , Humanos , Animales , Arritmias Cardíacas/etiología , Arritmias Cardíacas/parasitología , Arritmias Cardíacas/fisiopatología , Cardiomiopatía Chagásica/parasitología , Trypanosoma cruzi/patogenicidad , Enfermedad de Chagas/complicaciones , Enfermedad de Chagas/parasitología , Enfermedad de Chagas/inmunología
8.
Circ Res ; 135(3): e57-e75, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-38939925

RESUMEN

BACKGROUND: Thoracic epidural anesthesia (TEA) has been shown to reduce the burden of ventricular tachycardia in small case series of patients with refractory ventricular tachyarrhythmias and cardiomyopathy. However, its electrophysiological and autonomic effects in diseased hearts remain unclear, and its use after myocardial infarction is limited by concerns for potential right ventricular dysfunction. METHODS: Myocardial infarction was created in Yorkshire pigs (N=22) by left anterior descending coronary artery occlusion. Approximately, six weeks after myocardial infarction, an epidural catheter was placed at the C7-T1 vertebral level for injection of 2% lidocaine. Right and left ventricular hemodynamics were recorded using Millar pressure-conductance catheters, and ventricular activation recovery intervals (ARIs), a surrogate of action potential durations, by a 56-electrode sock and 64-electrode basket catheter. Hemodynamics and ARIs, baroreflex sensitivity and intrinsic cardiac neural activity, and ventricular effective refractory periods and slope of restitution (Smax) were assessed before and after TEA. Ventricular tachyarrhythmia inducibility was assessed by programmed electrical stimulation. RESULTS: TEA reduced inducibility of ventricular tachyarrhythmias by 70%. TEA did not affect right ventricular-systolic pressure or contractility, although left ventricular-systolic pressure and contractility decreased modestly. Global and regional ventricular ARIs increased, including in scar and border zone regions post-TEA. TEA reduced ARI dispersion specifically in border zone regions. Ventricular effective refractory periods prolonged significantly at critical sites of arrhythmogenesis, and Smax was reduced. Interestingly, TEA significantly improved cardiac vagal function, as measured by both baroreflex sensitivity and intrinsic cardiac neural activity. CONCLUSIONS: TEA does not compromise right ventricular function in infarcted hearts. Its antiarrhythmic mechanisms are mediated by increases in ventricular effective refractory period and ARIs, decreases in Smax, and reductions in border zone electrophysiological heterogeneities. TEA improves parasympathetic function, which may independently underlie some of its observed antiarrhythmic mechanisms. This study provides novel insights into the antiarrhythmic mechanisms of TEA while highlighting its applicability to the clinical setting.


Asunto(s)
Infarto del Miocardio , Taquicardia Ventricular , Animales , Infarto del Miocardio/fisiopatología , Taquicardia Ventricular/fisiopatología , Taquicardia Ventricular/etiología , Porcinos , Lidocaína/farmacología , Anestesia Epidural/métodos , Barorreflejo/efectos de los fármacos , Periodo Refractario Electrofisiológico/efectos de los fármacos , Antiarrítmicos/farmacología , Antiarrítmicos/uso terapéutico , Anestésicos Locales/farmacología , Función Ventricular Derecha/efectos de los fármacos , Hemodinámica/efectos de los fármacos , Femenino , Vértebras Torácicas , Sus scrofa , Contracción Miocárdica/efectos de los fármacos , Masculino , Modelos Animales de Enfermedad , Función Ventricular Izquierda/efectos de los fármacos
9.
Circ Res ; 134(8): e52-e71, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38497220

RESUMEN

BACKGROUND: Andersen-Tawil syndrome type 1 is a rare heritable disease caused by mutations in the gene coding the strong inwardly rectifying K+ channel Kir2.1. The extracellular Cys (cysteine)122-to-Cys154 disulfide bond in the channel structure is crucial for proper folding but has not been associated with correct channel function at the membrane. We evaluated whether a human mutation at the Cys122-to-Cys154 disulfide bridge leads to Kir2.1 channel dysfunction and arrhythmias by reorganizing the overall Kir2.1 channel structure and destabilizing its open state. METHODS: We identified a Kir2.1 loss-of-function mutation (c.366 A>T; p.Cys122Tyr) in an ATS1 family. To investigate its pathophysiological implications, we generated an AAV9-mediated cardiac-specific mouse model expressing the Kir2.1C122Y variant. We employed a multidisciplinary approach, integrating patch clamping and intracardiac stimulation, molecular biology techniques, molecular dynamics, and bioluminescence resonance energy transfer experiments. RESULTS: Kir2.1C122Y mice recapitulated the ECG features of ATS1 independently of sex, including corrected QT prolongation, conduction defects, and increased arrhythmia susceptibility. Isolated Kir2.1C122Y cardiomyocytes showed significantly reduced inwardly rectifier K+ (IK1) and inward Na+ (INa) current densities independently of normal trafficking. Molecular dynamics predicted that the C122Y mutation provoked a conformational change over the 2000-ns simulation, characterized by a greater loss of hydrogen bonds between Kir2.1 and phosphatidylinositol 4,5-bisphosphate than wild type (WT). Therefore, the phosphatidylinositol 4,5-bisphosphate-binding pocket was destabilized, resulting in a lower conductance state compared with WT. Accordingly, on inside-out patch clamping, the C122Y mutation significantly blunted Kir2.1 sensitivity to increasing phosphatidylinositol 4,5-bisphosphate concentrations. In addition, the Kir2.1C122Y mutation resulted in channelosome degradation, demonstrating temporal instability of both Kir2.1 and NaV1.5 proteins. CONCLUSIONS: The extracellular Cys122-to-Cys154 disulfide bond in the tridimensional Kir2.1 channel structure is essential for the channel function. We demonstrate that breaking disulfide bonds in the extracellular domain disrupts phosphatidylinositol 4,5-bisphosphate-dependent regulation, leading to channel dysfunction and defects in Kir2.1 energetic stability. The mutation also alters functional expression of the NaV1.5 channel and ultimately leads to conduction disturbances and life-threatening arrhythmia characteristic of Andersen-Tawil syndrome type 1.


Asunto(s)
Síndrome de Andersen , Humanos , Ratones , Animales , Síndrome de Andersen/genética , Síndrome de Andersen/metabolismo , Mutación , Miocitos Cardíacos/metabolismo , Trastorno del Sistema de Conducción Cardíaco , Disulfuros , Fosfatidilinositoles/metabolismo
10.
Circulation ; 150(7): 516-530, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39051104

RESUMEN

BACKGROUND: Whether vigorous exercise increases risk of ventricular arrhythmias for individuals diagnosed and treated for congenital long QT syndrome (LQTS) remains unknown. METHODS: The National Institutes of Health-funded LIVE-LQTS study (Lifestyle and Exercise in the Long QT Syndrome) prospectively enrolled individuals 8 to 60 years of age with phenotypic and/or genotypic LQTS from 37 sites in 5 countries from May 2015 to February 2019. Participants (or parents) answered physical activity and clinical events surveys every 6 months for 3 years with follow-up completed in February 2022. Vigorous exercise was defined as ≥6 metabolic equivalents for >60 hours per year. A blinded Clinical Events Committee adjudicated the composite end point of sudden death, sudden cardiac arrest, ventricular arrhythmia treated by an implantable cardioverter defibrillator, and likely arrhythmic syncope. A National Death Index search ascertained vital status for those with incomplete follow-up. A noninferiority hypothesis (boundary of 1.5) between vigorous exercisers and others was tested with multivariable Cox regression analysis. RESULTS: Among the 1413 participants (13% <18 years of age, 35% 18-25 years of age, 67% female, 25% with implantable cardioverter defibrillators, 90% genotype positive, 49% with LQT1, 91% were treated with beta-blockers, left cardiac sympathetic denervation, and/or implantable cardioverter defibrillator), 52% participated in vigorous exercise (55% of these competitively). Thirty-seven individuals experienced the composite end point (including one sudden cardiac arrest and one sudden death in the nonvigorous group, one sudden cardiac arrest in the vigorous group) with overall event rates at 3 years of 2.6% in the vigorous and 2.7% in the nonvigorous exercise groups. The unadjusted hazard ratio for experience of events for the vigorous group compared with the nonvigorous group was 0.97 (90% CI, 0.57-1.67), with an adjusted hazard ratio of 1.17 (90% CI, 0.67-2.04). The upper 95% one-sided confidence level extended beyond the 1.5 boundary. Neither vigorous or nonvigorous exercise was found to be superior in any group or subgroup. CONCLUSIONS: Among individuals diagnosed with phenotypic and/or genotypic LQTS who were risk assessed and treated in experienced centers, LQTS-associated cardiac event rates were low and similar between those exercising vigorously and those not exercising vigorously. Consistent with the low event rate, CIs are wide, and noninferiority was not demonstrated. These data further inform shared decision-making discussions between patient and physician about exercise and competitive sports participation. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT02549664.


Asunto(s)
Ejercicio Físico , Síndrome de QT Prolongado , Humanos , Síndrome de QT Prolongado/terapia , Síndrome de QT Prolongado/congénito , Síndrome de QT Prolongado/diagnóstico , Síndrome de QT Prolongado/fisiopatología , Síndrome de QT Prolongado/mortalidad , Femenino , Masculino , Adolescente , Niño , Estudios Prospectivos , Adulto , Persona de Mediana Edad , Adulto Joven , Muerte Súbita Cardíaca/prevención & control , Muerte Súbita Cardíaca/epidemiología , Factores de Riesgo
11.
Circulation ; 149(4): 317-329, 2024 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-37965733

RESUMEN

BACKGROUND: Pathogenic variants in SCN5A can result in long QT syndrome type 3, a life-threatening genetic disease. Adenine base editors can convert targeted A T base pairs to G C base pairs, offering a promising tool to correct pathogenic variants. METHODS: We generated a long QT syndrome type 3 mouse model by introducing the T1307M pathogenic variant into the Scn5a gene. The adenine base editor was split into 2 smaller parts and delivered into the heart by adeno-associated virus serotype 9 (AAV9-ABEmax) to correct the T1307M pathogenic variant. RESULTS: Both homozygous and heterozygous T1307M mice showed significant QT prolongation. Carbachol administration induced Torsades de Pointes or ventricular tachycardia for homozygous T1307M mice (20%) but not for heterozygous or wild-type mice. A single intraperitoneal injection of AAV9-ABEmax at postnatal day 14 resulted in up to 99.20% Scn5a transcripts corrected in T1307M mice. Scn5a mRNA correction rate >60% eliminated QT prolongation; Scn5a mRNA correction rate <60% alleviated QT prolongation. Partial Scn5a correction resulted in cardiomyocytes heterogeneity, which did not induce severe arrhythmias. We did not detect off-target DNA or RNA editing events in ABEmax-treated mouse hearts. CONCLUSIONS: These findings show that in vivo AAV9-ABEmax editing can correct the variant Scn5a allele, effectively ameliorating arrhythmia phenotypes. Our results offer a proof of concept for the treatment of hereditary arrhythmias.


Asunto(s)
Trastorno del Sistema de Conducción Cardíaco , Edición Génica , Síndrome de QT Prolongado , Ratones , Animales , Síndrome de QT Prolongado/genética , Síndrome de QT Prolongado/terapia , Síndrome de QT Prolongado/diagnóstico , Arritmias Cardíacas , Miocitos Cardíacos , Adenina , ARN Mensajero , Canal de Sodio Activado por Voltaje NAV1.5/genética , Mutación
12.
Circulation ; 149(5): 379-390, 2024 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-37950738

RESUMEN

BACKGROUND: Left bundle branch area pacing (LBBAP) may be associated with greater improvement in left ventricular ejection fraction and reduction in death or heart failure hospitalization compared with biventricular pacing (BVP) in patients requiring cardiac resynchronization therapy. We sought to compare the occurrence of sustained ventricular tachycardia (VT) or ventricular fibrillation (VF) and new-onset atrial fibrillation (AF) in patients undergoing BVP and LBBAP. METHODS: The I-CLAS study (International Collaborative LBBAP Study) included patients with left ventricular ejection fraction ≤35% who underwent BVP or LBBAP for cardiac resynchronization therapy between January 2018 and June 2022 at 15 centers. We performed propensity score-matched analysis of LBBAP and BVP in a 1:1 ratio. We assessed the incidence of VT/VF and new-onset AF among patients with no history of AF. Time to sustained VT/VF and time to new-onset AF was analyzed using the Cox proportional hazards survival model. RESULTS: Among 1778 patients undergoing cardiac resynchronization therapy (BVP, 981; LBBAP, 797), there were 1414 propensity score-matched patients (propensity score-matched BVP, 707; propensity score-matched LBBAP, 707). The occurrence of VT/VF was significantly lower with LBBAP compared with BVP (4.2% versus 9.3%; hazard ratio, 0.46 [95% CI, 0.29-0.74]; P<0.001). The incidence of VT storm (>3 episodes in 24 hours) was also significantly lower with LBBAP compared with BVP (0.8% versus 2.5%; P=0.013). Among 299 patients with cardiac resynchronization therapy pacemakers (BVP, 111; LBBAP, 188), VT/VF occurred in 8 patients in the BVP group versus none in the LBBAP group (7.2% versus 0%; P<0.001). In 1194 patients with no history of VT/VF or antiarrhythmic therapy (BVP, 591; LBBAP, 603), the occurrence of VT/VF was significantly lower with LBBAP than with BVP (3.2% versus 7.3%; hazard ratio, 0.46 [95% CI, 0.26-0.81]; P=0.007). Among patients with no history of AF (n=890), the occurrence of new-onset AF >30 s was significantly lower with LBBAP than with BVP (2.8% versus 6.6%; hazard ratio, 0.34 [95% CI, 0.16-0.73]; P=0.008). The incidence of AF lasting >24 hours was also significantly lower with LBBAP than with BVP (0.7% versus 2.9%; P=0.015). CONCLUSIONS: LBBAP was associated with a lower incidence of sustained VT/VF and new-onset AF compared with BVP. This difference remained significant after adjustment for differences in baseline characteristics between patients with BVP and LBBAP. Physiological resynchronization by LBBAP may be associated with lower risk of arrhythmias compared with BVP.


Asunto(s)
Terapia de Resincronización Cardíaca , Insuficiencia Cardíaca , Taquicardia Ventricular , Humanos , Terapia de Resincronización Cardíaca/efectos adversos , Volumen Sistólico , Función Ventricular Izquierda , Resultado del Tratamiento , Taquicardia Ventricular/epidemiología , Taquicardia Ventricular/etiología , Taquicardia Ventricular/terapia , Fibrilación Ventricular/epidemiología , Fibrilación Ventricular/etiología , Fibrilación Ventricular/terapia , Insuficiencia Cardíaca/epidemiología , Insuficiencia Cardíaca/terapia , Electrocardiografía
13.
Circulation ; 149(10): e937-e952, 2024 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-38314551

RESUMEN

Disorders of the cardiac rhythm may occur in both the fetus and neonate. Because of the immature myocardium, the hemodynamic consequences of either bradyarrhythmias or tachyarrhythmias may be far more significant than in mature physiological states. Treatment options are limited in the fetus and neonate because of limited vascular access, patient size, and the significant risk/benefit ratio of any intervention. In addition, exposure of the fetus or neonate to either persistent arrhythmias or antiarrhythmic medications may have yet-to-be-determined long-term developmental consequences. This scientific statement discusses the mechanism of arrhythmias, pharmacological treatment options, and distinct aspects of pharmacokinetics for the fetus and neonate. From the available current data, subjects of apparent consistency/consensus are presented, as well as future directions for research in terms of aspects of care for which evidence has not been established.


Asunto(s)
American Heart Association , Arritmias Cardíacas , Recién Nacido , Estados Unidos , Niño , Humanos , Arritmias Cardíacas/diagnóstico , Arritmias Cardíacas/tratamiento farmacológico , Taquicardia , Feto , Electrofisiología
14.
Circulation ; 149(18): 1405-1415, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38109351

RESUMEN

BACKGROUND: Exercise-induced cardiac remodeling can be profound, resulting in clinical overlap with dilated cardiomyopathy, yet the significance of reduced ejection fraction (EF) in athletes is unclear. The aim is to assess the prevalence, clinical consequences, and genetic predisposition of reduced EF in athletes. METHODS: Young endurance athletes were recruited from elite training programs and underwent comprehensive cardiac phenotyping and genetic testing. Those with reduced EF using cardiac magnetic resonance imaging (defined as left ventricular EF <50%, or right ventricular EF <45%, or both) were compared with athletes with normal EF. A validated polygenic risk score for indexed left ventricular end-systolic volume (LVESVi-PRS), previously associated with dilated cardiomyopathy, was assessed. Clinical events were recorded over a mean of 4.4 years. RESULTS: Of the 281 elite endurance athletes (22±8 years, 79.7% male) undergoing comprehensive assessment, 44 of 281 (15.7%) had reduced left ventricular EF (N=12; 4.3%), right ventricular EF (N=14; 5.0%), or both (N=18; 6.4%). Reduced EF was associated with a higher burden of ventricular premature beats (13.6% versus 3.8% with >100 ventricular premature beats/24 h; P=0.008) and lower left ventricular global longitudinal strain (-17%±2% versus -19%±2%; P<0.001). Athletes with reduced EF had a higher mean LVESVi-PRS (0.57±0.13 versus 0.51±0.14; P=0.009) with athletes in the top decile of LVESVi-PRS having an 11-fold increase in the likelihood of reduced EF compared with those in the bottom decile (P=0.034). Male sex and higher LVESVi-PRS were the only significant predictors of reduced EF in a multivariate analysis that included age and fitness. During follow-up, no athletes developed symptomatic heart failure or arrhythmias. Two athletes died, 1 from trauma and 1 from sudden cardiac death, the latter having a reduced right ventricular EF and a LVESVi-PRS >95%. CONCLUSIONS: Reduced EF occurs in approximately 1 in 6 elite endurance athletes and is related to genetic predisposition in addition to exercise training. Genetic and imaging markers may help identify endurance athletes in whom scrutiny about long-term clinical outcomes may be appropriate. REGISTRATION: URL: https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=374976&isReview=true; Unique identifier: ACTRN12618000716268.


Asunto(s)
Atletas , Cardiomiopatía Dilatada , Volumen Sistólico , Humanos , Masculino , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/fisiopatología , Cardiomiopatía Dilatada/diagnóstico por imagen , Femenino , Adulto , Adulto Joven , Resistencia Física/genética , Adolescente , Predisposición Genética a la Enfermedad , Remodelación Ventricular , Función Ventricular Izquierda
15.
Circulation ; 149(16): e1113-e1127, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38465648

RESUMEN

Hematopoietic stem cell transplantation can cure various disorders but poses cardiovascular risks, especially for elderly patients and those with cardiovascular diseases. Cardiovascular evaluations are crucial in pretransplantation assessments, but guidelines are lacking. This American Heart Association scientific statement summarizes the data on transplantation-related complications and provides guidance for the cardiovascular management throughout transplantation. Hematopoietic stem cell transplantation consists of 4 phases: pretransplantation workup, conditioning therapy and infusion, immediate posttransplantation period, and long-term survivorship. Complications can occur during each phase, with long-term survivors facing increased risks for late effects such as cardiovascular disease, secondary malignancies, and endocrinopathies. In adults, arrhythmias such as atrial fibrillation and flutter are the most frequent acute cardiovascular complication. Acute heart failure has an incidence ranging from 0.4% to 2.2%. In pediatric patients, left ventricular systolic dysfunction and pericardial effusion are the most common cardiovascular complications. Factors influencing the incidence and risk of complications include pretransplantation therapies, transplantation type (autologous versus allogeneic), conditioning regimen, comorbid conditions, and patient age. The pretransplantation cardiovascular evaluation consists of 4 steps: (1) initial risk stratification, (2) exclusion of high-risk cardiovascular disease, (3) assessment of cardiac reserve, and (4) optimization of cardiovascular reserve. Clinical risk scores could be useful tools for the risk stratification of adult patients. Long-term cardiovascular management of hematopoietic stem cell transplantation survivors includes optimizing risk factors, monitoring, and maintaining a low threshold for evaluating cardiovascular causes of symptoms. Future research should prioritize refining risk stratification and creating evidence-based guidelines and strategies to optimize outcomes in this growing patient population.


Asunto(s)
Enfermedades Cardiovasculares , Cardiopatías , Trasplante de Células Madre Hematopoyéticas , Adulto , Humanos , Niño , Anciano , Enfermedades Cardiovasculares/diagnóstico , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/terapia , Supervivencia , American Heart Association , Acondicionamiento Pretrasplante/efectos adversos , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Cardiopatías/etiología
16.
Circulation ; 150(7): 531-543, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-38939955

RESUMEN

BACKGROUND: Despite major advances in the clinical management of long QT syndrome, some patients are not fully protected by beta-blocker therapy. Mexiletine is a well-known sodium channel blocker, with proven efficacy in patients with sodium channel-mediated long QT syndrome type 3. Our aim was to evaluate the efficacy of mexiletine in long QT syndrome type 2 (LQT2) using cardiomyocytes derived from patient-specific human induced pluripotent stem cells, a transgenic LQT2 rabbit model, and patients with LQT2. METHODS: Heart rate-corrected field potential duration, a surrogate for QTc, was measured in human induced pluripotent stem cells from 2 patients with LQT2 (KCNH2-p.A561V, KCNH2-p.R366X) before and after mexiletine using a multiwell multi-electrode array system. Action potential duration at 90% repolarization (APD90) was evaluated in cardiomyocytes isolated from transgenic LQT2 rabbits (KCNH2-p.G628S) at baseline and after mexiletine application. Mexiletine was given to 96 patients with LQT2. Patients were defined as responders in the presence of a QTc shortening ≥40 ms. Antiarrhythmic efficacy of mexiletine was evaluated by a Poisson regression model. RESULTS: After acute treatment with mexiletine, human induced pluripotent stem cells from both patients with LQT2 showed a significant shortening of heart rate-corrected field potential duration compared with dimethyl sulfoxide control. In cardiomyocytes isolated from LQT2 rabbits, acute mexiletine significantly shortened APD90 by 113 ms, indicating a strong mexiletine-mediated shortening across different LQT2 model systems. Mexiletine was given to 96 patients with LQT2 either chronically (n=60) or after the acute oral drug test (n=36): 65% of the patients taking mexiletine only chronically and 75% of the patients who performed the acute oral test were responders. There was a significant correlation between basal QTc and ∆QTc during the test (r= -0.8; P<0.001). The oral drug test correctly predicted long-term effect in 93% of the patients. Mexiletine reduced the mean yearly event rate from 0.10 (95% CI, 0.07-0.14) to 0.04 (95% CI, 0.02-0.08), with an incidence rate ratio of 0.40 (95% CI, 0.16-0.84), reflecting a 60% reduction in the event rate (P=0.01). CONCLUSIONS: Mexiletine significantly shortens cardiac repolarization in LQT2 human induced pluripotent stem cells, in the LQT2 rabbit model, and in the majority of patients with LQT2. Furthermore, mexiletine showed antiarrhythmic efficacy. Mexiletine should therefore be considered a valid therapeutic option to be added to conventional therapies in higher-risk patients with LQT2.


Asunto(s)
Animales Modificados Genéticamente , Células Madre Pluripotentes Inducidas , Síndrome de QT Prolongado , Mexiletine , Miocitos Cardíacos , Mexiletine/farmacología , Mexiletine/uso terapéutico , Animales , Humanos , Conejos , Miocitos Cardíacos/efectos de los fármacos , Síndrome de QT Prolongado/tratamiento farmacológico , Síndrome de QT Prolongado/fisiopatología , Síndrome de QT Prolongado/genética , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Masculino , Femenino , Adulto , Potenciales de Acción/efectos de los fármacos , Antiarrítmicos/farmacología , Antiarrítmicos/uso terapéutico , Adolescente , Persona de Mediana Edad , Adulto Joven , Canal de Potasio ERG1/genética , Canal de Potasio ERG1/antagonistas & inhibidores , Canal de Potasio ERG1/metabolismo , Frecuencia Cardíaca/efectos de los fármacos , Modelos Animales de Enfermedad , Niño , Resultado del Tratamiento
17.
Circulation ; 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39253856

RESUMEN

BACKGROUND: The docking protein IRS2 (insulin receptor substrate protein-2) is an important mediator of insulin signaling and may also regulate other signaling pathways. Murine hearts with cardiomyocyte-restricted deletion of IRS2 (cIRS2-KO) are more susceptible to pressure overload-induced cardiac dysfunction, implying a critical protective role of IRS2 in cardiac adaptation to stress through mechanisms that are not fully understood. There is limited evidence regarding the function of IRS2 beyond metabolic homeostasis regulation, particularly in the context of cardiac disease. METHODS: A retrospective analysis of an electronic medical record database was conducted to identify patients with IRS2 variants and assess their risk of cardiac arrhythmias. Arrhythmia susceptibility was examined in cIRS2-KO mice. The underlying mechanisms were investigated using confocal calcium imaging of ex vivo whole hearts and isolated cardiomyocytes to assess calcium handling, Western blotting to analyze the involved signaling pathways, and pharmacological and genetic interventions to rescue arrhythmias in cIRS2-KO mice. RESULTS: The retrospective analysis identified patients with IRS2 variants of uncertain significance with a potential association to an increased risk of cardiac arrhythmias compared with matched controls. cIRS2-KO hearts were found to be prone to catecholamine-sensitive ventricular tachycardia and reperfusion ventricular tachycardia. Confocal calcium imaging of ex vivo whole hearts and single isolated cardiomyocytes from cIRS2-KO hearts revealed decreased Ca²+ transient amplitudes, increased spontaneous Ca²+ sparks, and reduced sarcoplasmic reticulum Ca²+ content during sympathetic stress, indicating sarcoplasmic reticulum dysfunction. We identified that overactivation of the AKT1/NOS3 (nitric oxide synthase 3)/CaMKII (Ca2+/calmodulin-dependent protein kinase II)/RyR2 (type 2 ryanodine receptor) signaling pathway led to calcium mishandling and catecholamine-sensitive ventricular tachycardia in cIRS2-KO hearts. Pharmacological AKT inhibition or genetic stabilization of RyR2 rescued catecholamine-sensitive ventricular tachycardia in cIRS2-KO mice. CONCLUSIONS: Cardiac IRS2 inhibits sympathetic stress-induced AKT/NOS3/CaMKII/RyR2 overactivation and calcium-dependent arrhythmogenesis. This novel IRS2 signaling axis, essential for maintaining cardiac calcium homeostasis under stress, presents a promising target for developing new antiarrhythmic therapies.

18.
Circ Res ; 133(9): 758-771, 2023 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-37737016

RESUMEN

BACKGROUND: Atrial fibrillation (AF)-the most common sustained cardiac arrhythmia-increases thromboembolic stroke risk 5-fold. Although atrial hypocontractility contributes to stroke risk in AF, the molecular mechanisms reducing myofilament contractile function remain unknown. We tested the hypothesis that increased expression of PPP1R12C (protein phosphatase 1 regulatory subunit 12C)-the PP1 (protein phosphatase 1) regulatory subunit targeting MLC2a (atrial myosin light chain 2)-causes hypophosphorylation of MLC2a and results in atrial hypocontractility. METHODS: Right atrial appendage tissues were isolated from human patients with AF versus sinus rhythm controls. Western blots, coimmunoprecipitation, and phosphorylation studies were performed to examine how the PP1c (PP1 catalytic subunit)-PPP1R12C interaction causes MLC2a dephosphorylation. In vitro studies of pharmacological MRCK (myotonic dystrophy kinase-related Cdc42-binding kinase) inhibitor (BDP5290) in atrial HL-1 cells were performed to evaluate PP1 holoenzyme activity on MLC2a. Cardiac-specific lentiviral PPP1R12C overexpression was performed in mice to evaluate atrial remodeling with atrial cell shortening assays, echocardiography, and AF inducibility with electrophysiology studies. RESULTS: In human patients with AF, PPP1R12C expression was increased 2-fold versus sinus rhythm controls (P=2.0×10-2; n=12 and 12 in each group) with >40% reduction in MLC2a phosphorylation (P=1.4×10-6; n=12 and 12 in each group). PPP1R12C-PP1c binding and PPP1R12C-MLC2a binding were significantly increased in AF (P=2.9×10-2 and 6.7×10-3, respectively; n=8 and 8 in each group). In vitro studies utilizing drug BDP5290, which inhibits T560-PPP1R12C phosphorylation, demonstrated increased PPP1R12C binding with both PP1c and MLC2a and dephosphorylation of MLC2a. Mice treated with lentiviral PPP1R12C vector demonstrated a 150% increase in left atrial size versus controls (P=5.0×10-6; n=12, 8, and 12), with reduced atrial strain and atrial ejection fraction. Pacing-induced AF in mice treated with lentiviral PPP1R12C vector was significantly higher than in controls (P=1.8×10-2 and 4.1×10-2, respectively; n=6, 6, and 5). CONCLUSIONS: Patients with AF exhibit increased levels of PPP1R12C protein compared with controls. PPP1R12C overexpression in mice increases PP1c targeting to MLC2a and causes MLC2a dephosphorylation, which reduces atrial contractility and increases AF inducibility. These findings suggest that PP1 regulation of sarcomere function at MLC2a is a key determinant of atrial contractility in AF.


Asunto(s)
Fibrilación Atrial , Proteína Fosfatasa 1 , Accidente Cerebrovascular , Animales , Humanos , Ratones , Fibrilación Atrial/metabolismo , Atrios Cardíacos/metabolismo , Fosforilación , Proteína Fosfatasa 1/genética , Proteína Fosfatasa 1/metabolismo
19.
Arterioscler Thromb Vasc Biol ; 44(7): 1658-1670, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38752349

RESUMEN

BACKGROUND: Polyphosphate (polyP), a procoagulant released from platelets, activates coagulation via the contact system and modulates cardiomyocyte viability. High-dose intravenous polyP is lethal in mice, presumably because of thrombosis. Previously, we showed that HRG (histidine-rich glycoprotein) binds polyP and attenuates its procoagulant effects. In this study, we investigated the mechanisms responsible for the lethality of intravenous polyP in mice and the impact of HRG on this process. METHODS: The survival of wild-type or HRG-deficient mice given intravenous synthetic or platelet-derived polyP in doses up to 50 mg/kg or saline was compared. To determine the contribution of thrombosis, the effect of FXII (factor XII) knockdown or enoxaparin on polyP-induced fibrin deposition in the lungs was examined. To assess cardiotoxicity, the ECG was continuously monitored, the levels of troponin I and the myocardial band of creatine kinase were quantified, and the viability of a cultured murine cardiomyocyte cell line exposed to polyP in the absence or presence of HRG was determined. RESULTS: In HRG-deficient mice, polyP was lethal at 30 mg/kg, whereas it was lethal in wild-type mice at 50 mg/kg. Although FXII knockdown or enoxaparin administration attenuated polyP-induced fibrin deposition in the lungs, neither affected mortality. PolyP induced dose-dependent ECG abnormalities, including heart block and ST-segment changes, and increased the levels of troponin and myocardial band of creatine kinase, effects that were more pronounced in HRG-deficient mice than in wild-type mice and were attenuated when HRG-deficient mice were given supplemental HRG. Consistent with its cardiotoxicity, polyP reduced the viability of cultured cardiomyocytes in a dose-dependent manner, an effect attenuated with supplemental HRG. CONCLUSIONS: High-dose intravenous polyP is cardiotoxic in mice, and HRG modulates this effect.


Asunto(s)
Ratones Endogámicos C57BL , Ratones Noqueados , Miocitos Cardíacos , Polifosfatos , Proteínas , Animales , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Polifosfatos/toxicidad , Proteínas/metabolismo , Proteínas/genética , Supervivencia Celular/efectos de los fármacos , Ratones , Masculino , Fibrina/metabolismo , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Pulmón/patología , Relación Dosis-Respuesta a Droga , Trombosis/prevención & control , Trombosis/inducido químicamente , Trombosis/metabolismo , Trombosis/genética , Trombosis/patología , Troponina I/metabolismo , Modelos Animales de Enfermedad , Cardiotoxicidad , Línea Celular , Electrocardiografía , Coagulación Sanguínea/efectos de los fármacos
20.
Circulation ; 148(20): 1543-1555, 2023 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-37830188

RESUMEN

BACKGROUND: Brugada syndrome poses significant challenges in terms of risk stratification and management, particularly for asymptomatic patients who comprise the majority of individuals exhibiting Brugada ECG pattern (BrECG). The aim of this study was to evaluate the long-term prognosis of a large cohort of asymptomatic patients with BrECG. METHODS: Asymptomatic patients with BrECG (1149) were consecutively collected from 2 Italian centers and followed-up at least annually for 2 to 22 years. For the 539 asymptomatic patients (men, 433 [80%]; mean age, 46±13 years) with spontaneous type 1 documented on baseline ECG (87%) or 12-lead 24-hour Holter monitoring (13%), an electrophysiologic study (EPS) was proposed; for the 610 patients with drug-induced-only type 1 (men, 420 [69%]; mean age, 44±14 years), multiple ECGs and 12-lead Holter were advised in order to detect the occurrence of a spontaneous type-1 BrECG. Arrhythmic events were defined as sudden death or documented ventricular fibrillation or tachycardia. RESULTS: Median follow-up was 6 (4-9) years. Seventeen (1.5%) arrhythmic events occurred in the overall asymptomatic population (corresponding to an event-rate of 0.2% per year), including 16 of 539 (0.4% per year) in patients with spontaneous type-1 BrECG and 1 of 610 in those with drug-induced type-1 BrECG (0.03% per year; P<0.001). EPS was performed in 339 (63%) patients with spontaneous type-1 BrECG. Patients with spontaneous type-1 BrECG and positive EPS had significantly higher event rates than patients with negative EPS (7 of 103 [0.7% per year] versus 4 of 236 [0.2% per year]; P=0.025). Among 200 patients who declined EPS, 5 events (0.4% per year) occurred. There was 1 device-related death. CONCLUSIONS: The entire population of asymptomatic patients with BrECG exhibits a relatively low event rate per year, which is important in view of the long life expectancy of these young patients. The presence of spontaneous type-1 BrECG associated with positive EPS identifies a subgroup at higher risk. Asymptomatic patients with drug-induced-only BrECG have a minimal arrhythmic risk, but ongoing follow-up with 12-lead Holter monitoring is recommended to detect the appearance of spontaneous type-1 BrECG pattern.


Asunto(s)
Síndrome de Brugada , Masculino , Humanos , Adulto , Persona de Mediana Edad , Estudios Prospectivos , Pronóstico , Arritmias Cardíacas/complicaciones , Electrocardiografía , Muerte Súbita Cardíaca/epidemiología , Muerte Súbita Cardíaca/etiología , Medición de Riesgo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda