Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 1.423
Filtrar
Más filtros

Publication year range
1.
Cell ; 186(7): 1352-1368.e18, 2023 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-37001500

RESUMEN

Resilience enables mental elasticity in individuals when rebounding from adversity. In this study, we identified a microcircuit and relevant molecular adaptations that play a role in natural resilience. We found that activation of parvalbumin (PV) interneurons in the primary auditory cortex (A1) by thalamic inputs from the ipsilateral medial geniculate body (MG) is essential for resilience in mice exposed to chronic social defeat stress. Early attacks during chronic social defeat stress induced short-term hyperpolarizations of MG neurons projecting to the A1 (MGA1 neurons) in resilient mice. In addition, this temporal neural plasticity of MGA1 neurons initiated synaptogenesis onto thalamic PV neurons via presynaptic BDNF-TrkB signaling in subsequent stress responses. Moreover, optogenetic mimicking of the short-term hyperpolarization of MGA1 neurons, rather than merely activating MGA1 neurons, elicited innate resilience mechanisms in response to stress and achieved sustained antidepressant-like effects in multiple animal models, representing a new strategy for targeted neuromodulation.


Asunto(s)
Corteza Auditiva , Ratones , Animales , Corteza Auditiva/metabolismo , Tálamo/fisiología , Neuronas/metabolismo , Cuerpos Geniculados , Interneuronas/fisiología , Parvalbúminas/metabolismo
2.
Cell ; 185(21): 3877-3895.e21, 2022 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-36152627

RESUMEN

Williams-Beuren syndrome (WBS) is a rare disorder caused by hemizygous microdeletion of ∼27 contiguous genes. Despite neurodevelopmental and cognitive deficits, individuals with WBS have spared or enhanced musical and auditory abilities, potentially offering an insight into the genetic basis of auditory perception. Here, we report that the mouse models of WBS have innately enhanced frequency-discrimination acuity and improved frequency coding in the auditory cortex (ACx). Chemogenetic rescue showed frequency-discrimination hyperacuity is caused by hyperexcitable interneurons in the ACx. Haploinsufficiency of one WBS gene, Gtf2ird1, replicated WBS phenotypes by downregulating the neuropeptide receptor VIPR1. VIPR1 is reduced in the ACx of individuals with WBS and in the cerebral organoids derived from human induced pluripotent stem cells with the WBS microdeletion. Vipr1 deletion or overexpression in ACx interneurons mimicked or reversed, respectively, the cellular and behavioral phenotypes of WBS mice. Thus, the Gtf2ird1-Vipr1 mechanism in ACx interneurons may underlie the superior auditory acuity in WBS.


Asunto(s)
Corteza Auditiva/fisiología , Síndrome de Williams/fisiopatología , Animales , Corteza Auditiva/citología , Modelos Animales de Enfermedad , Humanos , Células Madre Pluripotentes Inducidas , Interneuronas/citología , Interneuronas/fisiología , Ratones , Fenotipo , Transactivadores/genética , Síndrome de Williams/genética
3.
Cell ; 184(18): 4626-4639.e13, 2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-34411517

RESUMEN

Speech perception is thought to rely on a cortical feedforward serial transformation of acoustic into linguistic representations. Using intracranial recordings across the entire human auditory cortex, electrocortical stimulation, and surgical ablation, we show that cortical processing across areas is not consistent with a serial hierarchical organization. Instead, response latency and receptive field analyses demonstrate parallel and distinct information processing in the primary and nonprimary auditory cortices. This functional dissociation was also observed where stimulation of the primary auditory cortex evokes auditory hallucination but does not distort or interfere with speech perception. Opposite effects were observed during stimulation of nonprimary cortex in superior temporal gyrus. Ablation of the primary auditory cortex does not affect speech perception. These results establish a distributed functional organization of parallel information processing throughout the human auditory cortex and demonstrate an essential independent role for nonprimary auditory cortex in speech processing.


Asunto(s)
Corteza Auditiva/fisiología , Habla/fisiología , Audiometría de Tonos Puros , Electrodos , Procesamiento Automatizado de Datos , Humanos , Fonética , Percepción de la Altura Tonal , Tiempo de Reacción/fisiología , Lóbulo Temporal/fisiología
4.
Cell ; 179(3): 772-786.e19, 2019 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-31626774

RESUMEN

Understanding neural circuits requires deciphering interactions among myriad cell types defined by spatial organization, connectivity, gene expression, and other properties. Resolving these cell types requires both single-neuron resolution and high throughput, a challenging combination with conventional methods. Here, we introduce barcoded anatomy resolved by sequencing (BARseq), a multiplexed method based on RNA barcoding for mapping projections of thousands of spatially resolved neurons in a single brain and relating those projections to other properties such as gene or Cre expression. Mapping the projections to 11 areas of 3,579 neurons in mouse auditory cortex using BARseq confirmed the laminar organization of the three top classes (intratelencephalic [IT], pyramidal tract-like [PT-like], and corticothalamic [CT]) of projection neurons. In depth analysis uncovered a projection type restricted almost exclusively to transcriptionally defined subtypes of IT neurons. By bridging anatomical and transcriptomic approaches at cellular resolution with high throughput, BARseq can potentially uncover the organizing principles underlying the structure and formation of neural circuits.


Asunto(s)
Corteza Auditiva/metabolismo , Red Nerviosa/metabolismo , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Animales , Mapeo Encefálico , Humanos , Integrasas/genética , Ratones , Neuritas/metabolismo , Células Piramidales/metabolismo , Tractos Piramidales/metabolismo
5.
Annu Rev Neurosci ; 47(1): 1-20, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38360566

RESUMEN

Auditory processing in mammals begins in the peripheral inner ear and extends to the auditory cortex. Sound is transduced from mechanical stimuli into electrochemical signals of hair cells, which relay auditory information via the primary auditory neurons to cochlear nuclei. Information is subsequently processed in the superior olivary complex, lateral lemniscus, and inferior colliculus and projects to the auditory cortex via the medial geniculate body in the thalamus. Recent advances have provided valuable insights into the development and functioning of auditory structures, complementing our understanding of the physiological mechanisms underlying auditory processing. This comprehensive review explores the genetic mechanisms required for auditory system development from the peripheral cochlea to the auditory cortex. We highlight transcription factors and other genes with key recurring and interacting roles in guiding auditory system development and organization. Understanding these gene regulatory networks holds promise for developing novel therapeutic strategies for hearing disorders, benefiting millions globally.


Asunto(s)
Vías Auditivas , Audición , Animales , Audición/fisiología , Vías Auditivas/fisiología , Humanos , Encéfalo/metabolismo , Encéfalo/crecimiento & desarrollo , Corteza Auditiva/metabolismo , Corteza Auditiva/fisiología
6.
Annu Rev Neurosci ; 42: 67-86, 2019 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-30699050

RESUMEN

The genetic approach, based on the study of inherited forms of deafness, has proven to be particularly effective for deciphering the molecular mechanisms underlying the development of the peripheral auditory system, the cochlea and its afferent auditory neurons, and how this system extracts the physical parameters of sound. Although this genetic dissection has provided little information about the central auditory system, scattered data suggest that some genes may have a critical role in both the peripheral and central auditory systems. Here, we review the genes controlling the development and function of the peripheral and central auditory systems, focusing on those with demonstrated intrinsic roles in both systems and highlighting the current underappreciation of these genes. Their encoded products are diverse, from transcription factors to ion channels, as are their roles in the central auditory system, mostly evaluated in brainstem nuclei. We examine the ontogenetic and evolutionary mechanisms that may underlie their expression at different sites.


Asunto(s)
Vías Auditivas/fisiología , Regulación del Desarrollo de la Expresión Génica , Genes , Neurogénesis/genética , Animales , Vías Auditivas/crecimiento & desarrollo , Evolución Biológica , Cóclea/embriología , Cóclea/crecimiento & desarrollo , Cóclea/fisiología , Ontología de Genes , Células Ciliadas Auditivas/citología , Células Ciliadas Auditivas/fisiología , Trastornos de la Audición/genética , Humanos , Canales Iónicos/genética , Canales Iónicos/fisiología , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/fisiología , Rombencéfalo/embriología , Rombencéfalo/crecimiento & desarrollo , Rombencéfalo/fisiología , Células Receptoras Sensoriales/fisiología , Factores de Transcripción/genética , Factores de Transcripción/fisiología
7.
Proc Natl Acad Sci U S A ; 121(24): e2311570121, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38830095

RESUMEN

Even a transient period of hearing loss during the developmental critical period can induce long-lasting deficits in temporal and spectral perception. These perceptual deficits correlate with speech perception in humans. In gerbils, these hearing loss-induced perceptual deficits are correlated with a reduction of both ionotropic GABAA and metabotropic GABAB receptor-mediated synaptic inhibition in auditory cortex, but most research on critical period plasticity has focused on GABAA receptors. Therefore, we developed viral vectors to express proteins that would upregulate gerbil postsynaptic inhibitory receptor subunits (GABAA, Gabra1; GABAB, Gabbr1b) in pyramidal neurons, and an enzyme that mediates GABA synthesis (GAD65) presynaptically in parvalbumin-expressing interneurons. A transient period of developmental hearing loss during the auditory critical period significantly impaired perceptual performance on two auditory tasks: amplitude modulation depth detection and spectral modulation depth detection. We then tested the capacity of each vector to restore perceptual performance on these auditory tasks. While both GABA receptor vectors increased the amplitude of cortical inhibitory postsynaptic potentials, only viral expression of postsynaptic GABAB receptors improved perceptual thresholds to control levels. Similarly, presynaptic GAD65 expression improved perceptual performance on spectral modulation detection. These findings suggest that recovering performance on auditory perceptual tasks depends on GABAB receptor-dependent transmission at the auditory cortex parvalbumin to pyramidal synapse and point to potential therapeutic targets for developmental sensory disorders.


Asunto(s)
Corteza Auditiva , Gerbillinae , Pérdida Auditiva , Animales , Corteza Auditiva/metabolismo , Corteza Auditiva/fisiopatología , Pérdida Auditiva/genética , Pérdida Auditiva/fisiopatología , Receptores de GABA-B/metabolismo , Receptores de GABA-B/genética , Glutamato Descarboxilasa/metabolismo , Glutamato Descarboxilasa/genética , Receptores de GABA-A/metabolismo , Receptores de GABA-A/genética , Parvalbúminas/metabolismo , Parvalbúminas/genética , Percepción Auditiva/fisiología , Células Piramidales/metabolismo , Células Piramidales/fisiología , Vectores Genéticos/genética
8.
Proc Natl Acad Sci U S A ; 121(40): e2405615121, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39312661

RESUMEN

Stimulus-specific adaptation is a hallmark of sensory processing in which a repeated stimulus results in diminished successive neuronal responses, but a deviant stimulus will still elicit robust responses from the same neurons. Recent work has established that synaptically released zinc is an endogenous mechanism that shapes neuronal responses to sounds in the auditory cortex. Here, to understand the contributions of synaptic zinc to deviance detection of specific neurons, we performed wide-field and 2-photon calcium imaging of multiple classes of cortical neurons. We find that intratelencephalic (IT) neurons in both layers 2/3 and 5 as well as corticocollicular neurons in layer 5 all demonstrate deviance detection; however, we find a specific enhancement of deviance detection in corticocollicular neurons that arises from ZnT3-dependent synaptic zinc in layer 2/3 IT neurons. Genetic deletion of ZnT3 from layer 2/3 IT neurons removes the enhancing effects of synaptic zinc on corticocollicular neuron deviance detection and results in poorer acuity of detecting deviant sounds by behaving mice.


Asunto(s)
Corteza Auditiva , Neuronas , Sinapsis , Zinc , Animales , Zinc/metabolismo , Corteza Auditiva/metabolismo , Corteza Auditiva/fisiología , Ratones , Sinapsis/metabolismo , Sinapsis/fisiología , Neuronas/metabolismo , Neuronas/fisiología , Proteínas de Transporte de Catión/metabolismo , Proteínas de Transporte de Catión/genética , Estimulación Acústica , Ratones Noqueados , Percepción Auditiva/fisiología , Ratones Endogámicos C57BL , Masculino
9.
Annu Rev Neurosci ; 41: 527-552, 2018 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-29986161

RESUMEN

How the cerebral cortex encodes auditory features of biologically important sounds, including speech and music, is one of the most important questions in auditory neuroscience. The pursuit to understand related neural coding mechanisms in the mammalian auditory cortex can be traced back several decades to the early exploration of the cerebral cortex. Significant progress in this field has been made in the past two decades with new technical and conceptual advances. This article reviews the progress and challenges in this area of research.


Asunto(s)
Corteza Auditiva/fisiología , Vías Auditivas/fisiología , Percepción Auditiva/fisiología , Mapeo Encefálico , Animales , Audición , Humanos , Música , Habla
10.
Proc Natl Acad Sci U S A ; 120(30): e2219340120, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37459544

RESUMEN

Coordinated functioning of the two cortical hemispheres is crucial for perception. The human auditory cortex (ACx) shows functional lateralization with the left hemisphere specialized for processing speech, whereas the right analyzes spectral content. In mice, virgin females demonstrate a left-hemisphere response bias to pup vocalizations that strengthens with motherhood. However, how this lateralized function is established is unclear. We developed a widefield imaging microscope to simultaneously image both hemispheres of mice to bilaterally monitor functional responses. We found that global ACx topography is symmetrical and stereotyped. In both male and virgin female mice, the secondary auditory cortex (A2) in the left hemisphere shows larger responses than right to high-frequency tones and adult vocalizations; however, only virgin female mice show a left-hemisphere bias in A2 in response to adult pain calls. These results indicate hemispheric bias with both sex-independent and -dependent aspects. Analyzing cross-hemispheric functional correlations showed that asymmetries exist in the strength of correlations between DM-AAF and A2-AAF, while other ACx areas showed smaller differences. We found that A2 showed lower cross-hemisphere correlation than other cortical areas, consistent with the lateralized functional activation of A2. Cross-hemispheric activity correlations are lower in deaf, otoferlin knockout (OTOF-/-) mice, indicating that the development of functional cross-hemispheric connections is experience dependent. Together, our results reveal that ACx is topographically symmetric at the macroscopic scale but that higher-order A2 shows sex-dependent and independent lateralized responses due to asymmetric intercortical functional connections. Moreover, our results suggest that sensory experience is required to establish functional cross-hemispheric connectivity.


Asunto(s)
Corteza Auditiva , Adulto , Masculino , Humanos , Femenino , Animales , Ratones , Corteza Auditiva/fisiología , Calcio , Lateralidad Funcional/fisiología , Mapeo Encefálico , Microscopía , Percepción Auditiva/fisiología , Proteínas de la Membrana
11.
J Neurosci ; 44(24)2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38670804

RESUMEN

The 40 Hz auditory steady-state response (ASSR), an oscillatory brain response to periodically modulated auditory stimuli, is a promising, noninvasive physiological biomarker for schizophrenia and related neuropsychiatric disorders. The 40 Hz ASSR might be amplified by synaptic interactions in cortical circuits, which are, in turn, disturbed in neuropsychiatric disorders. Here, we tested whether the 40 Hz ASSR in the human auditory cortex depends on two key synaptic components of neuronal interactions within cortical circuits: excitation via N-methyl-aspartate glutamate (NMDA) receptors and inhibition via gamma-amino-butyric acid (GABA) receptors. We combined magnetoencephalography (MEG) recordings with placebo-controlled, low-dose pharmacological interventions in the same healthy human participants (13 males, 7 females). All participants exhibited a robust 40 Hz ASSR in auditory cortices, especially in the right hemisphere, under a placebo. The GABAA receptor-agonist lorazepam increased the amplitude of the 40 Hz ASSR, while no effect was detectable under the NMDA blocker memantine. Our findings indicate that the 40 Hz ASSR in the auditory cortex involves synaptic (and likely intracortical) inhibition via the GABAA receptor, thus highlighting its utility as a mechanistic signature of cortical circuit dysfunctions involving GABAergic inhibition.


Asunto(s)
Corteza Auditiva , Potenciales Evocados Auditivos , Neuronas GABAérgicas , Magnetoencefalografía , Humanos , Corteza Auditiva/efectos de los fármacos , Corteza Auditiva/fisiología , Masculino , Femenino , Adulto , Potenciales Evocados Auditivos/efectos de los fármacos , Potenciales Evocados Auditivos/fisiología , Neuronas GABAérgicas/fisiología , Neuronas GABAérgicas/efectos de los fármacos , Adulto Joven , Inhibición Neural/fisiología , Inhibición Neural/efectos de los fármacos , Estimulación Acústica
12.
J Neurosci ; 44(19)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38561224

RESUMEN

Coordinated neuronal activity has been identified to play an important role in information processing and transmission in the brain. However, current research predominantly focuses on understanding the properties and functions of neuronal coordination in hippocampal and cortical areas, leaving subcortical regions relatively unexplored. In this study, we use single-unit recordings in female Sprague Dawley rats to investigate the properties and functions of groups of neurons exhibiting coordinated activity in the auditory thalamus-the medial geniculate body (MGB). We reliably identify coordinated neuronal ensembles (cNEs), which are groups of neurons that fire synchronously, in the MGB. cNEs are shown not to be the result of false-positive detections or by-products of slow-state oscillations in anesthetized animals. We demonstrate that cNEs in the MGB have enhanced information-encoding properties over individual neurons. Their neuronal composition is stable between spontaneous and evoked activity, suggesting limited stimulus-induced ensemble dynamics. These MGB cNE properties are similar to what is observed in cNEs in the primary auditory cortex (A1), suggesting that ensembles serve as a ubiquitous mechanism for organizing local networks and play a fundamental role in sensory processing within the brain.


Asunto(s)
Estimulación Acústica , Cuerpos Geniculados , Neuronas , Ratas Sprague-Dawley , Animales , Femenino , Ratas , Neuronas/fisiología , Cuerpos Geniculados/fisiología , Estimulación Acústica/métodos , Vías Auditivas/fisiología , Potenciales de Acción/fisiología , Corteza Auditiva/fisiología , Corteza Auditiva/citología , Tálamo/fisiología , Tálamo/citología , Potenciales Evocados Auditivos/fisiología
13.
J Neurosci ; 44(7)2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38123993

RESUMEN

Layer 5 pyramidal neurons of sensory cortices project "corticofugal" axons to myriad sub-cortical targets, thereby broadcasting high-level signals important for perception and learning. Recent studies suggest dendritic Ca2+ spikes as key biophysical mechanisms supporting corticofugal neuron function: these long-lasting events drive burst firing, thereby initiating uniquely powerful signals to modulate sub-cortical representations and trigger learning-related plasticity. However, the behavioral relevance of corticofugal dendritic spikes is poorly understood. We shed light on this issue using 2-photon Ca2+ imaging of auditory corticofugal dendrites as mice of either sex engage in a GO/NO-GO sound-discrimination task. Unexpectedly, only a minority of dendritic spikes were triggered by behaviorally relevant sounds under our conditions. Task related dendritic activity instead mostly followed sound cue termination and co-occurred with mice's instrumental licking during the answer period of behavioral trials, irrespective of reward consumption. Temporally selective, optogenetic silencing of corticofugal neurons during the trial answer period impaired auditory discrimination learning. Thus, auditory corticofugal systems' contribution to learning and plasticity may be partially nonsensory in nature.


Asunto(s)
Corteza Auditiva , Colículos Inferiores , Ratones , Animales , Colículos Inferiores/fisiología , Corteza Auditiva/fisiología , Neuronas/fisiología , Percepción Auditiva/fisiología , Células Piramidales , Vías Auditivas/fisiología , Estimulación Acústica
14.
J Neurosci ; 44(11)2024 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-38242698

RESUMEN

Luminance-independent changes in pupil diameter (PD) during wakefulness influence and are influenced by neuromodulatory, neuronal, and behavioral responses. However, it is unclear whether changes in neuromodulatory activity in a specific brain area are necessary for the associated changes in PD or whether some different mechanisms cause parallel fluctuations in both PD and neuromodulation. To answer this question, we simultaneously recorded PD and cortical neuronal activity in male and female mice. Namely, we measured PD and neuronal activity during adaptation to sound contrast, which is a well-described adaptation conserved in many species and brain areas. In the primary auditory cortex (A1), increases in the variability of sound level (contrast) induce a decrease in the slope of the neuronal input-output relationship, neuronal gain, which depends on cortical neuromodulatory zinc signaling. We found a previously unknown modulation of PD by changes in background sensory context: high stimulus contrast sounds evoke larger increases in evoked PD compared with low-contrast sounds. To explore whether these changes in evoked PD are controlled by cortical neuromodulatory zinc signaling, we imaged single-cell neural activity in A1, manipulated zinc signaling in the cortex, and assessed PD in the same awake mouse. We found that cortical synaptic zinc signaling is necessary for increases in PD during high-contrast background sounds compared with low-contrast sounds. This finding advances our knowledge about how cortical neuromodulatory activity affects PD changes and thus advances our understanding of the brain states, circuits, and neuromodulatory mechanisms that can be inferred from pupil size fluctuations.


Asunto(s)
Corteza Auditiva , Ratones , Masculino , Femenino , Animales , Estimulación Acústica , Corteza Auditiva/fisiología , Pupila , Zinc , Sonido , Percepción Auditiva/fisiología
15.
J Neurosci ; 44(28)2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38830758

RESUMEN

Shank3 is a synaptic scaffolding protein that assists in tethering and organizing structural proteins and glutamatergic receptors in the postsynaptic density of excitatory synapses. The localization of Shank3 at excitatory synapses and the formation of stable Shank3 complexes is regulated by the binding of zinc to the C-terminal sterile-alpha-motif (SAM) domain of Shank3. Mutations in the SAM domain of Shank3 result in altered synaptic function and morphology, and disruption of zinc in synapses that express Shank3 leads to a reduction of postsynaptic proteins important for synaptic structure and function. This suggests that zinc supports the localization of postsynaptic proteins via Shank3. Many regions of the brain are highly enriched with free zinc inside glutamatergic vesicles at presynaptic terminals. At these synapses, zinc transporter 3 (ZnT3) moves zinc into vesicles where it is co-released with glutamate. Alterations in ZnT3 are implicated in multiple neurodevelopmental disorders, and ZnT3 knock-out (KO) mice-which lack synaptic zinc-show behavioral deficits associated with autism spectrum disorder and schizophrenia. Here we show that male and female ZnT3 KO mice have smaller dendritic spines and miniature excitatory postsynaptic current amplitudes than wildtype (WT) mice in the auditory cortex. Additionally, spine size deficits in ZnT3 KO mice are restricted to synapses that express Shank3. In WT mice, synapses that express both Shank3 and ZnT3 have larger spines compared to synapses that express Shank3 but not ZnT3. Together these findings suggest a mechanism whereby presynaptic ZnT3-dependent zinc supports postsynaptic structure and function via Shank3 in a synapse-specific manner.


Asunto(s)
Corteza Auditiva , Proteínas de Transporte de Catión , Espinas Dendríticas , Proteínas del Tejido Nervioso , Sinapsis , Animales , Ratones , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Sinapsis/metabolismo , Espinas Dendríticas/metabolismo , Proteínas de Transporte de Catión/metabolismo , Proteínas de Transporte de Catión/genética , Corteza Auditiva/metabolismo , Femenino , Masculino , Ratones Noqueados , Proteínas Portadoras/metabolismo , Proteínas Portadoras/genética , Ratones Endogámicos C57BL , Proteínas de Microfilamentos/metabolismo , Proteínas de Microfilamentos/genética , Potenciales Postsinápticos Excitadores/fisiología
16.
J Neurosci ; 44(10)2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38262724

RESUMEN

Neural oscillations are associated with diverse computations in the mammalian brain. The waveform shape of oscillatory activity measured in the cortex relates to local physiology and can be informative about aberrant or dynamically changing states. However, how waveform shape differs across distant yet functionally and anatomically related cortical regions is largely unknown. In this study, we capitalize on simultaneous recordings of local field potentials (LFPs) in the auditory and frontal cortices of awake, male Carollia perspicillata bats to examine, on a cycle-by-cycle basis, waveform shape differences across cortical regions. We find that waveform shape differs markedly in the fronto-auditory circuit even for temporally correlated rhythmic activity in comparable frequency ranges (i.e., in the delta and gamma bands) during spontaneous activity. In addition, we report consistent differences between areas in the variability of waveform shape across individual cycles. A conceptual model predicts higher spike-spike and spike-LFP correlations in regions with more asymmetric shapes, a phenomenon that was observed in the data: spike-spike and spike-LFP correlations were higher in the frontal cortex. The model suggests a relationship between waveform shape differences and differences in spike correlations across cortical areas. Altogether, these results indicate that oscillatory activity in the frontal and auditory cortex possesses distinct dynamics related to the anatomical and functional diversity of the fronto-auditory circuit.


Asunto(s)
Corteza Auditiva , Quirópteros , Animales , Masculino , Corteza Auditiva/fisiología , Lóbulo Frontal , Potenciales de Acción/fisiología , Encéfalo
17.
J Neurosci ; 44(10)2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38267259

RESUMEN

Sound texture perception takes advantage of a hierarchy of time-averaged statistical features of acoustic stimuli, but much remains unclear about how these statistical features are processed along the auditory pathway. Here, we compared the neural representation of sound textures in the inferior colliculus (IC) and auditory cortex (AC) of anesthetized female rats. We recorded responses to texture morph stimuli that gradually add statistical features of increasingly higher complexity. For each texture, several different exemplars were synthesized using different random seeds. An analysis of transient and ongoing multiunit responses showed that the IC units were sensitive to every type of statistical feature, albeit to a varying extent. In contrast, only a small proportion of AC units were overtly sensitive to any statistical features. Differences in texture types explained more of the variance of IC neural responses than did differences in exemplars, indicating a degree of "texture type tuning" in the IC, but the same was, perhaps surprisingly, not the case for AC responses. We also evaluated the accuracy of texture type classification from single-trial population activity and found that IC responses became more informative as more summary statistics were included in the texture morphs, while for AC population responses, classification performance remained consistently very low. These results argue against the idea that AC neurons encode sound type via an overt sensitivity in neural firing rate to fine-grain spectral and temporal statistical features.


Asunto(s)
Corteza Auditiva , Colículos Inferiores , Femenino , Ratas , Animales , Vías Auditivas/fisiología , Colículos Inferiores/fisiología , Mesencéfalo/fisiología , Sonido , Corteza Auditiva/fisiología , Estimulación Acústica/métodos , Percepción Auditiva/fisiología
18.
Cereb Cortex ; 34(9)2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39270676

RESUMEN

Cortical processing of auditory information can be affected by interspecies differences as well as brain states. Here we compare multifeature spectro-temporal receptive fields (STRFs) and associated input/output functions or nonlinearities (NLs) of neurons in primary auditory cortex (AC) of four mammalian species. Single-unit recordings were performed in awake animals (female squirrel monkeys, female, and male mice) and anesthetized animals (female squirrel monkeys, rats, and cats). Neuronal responses were modeled as consisting of two STRFs and their associated NLs. The NLs for the STRF with the highest information content show a broad distribution between linear and quadratic forms. In awake animals, we find a higher percentage of quadratic-like NLs as opposed to more linear NLs in anesthetized animals. Moderate sex differences of the shape of NLs were observed between male and female unanesthetized mice. This indicates that the core AC possesses a rich variety of potential computations, particularly in awake animals, suggesting that multiple computational algorithms are at play to enable the auditory system's robust recognition of auditory events.


Asunto(s)
Corteza Auditiva , Animales , Corteza Auditiva/fisiología , Femenino , Masculino , Gatos , Ratones , Ratas , Estimulación Acústica/métodos , Neuronas/fisiología , Saimiri , Percepción Auditiva/fisiología , Especificidad de la Especie , Modelos Neurológicos , Potenciales de Acción/fisiología , Ratones Endogámicos C57BL
19.
Cereb Cortex ; 34(4)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38610087

RESUMEN

Hearing is critical to spoken language, cognitive, and social development. Little is known about how early auditory experiences impact the brain structure of children with bilateral sensorineural hearing loss. This study examined the influence of hearing aid use and residual hearing on the auditory cortex of children with severe to profound congenital sensorineural hearing loss. We evaluated cortical preservation in 103 young pediatric cochlear implant candidates (55 females and 48 males) by comparing their multivoxel pattern similarity of auditory cortical structure with that of 78 age-matched children with typical hearing. The results demonstrated that early-stage hearing aid use preserved the auditory cortex of children with bilateral congenital sensorineural hearing loss. Children with less residual hearing experienced a more pronounced advantage from hearing aid use. However, this beneficial effect gradually diminished after 17 months of hearing aid use. These findings support timely fitting of hearing aids in conjunction with early implantation to take advantage of neural preservation to maximize auditory and spoken language development.


Asunto(s)
Corteza Auditiva , Audífonos , Pérdida Auditiva Sensorineural , Femenino , Masculino , Humanos , Niño , Pérdida Auditiva Sensorineural/terapia , Audición , Encéfalo
20.
Cereb Cortex ; 34(3)2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38466116

RESUMEN

Sound frequency and duration are essential auditory components. The brain perceives deviations from the preceding sound context as prediction errors, allowing efficient reactions to the environment. Additionally, prediction error response to duration change is reduced in the initial stages of psychotic disorders. To compare the spatiotemporal profiles of responses to prediction errors, we conducted a human electrocorticography study with special attention to high gamma power in 13 participants who completed both frequency and duration oddball tasks. Remarkable activation in the bilateral superior temporal gyri in both the frequency and duration oddball tasks were observed, suggesting their association with prediction errors. However, the response to deviant stimuli in duration oddball task exhibited a second peak, which resulted in a bimodal response. Furthermore, deviant stimuli in frequency oddball task elicited a significant response in the inferior frontal gyrus that was not observed in duration oddball task. These spatiotemporal differences within the Parasylvian cortical network could account for our efficient reactions to changes in sound properties. The findings of this study may contribute to unveiling auditory processing and elucidating the pathophysiology of psychiatric disorders.


Asunto(s)
Encéfalo , Electrocorticografía , Humanos , Corteza Prefrontal , Sonido , Percepción Auditiva
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda