RESUMEN
Plasmids are extrachromosomal DNA found in microorganisms. They often carry beneficial genes that help bacteria adapt to harsh conditions. Plasmids are also important tools in genetic engineering, gene therapy, and drug production. However, it can be difficult to identify plasmid sequences from chromosomal sequences in genomic and metagenomic data. Here, we have developed a new tool called PlasmidHunter, which uses machine learning to predict plasmid sequences based on gene content profile. PlasmidHunter can achieve high accuracies (up to 97.6%) and high speeds in benchmark tests including both simulated contigs and real metagenomic plasmidome data, outperforming other existing tools.
Asunto(s)
Aprendizaje Automático , Plásmidos , Plásmidos/genética , Análisis de Secuencia de ADN/métodos , Programas Informáticos , Biología Computacional/métodos , AlgoritmosRESUMEN
Advanced bioinformatics analysis, such as systems biology (SysBio) and artificial intelligence (AI) approaches, including machine learning (ML) and deep learning (DL), is increasingly present in stem cell (SC) research. An approximate timeline on these developments and their global impact is still lacking. We conducted a scoping review on the contribution of SysBio and AI analysis to SC research and therapy development based on literature published in PubMed between 2000 and 2024. We identified an 8-10-fold increase in research output related to all three search terms between 2000 and 2021, with a 10-fold increase in AI-related production since 2010. Use of SysBio and AI still predominates in preclinical basic research with increasing use in clinically oriented translational medicine since 2010. SysBio- and AI-related research was found all over the globe, with SysBio output led by the United States (US, n=1487), United Kingdom (UK, n=1094), Germany (n=355), The Netherlands (n=339), Russia (n=215), and France (n=149), while for AI-related research the US (n=853) and UK (n=258) take a strong lead, followed by Switzerland (n=69), The Netherlands (n=37), and Germany (n=19). The US and UK are most active in SCs publications related to AI/ML and AI/DL. The prominent use of SysBio in ESC research was recently overtaken by prominent use of AI in iPSC and MSC research. This study reveals the global evolution and growing intersection between AI, SysBio, and SC research over the past two decades, with substantial growth in all three fields and exponential increases in AI-related research in the past decade.
RESUMEN
Single nucleotide variants (SNVs) can exert substantial and extremely variable impacts on various cellular functions, making accurate predictions of their consequences challenging, albeit crucial especially in clinical settings such as in oncology. Laboratory-based experimental methods for assessing these effects are time-consuming and often impractical, highlighting the importance of in-silico tools for variant impact prediction. However, the performance metrics of currently available tools on breast cancer missense variants from benchmarking databases have not been thoroughly investigated, creating a knowledge gap in the accurate prediction of pathogenicity. In this study, the benchmarking datasets ClinVar and HGMD were used to evaluate 21 Artificial Intelligence (AI)-derived in-silico tools. Missense variants in breast cancer genes were extracted from ClinVar and HGMD professional v2023.1. The HGMD dataset focused on pathogenic variants only, to ensure balance, benign variants for the same genes were included from the ClinVar database. Interestingly, our analysis of both datasets revealed variants across genes with varying penetrance levels like low and moderate in addition to high, reinforcing the value of disease-specific tools. The top-performing tools on ClinVar dataset identified were MutPred (Accuracy = 0.73), Meta-RNN (Accuracy = 0.72), ClinPred (Accuracy = 0.71), Meta-SVM, REVEL, and Fathmm-XF (Accuracy = 0.70). While on HGMD dataset they were ClinPred (Accuracy = 0.72), MetaRNN (Accuracy = 0.71), CADD (Accuracy = 0.69), Fathmm-MKL (Accuracy = 0.68), and Fathmm-XF (Accuracy = 0.67). These findings offer clinicians and researchers valuable insights for selecting, improving, and developing effective in-silico tools for breast cancer pathogenicity prediction. Bridging this knowledge gap contributes to advancing precision medicine and enhancing diagnostic and therapeutic approaches for breast cancer patients with potential implications for other conditions.
Asunto(s)
Inteligencia Artificial , Neoplasias de la Mama , Bases de Datos Genéticas , Mutación Missense , Polimorfismo de Nucleótido Simple , Humanos , Neoplasias de la Mama/genética , Mutación Missense/genética , Femenino , Polimorfismo de Nucleótido Simple/genética , Biología Computacional/métodos , Predisposición Genética a la Enfermedad , Programas InformáticosRESUMEN
BACKGROUND: Accurate classification of breast cancer molecular subtypes is crucial in determining treatment strategies and predicting clinical outcomes. This classification largely depends on the assessment of human epidermal growth factor receptor 2 (HER2), estrogen receptor (ER), and progesterone receptor (PR) status. However, variability in interpretation among pathologists pose challenges to the accuracy of this classification. This study evaluates the role of artificial intelligence (AI) in enhancing the consistency of these evaluations. METHODS: AI-powered HER2 and ER/PR analyzers, consisting of cell and tissue models, were developed using 1,259 HER2, 744 ER, and 466 PR-stained immunohistochemistry (IHC) whole-slide images of breast cancer. External validation cohort comprising HER2, ER, and PR IHCs of 201 breast cancer cases were analyzed with these AI-powered analyzers. Three board-certified pathologists independently assessed these cases without AI annotation. Then, cases with differing interpretations between pathologists and the AI analyzer were revisited with AI assistance, focusing on evaluating the influence of AI assistance on the concordance among pathologists during the revised evaluation compared to the initial assessment. RESULTS: Reevaluation was required in 61 (30.3%), 42 (20.9%), and 80 (39.8%) of HER2, in 15 (7.5%), 17 (8.5%), and 11 (5.5%) of ER, and in 26 (12.9%), 24 (11.9%), and 28 (13.9%) of PR evaluations by the pathologists, respectively. Compared to initial interpretations, the assistance of AI led to a notable increase in the agreement among three pathologists on the status of HER2 (from 49.3 to 74.1%, p < 0.001), ER (from 93.0 to 96.5%, p = 0.096), and PR (from 84.6 to 91.5%, p = 0.006). This improvement was especially evident in cases of HER2 2+ and 1+, where the concordance significantly increased from 46.2 to 68.4% and from 26.5 to 70.7%, respectively. Consequently, a refinement in the classification of breast cancer molecular subtypes (from 58.2 to 78.6%, p < 0.001) was achieved with AI assistance. CONCLUSIONS: This study underscores the significant role of AI analyzers in improving pathologists' concordance in the classification of breast cancer molecular subtypes.
Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/metabolismo , Receptores de Estrógenos/metabolismo , Biomarcadores de Tumor/metabolismo , Inteligencia Artificial , Variaciones Dependientes del Observador , Receptores de Progesterona/metabolismo , Receptor ErbB-2/metabolismoRESUMEN
Nanoparticles impose multidimensional effects on living cells that significantly vary among different studies. Machine learning (ML) methods are recommended to elucidate more consistence and predictable relations among the affected parameters. In this study, nine ML algorithms [Support-Vector Regression (SVR), Linear, Bagging, Stochastic Gradient Descent (SGD), Gaussian Process, Random Sample Consensus (RANSAC), Partial Least Squares (PLS), Kernel Ridge, and Random Forest] were applied to evaluate their efficiency in predicting the effects of zinc oxide nanoparticles (ZnO NPs: 0.5, 1, 5, 25, and 125 µM) and microparticles (ZnO MPs: 1, 5, 25, and 125 µM) on Carum copticum. The plant root/shoot biomass; number of leaves, branches, umbellates, and flowers; protein content; reducing sugars; phenolic compounds; chlorophylls (a, b, Total); carotenoids; anthocyanins; H2O2; proline; malondialdehyde (MDA); tissue zinc content; superoxide dismutase (SOD) activity; and media ΔpH were measured and considered input variables. All levels of ZnO MPs treatments increased growth parameters compared to the control (ZnSO4). The highest shoot/root fresh and dry mass were recorded at 5 µM ZnO MPs compared with the control. The root fresh/dry mass under ZnO NPs treatments was more sensitive than shoot parameters. The number of flowers increased by 134 and 79% in MPs and NPs treatments compared to the control, respectively. ZnO NPs reduced protein content by up to 81% in 125 µM NPs compared to ZnSO4. Reducing sugar content increased to 25, 40 and 36% in 5, 25, 125 µM MPs and 67, 68, 26, 26 and 21% in 0.5, 1, 5, 25 and 125 µM NPs treatments, respectively. The pH alteration was more significant under NPs and affected zinc uptake. All levels of ZnO NPs treatments increased growth parameters compared to the control. All ML algorithms showed varied efficiencies in predicting the nonlinear relationships among parameters, with higher efficiency in predicting the behavior of root and shoot dry mass, root fresh weight and number of flowers according to R2 index. The model obtained from SVR with the radial basis function (RBF) kernel was selected as a comprehensive model for predicting and determining the efficacy of the results.
Asunto(s)
Aprendizaje Automático , Óxido de Zinc , Óxido de Zinc/farmacología , Algoritmos , Nanopartículas del Metal , NanopartículasRESUMEN
Multifunctional devices integrated with electrochromic and supercapacitance properties are fascinating because of their extensive usage in modern electronic applications. In this work, vanadium-doped cobalt chloride carbonate hydroxide hydrate nanostructures (V-C3H NSs) are successfully synthesized and show unique electrochromic and supercapacitor properties. The V-C3H NSs material exhibits a high specific capacitance of 1219.9 F g-1 at 1 mV s-1 with a capacitance retention of 100% over 30 000 CV cycles. The electrochromic performance of the V-C3H NSs material is confirmed through in situ spectroelectrochemical measurements, where the switching time, coloration efficiency (CE), and optical modulation (∆T) are found to be 15.7 and 18.8 s, 65.85 cm2 C-1 and 69%, respectively. A coupled multilayer artificial neural network (ANN) model is framed to predict potential and current from red (R), green (G), and blue (B) color values. The optimized V-C3H NSs are used as the active materials in the fabrication of flexible/wearable electrochromic micro-supercapacitor devices (FEMSDs) through a cost-effective mask-assisted vacuum filtration method. The fabricated FEMSD exhibits an areal capacitance of 47.15 mF cm-2 at 1 mV s-1 and offers a maximum areal energy and power density of 104.78 Wh cm-2 and 0.04 mW cm-2, respectively. This material's interesting energy storage and electrochromic properties are promising in multifunctional electrochromic energy storage applications.
RESUMEN
It is widely acknowledged that infectious diseases have wrought immense havoc on human society, being regarded as adversaries from which humanity cannot elude. In recent years, the advancement of Artificial Intelligence (AI) technology has ushered in a revolutionary era in the realm of infectious disease prevention and control. This evolution encompasses early warning of outbreaks, contact tracing, infection diagnosis, drug discovery, and the facilitation of drug design, alongside other facets of epidemic management. This article presents an overview of the utilization of AI systems in the field of infectious diseases, with a specific focus on their role during the COVID-19 pandemic. The article also highlights the contemporary challenges that AI confronts within this domain and posits strategies for their mitigation. There exists an imperative to further harness the potential applications of AI across multiple domains to augment its capacity in effectively addressing future disease outbreaks.
Asunto(s)
COVID-19 , Enfermedades Transmisibles , Humanos , Inteligencia Artificial , Pandemias , Trazado de Contacto , Enfermedades Transmisibles/diagnósticoRESUMEN
AIM: Manual detection and scoring of Ki67 hotspots is difficult and prone to variability, limiting its clinical utility. Automated hotspot detection and scoring by digital image analysis (DIA) could improve the assessment of the Ki67 hotspot proliferation index (PI). This study compared the clinical performance of Ki67 hotspot detection and scoring DIA algorithms based on virtual dual staining (VDS) and deep learning (DL) with manual Ki67 hotspot PI assessment. METHODS: Tissue sections of 135 consecutive invasive breast carcinomas were immunohistochemically stained for Ki67. Two DIA algorithms, based on VDS and DL, automatically determined the Ki67 hotspot PI. For manual assessment; two independent observers detected hotspots and calculated scores using a validated scoring protocol. RESULTS: Automated hotspot detection and assessment by VDS and DL could be performed in 73% and 100% of the cases, respectively. Automated hotspot detection by VDS and DL led to higher Ki67 hotspot PIs (mean 39.6% and 38.3%, respectively) compared to manual consensus Ki67 PIs (mean 28.8%). Comparing manual consensus Ki67 PIs with VDS Ki67 PIs revealed substantial correlation (r = 0.90), while manual consensus versus DL Ki67 PIs demonstrated high correlation (r = 0.95). CONCLUSION: Automated Ki67 hotspot detection and analysis correlated strongly with manual Ki67 assessment and provided higher PIs compared to manual assessment. The DL-based algorithm outperformed the VDS-based algorithm in clinical applicability, because it did not depend on virtual alignment of slides and correlated stronger with manual scores. Use of a DL-based algorithm may allow clearer Ki67 PI cutoff values, thereby improving the clinical usability of Ki67.
RESUMEN
PURPOSE: To determine the factors influencing the likelihood of biochemical pregnancy loss (BPL) after transfer of a euploid embryo from preimplantation genetic testing for aneuploidy (PGT-A) cycles. METHODS: The study employed an observational, retrospective cohort design, encompassing 6020 embryos from 2879 PGT-A cycles conducted between February 2013 and September 2021. Trophectoderm biopsies in day 5 (D5) or day 6 (D6) blastocysts were analyzed by next generation sequencing (NGS). Only single embryo transfers (SET) were considered, totaling 1161 transfers. Of these, 49.9% resulted in positive pregnancy tests, with 18.3% experiencing BPL. To establish a predictive model for BPL, both classical statistical methods and five different supervised classification machine learning algorithms were used. A total of forty-seven factors were incorporated as predictor variables in the machine learning models. RESULTS: Throughout the optimization process for each model, various performance metrics were computed. Random Forest model emerged as the best model, boasting the highest area under the ROC curve (AUC) value of 0.913, alongside an accuracy of 0.830, positive predictive value of 0.857, and negative predictive value of 0.807. For the selected model, SHAP (SHapley Additive exPlanations) values were determined for each of the variables to establish which had the best predictive ability. Notably, variables pertaining to embryo biopsy demonstrated the greatest predictive capacity, followed by factors associated with ovarian stimulation (COS), maternal age, and paternal age. CONCLUSIONS: The Random Forest model had a higher predictive power for identifying BPL occurrences in PGT-A cycles. Specifically, variables associated with the embryo biopsy procedure (biopsy day, number of biopsied embryos, and number of biopsied cells) and ovarian stimulation (number of oocytes retrieved and duration of stimulation), exhibited the strongest predictive power.
Asunto(s)
Aborto Espontáneo , Aneuploidia , Pruebas Genéticas , Aprendizaje Automático , Diagnóstico Preimplantación , Humanos , Femenino , Embarazo , Diagnóstico Preimplantación/métodos , Estudios Retrospectivos , Adulto , Pruebas Genéticas/métodos , Aborto Espontáneo/diagnóstico , Aborto Espontáneo/genética , Aborto Espontáneo/epidemiología , Transferencia de Embrión/métodos , BlastocistoRESUMEN
Nanobodies, derived from camelids and sharks, offer compact, single-variable heavy-chain antibodies with diverse biomedical potential. This review explores their generation methods, including display techniques on phages, yeast, or bacteria, and computational methodologies. Integrating experimental and computational approaches enhances understanding of nanobody structure and function. Future trends involve leveraging next-generation sequencing, machine learning, and artificial intelligence for efficient candidate selection and predictive modeling. The convergence of traditional and computational methods promises revolutionary advancements in precision biomedical applications such as targeted drug delivery and diagnostics. Embracing these technologies accelerates nanobody development, driving transformative breakthroughs in biomedicine and paving the way for precision medicine and biomedical innovation.
Asunto(s)
Aprendizaje Automático , Anticuerpos de Dominio Único , Anticuerpos de Dominio Único/genética , Anticuerpos de Dominio Único/química , Anticuerpos de Dominio Único/inmunología , Animales , Humanos , Simulación por ComputadorRESUMEN
PURPOSE: Vestibular schwannomas (VSs) represent the most common cerebellopontine angle tumors, posing a challenge in preserving facial nerve (FN) function during surgery. We employed the Extreme Gradient Boosting machine learning classifier to predict long-term FN outcomes (classified as House-Brackmann grades 1-2 for good outcomes and 3-6 for bad outcomes) after VS surgery. METHODS: In a retrospective analysis of 256 patients, comprehensive pre-, intra-, and post-operative factors were examined. We applied the machine learning (ML) classifier Extreme Gradient Boosting (XGBoost) for the following binary classification: long-term good and bad FN outcome after VS surgery To enhance the interpretability of our model, we utilized an explainable artificial intelligence approach. RESULTS: Short-term FN function (tau = 0.6) correlated with long-term FN function. The model exhibited an average accuracy of 0.83, a ROC AUC score of 0.91, and Matthew's correlation coefficient score of 0.62. The most influential feature, identified through SHapley Additive exPlanations (SHAP), was short-term FN function. Conversely, large tumor volume and absence of preoperative auditory brainstem responses were associated with unfavorable outcomes. CONCLUSIONS: We introduce an effective ML model for classifying long-term FN outcomes following VS surgery. Short-term FN function was identified as the key predictor of long-term function. This model's excellent ability to differentiate bad and good outcomes makes it useful for evaluating patients and providing recommendations regarding FN dysfunction management.
RESUMEN
PURPOSE: Artificial Intelligence (AI) has become increasingly integrated clinically within neurosurgical oncology. This report reviews the cutting-edge technologies impacting tumor treatment and outcomes. METHODS: A rigorous literature search was performed with the aid of a research librarian to identify key articles referencing AI and related topics (machine learning (ML), computer vision (CV), augmented reality (AR), virtual reality (VR), etc.) for neurosurgical care of brain or spinal tumors. RESULTS: Treatment of central nervous system (CNS) tumors is being improved through advances across AI-such as AL, CV, and AR/VR. AI aided diagnostic and prognostication tools can influence pre-operative patient experience, while automated tumor segmentation and total resection predictions aid surgical planning. Novel intra-operative tools can rapidly provide histopathologic tumor classification to streamline treatment strategies. Post-operative video analysis, paired with rich surgical simulations, can enhance training feedback and regimens. CONCLUSION: While limited generalizability, bias, and patient data security are current concerns, the advent of federated learning, along with growing data consortiums, provides an avenue for increasingly safe, powerful, and effective AI platforms in the future.
Asunto(s)
Inteligencia Artificial , Procedimientos Neuroquirúrgicos , Humanos , Procedimientos Neuroquirúrgicos/métodos , Neoplasias Encefálicas/cirugía , Neoplasias Encefálicas/patología , Oncología Médica/métodos , Neoplasias del Sistema Nervioso Central/cirugía , Neurocirugia/métodosRESUMEN
PURPOSE: Large language models (LLMs) are a form of artificial intelligence (AI) that uses deep learning techniques to understand, summarize and generate content. The potential benefits of LLMs in healthcare is predicted to be immense. The objective of this study was to examine the quality of patient information leaflets (PILs) produced by 3 LLMs on urological topics. METHODS: Prompts were created to generate PILs from 3 LLMs: ChatGPT-4, PaLM 2 (Google Bard) and Llama 2 (Meta) across four urology topics (circumcision, nephrectomy, overactive bladder syndrome, and transurethral resection of the prostate). PILs were evaluated using a quality assessment checklist. PIL readability was assessed by the Average Reading Level Consensus Calculator. RESULTS: PILs generated by PaLM 2 had the highest overall average quality score (3.58), followed by Llama 2 (3.34) and ChatGPT-4 (3.08). PaLM 2 generated PILs were of the highest quality in all topics except TURP and was the only LLM to include images. Medical inaccuracies were present in all generated content including instances of significant error. Readability analysis identified PaLM 2 generated PILs as the simplest (age 14-15 average reading level). Llama 2 PILs were the most difficult (age 16-17 average). CONCLUSION: While LLMs can generate PILs that may help reduce healthcare professional workload, generated content requires clinician input for accuracy and inclusion of health literacy aids, such as images. LLM-generated PILs were above the average reading level for adults, necessitating improvement in LLM algorithms and/or prompt design. How satisfied patients are to LLM-generated PILs remains to be evaluated.
Asunto(s)
Inteligencia Artificial , Urología , Humanos , Educación del Paciente como Asunto/métodos , Lenguaje , Enfermedades Urológicas/cirugíaRESUMEN
OBJECTIVES: To compare standard-resolution balanced steady-state free precession (bSSFP) cine images with cine images acquired at low resolution but reconstructed with a deep learning (DL) super-resolution algorithm. MATERIALS AND METHODS: Cine cardiovascular magnetic resonance (CMR) datasets (short-axis and 4-chamber views) were prospectively acquired in healthy volunteers and patients at normal (cineNR: 1.89 × 1.96 mm2, reconstructed at 1.04 × 1.04 mm2) and at a low-resolution (2.98 × 3.00 mm2, reconstructed at 1.04 × 1.04 mm2). Low-resolution images were reconstructed using compressed sensing DL denoising and resolution upscaling (cineDL). Left ventricular ejection fraction (LVEF), end-diastolic volume index (LVEDVi), and strain were assessed. Apparent signal-to-noise (aSNR) and contrast-to-noise ratios (aCNR) were calculated. Subjective image quality was assessed on a 5-point Likert scale. Student's paired t-test, Wilcoxon matched-pairs signed-rank-test, and intraclass correlation coefficient (ICC) were used for statistical analysis. RESULTS: Thirty participants were analyzed (37 ± 16 years; 20 healthy volunteers and 10 patients). Short-axis views whole-stack acquisition duration of cineDL was shorter than cineNR (57.5 ± 8.7 vs 98.7 ± 12.4 s; p < 0.0001). No differences were noted for: LVEF (59 ± 7 vs 59 ± 7%; ICC: 0.95 [95% confidence interval: 0.94, 0.99]; p = 0.17), LVEDVi (85.0 ± 13.5 vs 84.4 ± 13.7 mL/m2; ICC: 0.99 [0.98, 0.99]; p = 0.12), longitudinal strain (-19.5 ± 4.3 vs -19.8 ± 3.9%; ICC: 0.94 [0.88, 0.97]; p = 0.52), short-axis aSNR (81 ± 49 vs 69 ± 38; p = 0.32), aCNR (53 ± 31 vs 45 ± 27; p = 0.33), or subjective image quality (5.0 [IQR 4.9, 5.0] vs 5.0 [IQR 4.7, 5.0]; p = 0.99). CONCLUSION: Deep-learning reconstruction of cine images acquired at a lower spatial resolution led to a decrease in acquisition times of 42% with shorter breath-holds without affecting volumetric results or image quality. KEY POINTS: Question Cine CMR acquisitions are time-intensive and vulnerable to artifacts. Findings Low-resolution upscaled reconstructions using DL super-resolution decreased acquisition times by 35-42% without a significant difference in volumetric results or subjective image quality. Clinical relevance DL super-resolution reconstructions of bSSFP cine images acquired at a lower spatial resolution reduce acquisition times while preserving diagnostic accuracy, improving the clinical feasibility of cine imaging by decreasing breath hold duration.
RESUMEN
AIMS: The aim of this study was to compare the clinical decision-making for benzodiazepine deprescribing between a healthcare provider (HCP) and an artificial intelligence (AI) chatbot GPT4 (ChatGPT-4). METHODS: We analysed real-world data from a Croatian cohort of community-dwelling benzodiazepine patients (n = 154) within the EuroAgeism H2020 ESR 7 project. HCPs evaluated the data using pre-established deprescribing criteria to assess benzodiazepine discontinuation potential. The research team devised and tested AI prompts to ensure consistency with HCP judgements. An independent researcher employed ChatGPT-4 with predetermined prompts to simulate clinical decisions for each patient case. Data derived from human-HCP and ChatGPT-4 decisions were compared for agreement rates and Cohen's kappa. RESULTS: Both HPC and ChatGPT identified patients for benzodiazepine deprescribing (96.1% and 89.6%, respectively), showing an agreement rate of 95% (κ = .200, P = .012). Agreement on four deprescribing criteria ranged from 74.7% to 91.3% (lack of indication κ = .352, P < .001; prolonged use κ = .088, P = .280; safety concerns κ = .123, P = .006; incorrect dosage κ = .264, P = .001). Important limitations of GPT-4 responses were identified, including 22.1% ambiguous outputs, generic answers and inaccuracies, posing inappropriate decision-making risks. CONCLUSIONS: While AI-HCP agreement is substantial, sole AI reliance poses a risk for unsuitable clinical decision-making. This study's findings reveal both strengths and areas for enhancement of ChatGPT-4 in the deprescribing recommendations within a real-world sample. Our study underscores the need for additional research on chatbot functionality in patient therapy decision-making, further fostering the advancement of AI for optimal performance.
Asunto(s)
Inteligencia Artificial , Deprescripciones , Humanos , Benzodiazepinas/efectos adversos , Toma de Decisiones Clínicas , Personal de SaludRESUMEN
Drug-drug interactions (DDIs) present a significant health burden, compounded by clinician time constraints and poor patient health literacy. We assessed the ability of ChatGPT (generative artificial intelligence-based large language model) to predict DDIs in a real-world setting. Demographics, diagnoses and prescribed medicines for 120 hospitalized patients were input through three standardized prompts to ChatGPT version 3.5 and compared against pharmacist DDI evaluation to estimate diagnostic accuracy. Area under receiver operating characteristic and inter-rater reliability (Cohen's and Fleiss' kappa coefficients) were calculated. ChatGPT's responses differed based on prompt wording style, with higher sensitivity for prompts mentioning 'drug interaction'. Confusion matrices displayed low true positive and high true negative rates, and there was minimal agreement between ChatGPT and pharmacists (Cohen's kappa values 0.077-0.143). Low sensitivity values suggest a lack of success in identifying DDIs by ChatGPT, and further development is required before it can reliably assess potential DDIs in real-world scenarios.
RESUMEN
OBJECTIVES: Recently, artificial intelligence (AI) has been applied to clinical diagnosis. Although AI has already been developed for gastrointestinal (GI) tract endoscopy, few studies have applied AI to endoscopic ultrasound (EUS) images. In this study, we used a computer-assisted diagnosis (CAD) system with deep learning analysis of EUS images (EUS-CAD) and assessed its ability to differentiate GI stromal tumors (GISTs) from other mesenchymal tumors and their risk classification performance. MATERIALS AND METHODS: A total of 101 pathologically confirmed cases of subepithelial lesions (SELs) arising from the muscularis propria layer, including 69 GISTs, 17 leiomyomas and 15 schwannomas, were examined. A total of 3283 EUS images were used for training and five-fold-cross-validation, and 827 images were independently tested for diagnosing GISTs. For the risk classification of 69 GISTs, including very-low-, low-, intermediate- and high-risk GISTs, 2,784 EUS images were used for training and three-fold-cross-validation. RESULTS: For the differential diagnostic performance of GIST among all SELs, the accuracy, sensitivity, specificity and area under the receiver operating characteristic (ROC) curve were 80.4%, 82.9%, 75.3% and 0.865, respectively, whereas those for intermediate- and high-risk GISTs were 71.8%, 70.2%, 72.0% and 0.771, respectively. CONCLUSIONS: The EUS-CAD system showed a good diagnostic yield in differentiating GISTs from other mesenchymal tumors and successfully demonstrated the GIST risk classification feasibility. This system can determine whether treatment is necessary based on EUS imaging alone without the need for additional invasive examinations.
Asunto(s)
Aprendizaje Profundo , Diagnóstico por Computador , Endosonografía , Neoplasias Gastrointestinales , Tumores del Estroma Gastrointestinal , Curva ROC , Humanos , Diagnóstico Diferencial , Tumores del Estroma Gastrointestinal/diagnóstico por imagen , Tumores del Estroma Gastrointestinal/patología , Tumores del Estroma Gastrointestinal/diagnóstico , Neoplasias Gastrointestinales/diagnóstico por imagen , Neoplasias Gastrointestinales/diagnóstico , Femenino , Persona de Mediana Edad , Masculino , Anciano , Adulto , Medición de Riesgo , Sensibilidad y Especificidad , Anciano de 80 o más AñosRESUMEN
Drug-drug interactions (DDI) are a critical aspect of drug research that can have adverse effects on patients and can lead to serious consequences. Predicting these events accurately can significantly improve clinicians' ability to make better decisions and establish optimal treatment regimens. However, manually detecting these interactions is time-consuming and labor-intensive. Utilizing the advancements in Artificial Intelligence (AI) is essential for achieving accurate forecasts of DDIs. In this review, DDI prediction tasks are classified into three types according to the type of DDI prediction: undirected DDI prediction, DDI events prediction, and Asymmetric DDI prediction. The paper then reviews the progress of AI for each of these three prediction tasks in DDI and provides a summary of the data sets used as well as the representative methods used in these three prediction directions. In this review, we aim to provide a comprehensive overview of drug interaction prediction. The first section introduces commonly used databases and presents an overview of current research advancements and techniques across three domains of DDI. Additionally, we introduce classical machine learning techniques for predicting undirected drug interactions and provide a timeline for the progression of the predicted drug interaction events. At last, we debate the difficulties and prospects of AI approaches at predicting DDI, emphasizing their potential for improving clinical decision-making and patient outcomes.
Asunto(s)
Inteligencia Artificial , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Humanos , Interacciones Farmacológicas , Aprendizaje Automático , Bases de Datos FactualesRESUMEN
OBJECTIVES: To survey the World Wide Web for critical limits/critical values, assess changes in quantitative low/high thresholds since 1990-93, streamline urgent notification practices, and promote global accessibility. METHODS: We identified Web-posted lists of critical limits/values at university hospitals. We compared 2023 to 1990-93 archived notification thresholds. RESULTS: We found critical notification lists for 26 university hospitals. Laboratory disciplines ranged widely (1-10). The median number of tests was 62 (range 21-116); several posted policies. The breadth of listings increased. Statistically significant differences in 2023 vs. 1990 critical limits were observed for blood gas (pO2, pCO2), chemistry (glucose, calcium, magnesium), and hematology (hemoglobin, platelets, PTT, WBC) tests, and for newborn glucose, potassium, pO2, and hematocrit. Twenty hospitals listed ionized calcium critical limits, which have not changed. Fourteen listed troponin (6), troponin I (3), hs-TnI (3), or troponin T (2). Qualitative critical values expanded across disciplines, encompassing anatomic/surgical pathology. Bioterrorism agents were listed frequently, as were contagious pathogens, although only three hospitals listed COVID-19. Only one notification list detailed point-of-care tests. Two children's hospital lists were Web-accessible. CONCLUSIONS: Urgent notifications should focus on life-threatening conditions. We recommend that hospital staff evaluate changes over the past three decades for clinical impact. Notification lists expanded, especially qualitative tests, suggesting that automation might improve efficiency. Sharing notification lists and policies on the Web will improve accessibility. If not dependent on the limited scope of secondary sources, artificial intelligence could enhance knowledge of urgent notification and critical care practices in the 21st Century.
Asunto(s)
COVID-19 , Internet , Humanos , COVID-19/sangre , COVID-19/diagnóstico , COVID-19/epidemiología , Valores Críticos de Laboratorio , SARS-CoV-2/aislamiento & purificaciónRESUMEN
BACKGROUND AND OBJECTIVE: Healthcare professionals may be able to anticipate more accurately a patient's timing of death and assess their possibility of recovery by implementing a real-time clinical decision support system. Using such a tool, the healthcare system can better understand a patient's condition and make more informed judgements about distributing limited resources. This scoping review aimed to analyze various death prediction AI (Artificial Intelligence) algorithms that have been used in ICU (Intensive Care Unit) patient populations. METHODS: The search strategy of this study involved keyword combinations of outcome and patient setting such as mortality, survival, ICU, terminal care. These terms were used to perform database searches in MEDLINE, Embase, and PubMed up to July 2022. The variables, characteristics, and performance of the identified predictive models were summarized. The accuracy of the models was compared using their Area Under the Curve (AUC) values. RESULTS: Databases search yielded an initial pool of 8271 articles. A two-step screening process was then applied: first, titles and abstracts were reviewed for relevance, reducing the pool to 429 articles. Next, a full-text review was conducted, further narrowing down the selection to 400 key studies. Out of 400 studies on different tools or models for prediction of mortality in ICUs, 16 papers focused on AI-based models which were ultimately included in this study that have deployed different AI-based and machine learning models to make a prediction about negative patient outcome. The accuracy and performance of the different models varied depending on the patient populations and medical conditions. It was found that AI models compared with traditional tools like SAP3 or APACHE IV score were more accurate in death prediction, with some models achieving an AUC of up to 92.9%. The overall mortality rate ranged from 5% to more than 60% in different studies. CONCLUSION: We found that AI-based models exhibit varying performance across different patient populations. To enhance the accuracy of mortality prediction, we recommend customizing models for specific patient groups and medical contexts. By doing so, healthcare professionals may more effectively assess mortality risk and tailor treatments accordingly. Additionally, incorporating additional variables-such as genetic information-into new models can further improve their accuracy.