Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
J Colloid Interface Sci ; 652(Pt A): 250-257, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37595442

RESUMEN

The conversion of CO2 to CO is one of the crucial pathways in the carbon dioxide reduction reaction (CO2RR). Iron and nitrogen co-doped carbon matrix (FeN4) is a promising catalyst for converting CO2to CO with excellent activity and selectivity. However, the reactive mechanism of CO2RR on the FeN4 catalyst is not fully unveiled. For example, it is still evasive that the obtained C1 product is methanol and/or methane instead of CO in some cases. Herein, DFT calculation is conducted to unravel the effect from both solvent molecules and intermediates as axial groups on the selectivity of C1 products in CO2RR using FeN4 catalyts. Calculation results demonstrate that the FeN4(H), FeN4(OH), FeN4(COOH), and FeN4(CO) configurations are not only beneficial to the removal of CO, but also effectively suppress the hydrogen evolution reaction, whereas the FeN4, FeN4(CO2) and FeN4(H2O) configurations are inclined to produce CH3OH and/or CH4. The mechanism studied in this work provides an inspiration of optimizing the selectivity of C1 products in CO2RR from the perspective of regulating solvent molecules and intermediates as axial groups on FeN4.

2.
J Photochem Photobiol B ; 233: 112502, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35759946

RESUMEN

The photodynamic inactivation (PDI) of microorganisms has gained interest as an efficient option for conventional antibiotic treatments. Recently, Si(IV) phthalocyanines (SiPcs) have been highlighted as promising photosensitizers (PSs) to the PDI of microorganisms due to their remarkable absorption and emission features. To increase the potential of cationic SiPcs as PS drugs, one novel (1a) and two previously described (2a and 3a) axially substituted PSs with di-, tetra-, and hexa-ammonium units, respectively, were synthesized and characterized. Their PDI effect was evaluated for the first time against Escherichia coli and Staphylococcus aureus, a Gram-negative and a Gram-positive bacterium, respectively. The photodynamic treatments were conducted with PS concentrations of 3.0 and 6.0 µM under 60 min of white light irradiation (150 mW.cm-2). The biological results show high photodynamic efficiency for di- and tetra-cationic PSs 1a and 2a (6.0 µM), reducing the E. coli viability in 5.2 and 3.9 log, respectively (after 15 min of dark incubation before irradiation). For PS 3a, a similar bacterial reduction (3.6 log) was achieved but only with an extended dark incubation period (30 min). Under the same experimental conditions, the photodynamic effect of cationic PSs 1a-3a on S. aureus was even more promising, with abundance reductions of ca. 8.0 log after 45-60 min of PDI treatment. These results reveal the high PDI efficiency of PSs bearing ammonium groups and suggest their promising application as a broad-spectrum antimicrobial to control infections caused by Gram-negative and Gram-positive bacteria.


Asunto(s)
Compuestos de Amonio , Fotoquimioterapia , Porfirinas , Compuestos de Amonio/farmacología , Antibacterianos/farmacología , Escherichia coli , Bacterias Gramnegativas , Bacterias Grampositivas , Indoles/farmacología , Fármacos Fotosensibilizantes/farmacología , Porfirinas/farmacología , Staphylococcus aureus
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda