Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Mycorrhiza ; 33(3): 181-185, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37198421

RESUMEN

Composite plants containing transgenic hairy roots produced with Agrobacterium rhizogenes-mediated transformation have become an important method to study the interaction between plants and arbuscular mycorrhizal fungi (AMF). Not all hairy roots induced by A. rhizogenes are transgenic, however, which leads to requirement of a binary vector to carry a reporter gene to distinguish transgenic roots from non-transformed hairy roots. The beta-glucuronidase gene (GUS) and fluorescent protein gene often are used as reporter markers in the process of hairy root transformation, but they require expensive chemical reagents or imaging equipment. Alternatively, AtMYB75, an R2R3 MYB transcription factor from Arabidopsis thaliana, recently has been used as a reporter gene in hairy root transformation in some leguminous plants and can cause anthocyanin accumulation in transgenic hairy roots. Whether AtMYB75 can be used as a reporter gene in the hairy roots of tomato and if the anthocyanins accumulating in the roots will affect AMF colonization, however, are still unknown. In this study, the one-step cutting method was used for tomato hairy root transformation by A.rhizogenes. It is faster and has a higher transformation efficiency than the conventional method. AtMYB75 was used as a reporter gene in tomato hairy root transformation. The results showed that the overexpression of AtMYB75 caused anthocyanin accumulation in the transformed hairy roots. Anthocyanin accumulation in the transgenic hairy roots did not affect their colonization by the arbuscular mycorrhizal fungus, Funneliformis mosseae strain BGC NM04A, and there was no difference in the expression of the AMF colonization marker gene SlPT4 in AtMYB75 transgenic roots and wild-type roots. Hence, AtMYB75 can be used as a reporter gene in tomato hairy root transformation and in the study of symbiosis between tomato and AMF.


Asunto(s)
Micorrizas , Solanum lycopersicum , Simbiosis , Micorrizas/genética , Genes Reporteros , Solanum lycopersicum/genética , Antocianinas/metabolismo , Raíces de Plantas/microbiología
2.
J Agric Food Chem ; 70(19): 5838-5848, 2022 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-35532753

RESUMEN

Potato virus X (PVX), a species of the genus Potexvirus, is a plant pathogenic virus that causes severe symptoms such as mild mosaic, crinkling, necrosis, and mottling on leaves. The objectives of the present study were to investigate the effect of PVX virus infection on the metabolic system in nontransgenic and Arabidopsis thaliana production of anthocyanin pigment 1 (AtPAP1) transgenic tobacco using transcript expression analysis and metabolic profiling. Potato virus X inoculation increased the gene expression of phenylpropanoid and flavonoid biosynthesis and the production of chlorogenic acid, p-coumaric acid, benzoic acid, rutin, quercetin, and kaempferol in nontransgenic tobacco leaves. However, in the AtPAP1 transgenic tobacco leaves, PVX inoculation decreased the expression of AtPAP1 and phenylpropanoid and flavonoid biosynthesis genes, and the production of phenolics and anthocyanin also declined. In contrast, the levels of amino acids and tricarboxylic acid (TCA) cycle intermediates increased after infection in the AtPAP1 transgenic plant leaves. To date, these results have not been reported previously. We suggest that PVX infection decreases AtPAP1 expression, leading to the downregulation of phenylpropanoid and flavonoid biosynthesis in transgenic plants.


Asunto(s)
Arabidopsis , Virus de Plantas , Potexvirus , Antocianinas , Arabidopsis/genética , Expresión Génica , Plantas Modificadas Genéticamente/genética , Potexvirus/genética , Nicotiana/genética
3.
Plant Physiol Biochem ; 72: 54-61, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23510577

RESUMEN

Phloridzin is the predominant polyphenol in apple (Malus × domestica Borkh.) where it accumulates to high concentrations in many tissues including the leaves, bark, roots and fruit. Despite its relative abundance in apple the biosynthesis of phloridzin and other related dihydrochalcones remains only partially understood. The key unidentified enzyme in phloridzin biosynthesis is a putative carbon double bond reductase which is thought to act on p-coumaroyl-CoA to produce the dihydro-p-coumaroyl-CoA precursor. A functional screen of six apple enoyl reductase-like (ENRL) genes was carried out using transient infiltration into tobacco and gene silencing by RNA interference (RNAi) in order to determine carbon double bond reductase activity and contribution to foliar phloridzin concentrations. The ENRL-3 gene caused a significant increase in phloridzin concentration when infiltrated into tobacco leaves whilst a second protein ENRL-5, with over 98% amino acid sequence similarity to ENRL-3, showed p-coumaroyl-CoA reductase activity in enzyme assays. Finally, an RNAi study showed that reducing the transcript levels of ENRL-3 in transgenic 'Royal Gala' led to a 66% decrease in the concentration of dihydrochalcones in the leaves in the one available silenced line. Overall these results suggest that ENRL-3, and its close homolog ENRL-5, may contribute to the biosynthesis of phloridzin in apple.


Asunto(s)
Malus/enzimología , Malus/metabolismo , Oxidorreductasas/metabolismo , Florizina/biosíntesis , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Malus/genética , Oxidorreductasas/genética , Florizina/genética , Proteínas de Plantas/genética , Raíces de Plantas , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda