RESUMEN
Plants developed sophisticated mechanisms to perceive environmental stimuli and generate appropriate signals to maintain optimal growth and stress responses. A fascinating strategy employed by plants is the use of long-distance mobile signals which can trigger local and distant responses across the entire plant. Some metabolites play a central role as long-distance mobile signals allowing plants to communicate across tissues and mount robust stress responses. In this review, we summarize the current knowledge regarding the various long-distance mobile metabolites and their functions in stress response and signaling pathways. We also raise questions with respect to how we can identify new mobile metabolites and engineer them to improve plant health and resilience.
Asunto(s)
Plantas , Transducción de Señal , Transducción de Señal/fisiología , Plantas/metabolismoRESUMEN
BACKGROUND: Acne vulgaris commonly affects adults, adolescents, and preadolescents aged 9 years or older. OBJECTIVE: The objective of this study was to provide evidence-based recommendations for the management of acne. METHODS: A work group conducted a systematic review and applied the Grading of Recommendations, Assessment, Development, and Evaluation approach for assessing the certainty of evidence and formulating and grading recommendations. RESULTS: This guideline presents 18 evidence-based recommendations and 5 good practice statements. Strong recommendations are made for benzoyl peroxide, topical retinoids, topical antibiotics, and oral doxycycline. Oral isotretinoin is strongly recommended for acne that is severe, causing psychosocial burden or scarring, or failing standard oral or topical therapy. Conditional recommendations are made for topical clascoterone, salicylic acid, and azelaic acid, as well as for oral minocycline, sarecycline, combined oral contraceptive pills, and spironolactone. Combining topical therapies with multiple mechanisms of action, limiting systemic antibiotic use, combining systemic antibiotics with topical therapies, and adding intralesional corticosteroid injections for larger acne lesions are recommended as good practice statements. LIMITATIONS: Analysis is based on the best available evidence at the time of the systematic review. CONCLUSIONS: These guidelines provide evidence-based recommendations for the management of acne vulgaris.
Asunto(s)
Acné Vulgar , Antibacterianos , Peróxido de Benzoílo , Fármacos Dermatológicos , Ácidos Dicarboxílicos , Doxiciclina , Isotretinoína , Ácido Salicílico , Espironolactona , Humanos , Acné Vulgar/tratamiento farmacológico , Administración Cutánea , Administración Oral , Corticoesteroides/administración & dosificación , Corticoesteroides/uso terapéutico , Antibacterianos/administración & dosificación , Antibacterianos/uso terapéutico , Peróxido de Benzoílo/administración & dosificación , Peróxido de Benzoílo/uso terapéutico , Anticonceptivos Orales Combinados/administración & dosificación , Anticonceptivos Orales Combinados/uso terapéutico , Cortodoxona/análogos & derivados , Fármacos Dermatológicos/administración & dosificación , Fármacos Dermatológicos/uso terapéutico , Ácidos Dicarboxílicos/administración & dosificación , Ácidos Dicarboxílicos/uso terapéutico , Doxiciclina/administración & dosificación , Doxiciclina/uso terapéutico , Quimioterapia Combinada , Medicina Basada en la Evidencia/normas , Inyecciones Intralesiones , Isotretinoína/administración & dosificación , Isotretinoína/uso terapéutico , Minociclina/administración & dosificación , Minociclina/uso terapéutico , Propionatos , Retinoides/administración & dosificación , Retinoides/uso terapéutico , Ácido Salicílico/administración & dosificación , Ácido Salicílico/uso terapéutico , Espironolactona/administración & dosificación , Espironolactona/uso terapéutico , Tetraciclinas/administración & dosificación , Tetraciclinas/uso terapéuticoRESUMEN
Microbial metabolites are an important source of tyrosinase (TYR) inhibitors because of their rich chemical diversity. However, because of the complex metabolic environment of microbial products, it is difficult to rapidly locate and identify natural TYR inhibitors. Affinity-based ligand screening is an important method for capturing active ingredients in complex samples, but ligand immobilization is an important factor affecting the screening process. In this paper, TYR was used as ligand, and the SpyTag/SpyCatcher coupling system was used to rapidly construct affinity chromatography vectors for screening TYR inhibitors and separating active components from complex samples. We successfully expressed SpyTag-TYR fusion protein and SpyCatcher protein, and incubated SpyCatcher protein with epoxy-activated agarose. The SpyTag-TYR protein was spontaneously coupled with SpyCatcher to obtain an affinity chromatography filler for immobilization of TYR, and the performance of the packaging material was characterized. Finally, compound 1 with enzyme inhibitory activity was successfully obtained from the fermentation product of marine microorganism C. Through HPLC, MS, 1H NMR and 13C NMR analyses, its structure was deduced as azelaic acid, and its activity was analyzed. The results showed that this is a feasible method for screening TYR inhibitors in complex systems.
Asunto(s)
Cromatografía de Afinidad , Inhibidores Enzimáticos , Monofenol Monooxigenasa , Monofenol Monooxigenasa/antagonistas & inhibidores , Monofenol Monooxigenasa/metabolismo , Monofenol Monooxigenasa/química , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Cromatografía de Afinidad/métodos , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Enzimas Inmovilizadas/antagonistas & inhibidores , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genéticaRESUMEN
PURPOSE: Melasma remains a refractory skin condition that needs to be actively explored. Azelaic acid has been used for decades as a topical agent to improve melasma through multiple mechanisms, however, there is a lack of research on its combination with laser therapy. This study evaluated the effectiveness of isolated treatment with topical 20% azelaic acid and its combination with 755-nm picosecond laser in facial melasma patients. METHODS: A randomized, evaluator-blinded, controlled study was conducted on 30 subjects with facial melasma in a single center from October 2021 to April 2022. All subjects received topical 20% azelaic acid cream (AA) for 24 weeks, and after 4 weeks, a hemiface was randomly assigned to receive 755-nm picosecond (PS) laser therapy once every 4 weeks for 3 treatments. Treatment efficacy was determined by mMASI score evaluations, dermoscopic assessment, reflectance confocal microscopy (RCM) assessments and patient's satisfaction assessments (PSA). RESULTS: Treatment with 20% azelaic acid, with or without picosecond laser therapy, significantly reduced the hemi-mMASI score (P < 0.0001) and resulted in higher patient satisfaction. Improvements in dermoscopic and RCM assessments were observed in both sides of the face over time, with no difference between the two sides. RCM exhibited better dentritic cell improvement in the combined treatment side. No patients had serious adverse effects at the end of treatment or during the follow-up period. CONCLUSION: The additional use of picosecond laser therapy showed no clinical difference except for subtle differences detected by RCM assessments.The study was registered in the Chinese Clinical Trial Registry (ChiCTR2100051294; 18 September 2021).
Asunto(s)
Ácidos Dicarboxílicos , Láseres de Estado Sólido , Melanosis , Humanos , Melanosis/terapia , Melanosis/radioterapia , Femenino , Ácidos Dicarboxílicos/uso terapéutico , Ácidos Dicarboxílicos/administración & dosificación , Adulto , Persona de Mediana Edad , Láseres de Estado Sólido/uso terapéutico , Masculino , Resultado del Tratamiento , Terapia por Luz de Baja Intensidad/métodos , Fármacos Dermatológicos/uso terapéutico , Fármacos Dermatológicos/administración & dosificación , Terapia Combinada , Satisfacción del Paciente , Administración Tópica , Método Simple CiegoRESUMEN
An immunologic system attacking the body's own tissues is a hallmark of autoimmune disorders, which encompass a wide range of unique conditions. Numerous essential biologic functions, including the regulation of the immune system, inflammation, cell division, and tissue repair, are carried out by cytokines. Natural compounds are an effective treatment for autoimmune illnesses by modulation of inflammatory cytokines and infiltration of leukocytes into the inflamed tissue. Here, anti-arthritic study was carried out using oral administration of Azelaic acid (AzA) for 28 days with doses (20, 40, and 80 mg/kg) in Complete Freund's Adjuvant (CFA) induced arthritis model. AzA ameliorated the adjuvant-induced arthritis by decreasing arthritic score, paw volume, improved body-weight alterations and serum levels of PGE2, 5-LOX and anti-ccp. AzA showed significant down regulation of NF-κB, COX-II, TNF-α, IL-17, IL-1ß, IL-6, and up regulation of IL4 and IL10. Hemoglobin and RBCs count remarkably increased and ESR, CRP, platelets, WBCs levels markedly reduced in post treatment. In addition, the weakened SOD (superoxide dismutase), Catalase (CAT), Glutathione (GSH) activity and the increased levels of malondialdehyde (MDA) were all reversed by AzA treatment. And showed improved radiographical and histologic alterations in the structure of the joints. Molecular docking studies targeting COX-II, iNOS, TNF-α, 5-LOX, IL4, IL10, IL-6, and IL-17 establish a correlation between theoretical and experimental results. Results showed that AzA inhibit pro-inflammatory cytokines (COX-II, TNF-α, 5-LOX, IL-17, NF-κB, IL-1ß, and IL-6) and increase anti-inflammatory cytokines, which supported the anti-arthritic and immunomodulatory potential of AzA.
Asunto(s)
Antiinflamatorios , Artritis Experimental , Citocinas , Ácidos Dicarboxílicos , Adyuvante de Freund , Animales , Ratas , Citocinas/metabolismo , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/metabolismo , Antiinflamatorios/farmacología , Masculino , Ácidos Dicarboxílicos/farmacología , Ratas Wistar , Simulación del Acoplamiento Molecular/métodos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Relación Dosis-Respuesta a DrogaRESUMEN
Systemic acquired resistance protects plants against a broad spectrum of secondary infections by pathogens. A crucial compound involved in the systemic spread of the threat information after primary pathogen infection is the C9 oxylipin azelaic acid (AZA), a breakdown product of unsaturated C18 fatty acids. AZA is generated during lipid peroxidation in the plastids and accumulates in response to various abiotic and biotic stresses. AZA stimulates the expression of AZELAIC ACID INDUCED1 (AZI1), and a pool of AZI1 accumulates in the plastid envelope in association with AZA. AZA and AZI1 utilize the symplastic pathway to travel through the plasmodesmata to neighbouring cells to induce systemic stress resistance responses in distal tissues. Here, we describe the synthesis, travel and function of AZA and AZI1 and discuss open questions of signal initiation and propagation.
RESUMEN
Tissue engineering combines suitable cells, engineering methods, and proper biochemical factors to develop functional and biological tissues and repair damaged tissues. In this study, we focused on synthesizing and characterizing a nanocomposite scaffold based on glycerol and azelaic acid (Gl-Az) combined with copper chromite (CuCr2O4) nanoparticles in order to increase the osteogenic differentiation efficiency of human adipose-derived stem cells (hADSCs) on fabricated scaffolds. The degradability and hydrophobicity properties as well as mechanical and thermal behaviors of nanocomposite scaffolds were investigated. Next, the cell toxicity of glycerol, azelaic acid and CuCr2O4 nanoparticles was studied by MTT assay test and acridine orange staining. Finally, the osteogenic differentiation of hADSCs on Gl-Az-CuCr2O4 scaffolds was examined using alkaline phosphatase activity (ALP) and calcium content. The obtained results demonstrated that Gl-Az-1%CuCr2O4 not only showed appropriate mechanical strength, biocompatibility and degradability but also influenced the capability of hADSCs to differentiate into osteogenic lineages. The hADSCs culture in Gl-Az-1%CuCr2O4 showed a significant increase in ALP activity levels and calcium biomineralization after 14 days of osteogenic differentiation. In conclusion, the Gl-Az-1%CuCr2O4 nanocomposite could be used as a biocompatible and degradable scaffold to induce the bone differentiation of hADSCs and it could be a promising scaffold in bone regenerative medicine.
Asunto(s)
Células Madre Mesenquimatosas , Nanopartículas , Humanos , Ingeniería de Tejidos/métodos , Osteogénesis , Cobre/farmacología , Glicerol , Andamios del Tejido/química , Calcio , Diferenciación Celular , Células Cultivadas , Proliferación CelularRESUMEN
This study aimed to identify the corneal metabolic biomarkers for moderate and high myopia in human. We enrolled 221 eyes from 221 subjects with myopia to perform the femtosecond laser small incision lenticule extraction (SMILE) surgery. Among these, 71 eyes of 71 subjects were enrolled in the low myopic group, 75 eyes of 75 subjects in the moderate myopic group and 75 eyes of 75 subjects in the high myopic group. The untargeted metabolomics analysis was performed to analyze the corneal tissues extracted during the SMILE surgery using an ultra-high-performance liquid chromatography (UHPLC) coupled to a quadrupole time-of-flight (Q-TOF) mass spectrometry (MS). The one-way analysis of variance (ANOVA) was used to identify the different metabolites among the three myopic groups, the orthogonal partial least-squares discriminant analysis (OPLS-DA) model was used to reveal the different metabolites between moderate myopia and low myopia, and between high myopia and low myopia. The Venn gram was used to find the overlapped metabolites of the three datasets of the different metabolites. The stepwise multiple linear regression analysis was used to determine the metabolic molecules associated with manifest refractive spherical equivalents (MRSE). The Receiver Operating Characteristics (ROC) analysis was performed to reveal the corneal biomarkers for moderate and high myopia. The hub biomarker was further selected by the networks among different metabolites created by the Cytoscape software. A total of 1594 metabolites were identified in myopic corneas. 321 metabolites were different among the three myopic groups, 106 metabolites were different between high myopic corneas and low myopic corneas, 104 metabolites were different between moderate myopic corneas and low myopic corneas, and 30 metabolic molecules overlapped among the three datasets. The multivariate linear regression analysis revealed the myopic degree was significantly influenced by the corneal levels of azelaic acid, arginine-proline (Arg-Pro), 1-stearoyl-2-myristoyl-sn-glycero-3-phosphocholine, and hypoxanthine. The ROC curve analysis showed that azelaic acid, Arg-Pro and hypoxanthine were effective in discriminating low myopia from moderate to high myopia with the area under the curve (AUC) values as 0.982, 0.991 and 0.982 for azelaic acid, Arg-Pro and hypoxanthine respectively. The network analysis suggested that Arg-Pro had the maximum connections among these three biomarkers. Thus, this study identified azelaic acid, Arg-Pro and hypoxanthine as corneal biomarkers to discriminate low myopia from moderate to high myopia, with Arg-Pro serving as the hub biomarker for moderate and high myopia.
Asunto(s)
Córnea , Miopía , Humanos , Agudeza Visual , Córnea/cirugía , Refracción Ocular , Miopía/diagnóstico , Miopía/cirugía , Biomarcadores , Hipoxantinas , Sustancia Propia/cirugía , Láseres de ExcímerosRESUMEN
Atopic dermatitis is one of the most widespread chronic inflammatory skin conditions that can occur at any age, though the prevalence is highest in children. The purpose of the current study was to prepare and optimize the azelaic acid (AzA) loaded SNEDDS using Pseudo ternary phase diagram, which was subsequently incorporated into the Carbopol 940 hydrogel for the treatment of atopic dermatitis. The composition was evaluated for size, entrapment efficiency, in vitro, ex vivo, and in vivo studies. The polydispersity index of the optimized preparation was found to be less than 0.5, and the size of the distributed globules was found to be 151.20 ± 3.67 nm. The SNEDDS hydrogel was characterized for pH, viscosity, spreadability, and texture analysis. When compared to the marketed formulation, SNEDDS hydrogel was found to have a higher rate of permeation through the rat skin. In addition, a skin irritation test carried out on experimental animals showed that the SNEDDS formulation did not exhibit any erythematous symptoms after a 24-h exposure. In conclusion, the topical delivery of AzA through the skin using SNEDDS hydrogel could prove to be an effective approach for the treatment of atopic dermatitis.
Asunto(s)
Dermatitis Atópica , Niño , Humanos , Ratas , Animales , Dermatitis Atópica/tratamiento farmacológico , Hidrogeles/farmacología , Hidrogeles/uso terapéutico , Piel , Ácidos Dicarboxílicos/toxicidad , Tamaño de la PartículaRESUMEN
The current work was aimed at the development of a topical drug delivery system for azelaic acid (AzA) for acne treatment. The systems tested for this purpose were deep eutectic systems (DESs) prepared from choline chloride (CC), malonic acid (MA), and PEG 400. Three CC to MA and eight different MA: CC: PEG400 ratios were tested. The physical appearance of the tested formulations ranged from solid and liquid to semisolid. Only those that showed liquid formulations of suitable viscosity were considered for further investigations. A eutectic mixture made from MA: CC: PEG400 1:1:6 (MCP 116) showed the best characteristics in terms of viscosity, contact angle, spreadability, partition coefficient, and in vitro diffusion. Moreover, the MCP116 showed close rheological properties to the commercially available market lead acne treatment product (Skinorin®). In addition, the formula showed synergistic antibacterial activity between the MA moiety of the DES and the AzA. In vitro diffusion studies using polyamide membranes demonstrated superior diffusion of MCP116 over the pure drug and the commercial product. No signs of skin irritation and edema were observed when MCP116 was applied to rabbit skin. Additionally, the MCP116 was found to be, physically and chemically, highly stable at 4, 25, and 40 °C for a one-month stability study.
Asunto(s)
Acné Vulgar , Fármacos Dermatológicos , Animales , Conejos , Ácidos Dicarboxílicos/química , Fármacos Dermatológicos/uso terapéutico , Piel , Preparaciones Farmacéuticas , Colina/química , Acné Vulgar/tratamiento farmacológico , Solventes/químicaRESUMEN
Azelaic Acid (AzA) is a 9-carbon atom dicarboxylic acid, with numerous pharmacological uses in dermatology. Its effectiveness in papulopustular rosacea and acne vulgaris, among other dermatological disorders such as keratinization and hyper-pigmentation, is thought to be related to its anti-inflammatory and antimicrobial properties. It is a by-product of Pityrosporum fungal mycelia metabolism but also it is found in different cereals such as barley, wheat, and rye. Diverse topical formulations of AzA exist in commerce, and it is mainly produced via chemical synthesis. In this study we describe the extraction of AzA from whole grains and whole-grain flour (Triticum durum Desf.) through green methods. Seventeen different extracts were prepared and analyzed for their AzA content by HPLC-MS methods and then screened for their antioxidant activity using spectrophotometric assays (ABTS, DPPH, and Folin-Ciocalteu). Minimum-inhibitory-concentration (MIC) assays against several bacterial and fungal pathogens were performed, to validate their antimicrobial activity. The obtained results indicate that whole grain extracts provide a wider spectrum of activity than the flour matrix; in particular, the Naviglio® extract showed higher AzA content, while the hydroalcoholic ultrasound-assisted extract provided better antimicrobial and antioxidant activity. The data analysis was performed using principal component analysis (PCA), as an unsupervised-pattern-recognition technique, to extract useful analytical and biological information.
Asunto(s)
Antiinfecciosos , Antioxidantes , Antioxidantes/análisis , Triticum/química , Ácidos DicarboxílicosRESUMEN
Azelaic acid (AZA) is a naturally occurring saturated dicarboxylic acid whose topical application has found multiple uses in dermatology. Its anti-inflammatory, antioxidant and antimicrobial properties against Propionibacterium acne are currently used in the treatment of various types of acne such as rosacea and acne vulgaris. AZA is an inhibitor of tyrosinase, mitochondrial respiratory chain enzymes and DNA synthesis, and is a scavenger of harmful free radicals and inhibits the production of reactive oxygen species by neutrophils. Interestingly, AZA also has anti-proliferative and cytotoxic effects on various cancer cells. To date, its inhibitory effect on melanocytes has been mainly used, making it widely used in the treatment of hyperpigmentation disorders such as melasma and post-inflammatory hyperpigmentation. Commercially available topical formulations with cosmetic and drug status contain 5% to 20% AZA in the form of gels and creams. The use of liposomal technology allows greater control over the pharmacokinetics and pharmacodynamics of the formulations. When applied topically, AZA is well tolerated, and side effects are limited to generally mild and transient local skin irritation. Importantly, liposomal technology has enabled the drug to penetrate all layers of the skin while maintaining a very high accumulation of the active ingredient. This solution could be revolutionary for the treatment of skin cancer, where until now the main obstacle was poor absorption through the skin, making the treatment require multiple applications to maintain long-term activity levels. In this review, we will present the mechanism of action and pharmacokinetics of AZA. We will summarize its use in the treatment of dermatoses and its potential in skin cancer therapy. We will provide an overview of the preparations available on the market, taking into consideration technologies used.
RESUMEN
Background: There is a lack of evidence on the therapeutic efficacy of topical tranexamic acid (TA) for the treatment of acne-related postinflammatory hyperpigmentation (PIH). The current study aimed to assess the efficacy of twice-daily administration of 20% azelaic acid (AZA) cream versus 5% TA solution for the treatment of PIH in patients with acne vulgaris. Materials and Methods: Patients in the present single-blinded randomized clinical trial were randomized into AZA or TA groups for 12 weeks. The rate of healing was assessed by scoring recorded photographs based on postacne hyperpigmentation index (PAHI) at baseline, 4th, 8th, and 12th weeks. The frequency of side effects was examined and recorded at each study time point. Results: Thirty volunteers in each treatment group completed the intervention. PAHI score in both AZA and TA groups improved during the study course (Ptime < 0.001, for both groups). However, mean PAHI scores were comparable in the two groups (Pgroup = 0.05). No significant interaction was also found between time and treatments in terms of PAHI score (Ptime × group = 0.66). The frequency of treatment-related side effects was significantly higher in the AZA group compared to the TA group at week 4 of treatment (P < 0.05). However, no significant difference was observed in the frequency of reported side effects at weeks 8 and 12 of the treatment (P > 0.05). Conclusion: Topical administration of 20% AZA cream and 5% TA solution was comparably efficient in the treatment of acne-related PIH with a significantly better safety profile of TA in the 1st month of the treatment.
RESUMEN
Seborrhea and the associated oily skin are undoubtedly the problem of women and men around the world. The pathogenesis of acne vulgaris involves excessive activity of sebaceous glands, as well as disturbances in the composition of sebum. The aim of the study was to assess the severity of seborrhea in a group of acne vulgaris patients and to determine the effect of a 20% azelaic acid solution on the activity of sebaceous glands. Twenty seven women, aged 19-25 years, underwent a series of six treatments with the application of a 20% solution of azelaic acid to the face. The mean values of sebum level showed a decreasing tendency. On the forehead, the results were as follows-195.5 before the treatment and 162.7 2 weeks after the last treatment. Measurements of the right cheek decreased from 175.3 to 141.3 The measurements taken 3 months after the study were 151.3 on the forehead and 138.9 on the cheek. Similarly, the values determining the total number of acne lesions and the severity of the disease according to the IGA scale also changed significantly. Chemical peel with 20% azelaic acid shows long-term sebostatic action, which inhibits the formation of new acne lesions.
Asunto(s)
Acné Vulgar , Quimioexfoliación , Acné Vulgar/diagnóstico , Acné Vulgar/tratamiento farmacológico , Acné Vulgar/patología , Adulto , Quimioexfoliación/métodos , Ácidos Dicarboxílicos/uso terapéutico , Femenino , Humanos , Masculino , Sebo , Adulto JovenRESUMEN
In this study, hydrogels containing azelaic acid were developed using chitosan or HPMC (1-7%) for local treatment of acne vulgaris. Physicochemical properties such as viscosity, pH and mechanical properties were evaluated. In vitro release and ex vivo permeability studies were performed using the Franz diffusion cell system. The pH of the hydrogels was highly compatible with the skin pH and varied between 4.38 and 5.84. The cumulative release percentages of the hydrogels at the end of 6 hours were 65-78%, whereas the marketed product yielded 50% drug release. According to the ex vivo permeability results, azelaic acid accumulated in the skin was found to be 9.38 ± 0.65% (marketed cream), 19.53 ± 1.06% (K3), 10.96 ± 1.91% (H6). The antiacne studies with Cutibacterium acnes revealed that K3 (29.45 ± 0.95) and H6 (32.35 ± 0.15) had higher inhibition zones compared to the marketed cream (24.50 ± 0.90). Additionally, the gels were found to be highly stable as a result of the stability studies for 6 months. Among the hydrogels that were prepared based on experimental findings, K3 (3% Chitosan) and H6 (6% HPMC) represented elevated in vitro release profile, higher permeability and increased antiacne activity. The findings of this research suggest that the developed hydrogels might be an alternative to the marketed product.
Asunto(s)
Acné Vulgar , Quitosano , Acné Vulgar/tratamiento farmacológico , Ácidos Dicarboxílicos/química , Humanos , HidrogelesRESUMEN
PURPOSE: Azelaic acid (AzA) is a dicarboxylic acid naturally occurring in various grains having anti-inflammatory and anti-oxidation properties. Recently, AzA is shown to reduce high-fat diet-induced adiposity in animals. However, its physiological role in lipid metabolism and aging in various environmental stresses is unknown. METHODS AND RESULTS: Using C. elegans as an invertebrate animal model, we demonstrate that AzA suppresses fat accumulation with no effect on lifespan at normal temperatures. Moreover, AzA promotes lifespan at low temperatures by elevation of unsaturated long-chain fatty acids and expression of genes in fatty acid desaturation. We further find that genes encoding fatty acid desaturases such as fat-1, fat-5, fat-6, and fat-7 are crucial for the lifespan-extending effect of AzA at low temperature. CONCLUSIONS: Taken together, our results suggest that AzA promotes adaption to low temperature in C. elegans via shifting fatty acid profile to unsaturated long-chain fatty acids.
Asunto(s)
Aclimatación/efectos de los fármacos , Frío/efectos adversos , Ácidos Dicarboxílicos/administración & dosificación , Longevidad/efectos de los fármacos , Animales , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Ácido Graso Desaturasas/genética , Ácido Graso Desaturasas/metabolismo , Ácidos Grasos Insaturados/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Modelos AnimalesRESUMEN
After a local infection by the microbial pathogens, plants will produce strong resistance in distal tissues to cope with the subsequent biotic attacks. This type of the resistance in the whole plant is termed as systemic acquired resistance (SAR). The priming of SAR can confer the robust defense responses and the broad-spectrum disease resistances in plants. In general, SAR is activated by the signal substances generated at the local sites of infection, and these small signaling molecules can be rapidly transported to the systemic tissues through the phloem. In the last two decades, numerous endogenous metabolites were proved to be the potential elicitors of SAR, including methyl salicylate (MeSA), azelaic acid (AzA), glycerol-3-phosphate (G3P), free radicals (NO and ROS), pipecolic acid (Pip), N-hydroxy-pipecolic acid (NHP), dehydroabietinal (DA), monoterpenes (α-pinene and ß-pinene) and NAD(P). In the meantime, the proteins associated with the transport of these signaling molecules were also identified, such as DIR1 (DEFECTIVE IN INDUCED RESISTANCE 1) and AZI1 (AZELAIC ACID INDUCED 1). This review summarizes the recent findings related to synthesis, transport and interaction of the different signal substances in SAR.
Asunto(s)
Enfermedades de las Plantas/inmunología , Inmunidad de la Planta , Transducción de Señal , Ácidos Dicarboxílicos/metabolismo , Monoterpenos/metabolismo , Ácidos Pipecólicos/metabolismo , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismoRESUMEN
Adaptation and response to environmental changes require dynamic and fast information distribution within the plant body. If one part of a plant is exposed to stress, attacked by other organisms or exposed to any other kind of threat, the information travels to neighboring organs and even neighboring plants and activates appropriate responses. The information flow is mediated by fast-traveling small metabolites, hormones, proteins/peptides, RNAs or volatiles. Electric and hydraulic waves also participate in signal propagation. The signaling molecules move from one cell to the neighboring cell, via the plasmodesmata, through the apoplast, within the vascular tissue or-as volatiles-through the air. A threat-specific response in a systemic tissue probably requires a combination of different traveling compounds. The propagating signals must travel over long distances and multiple barriers, and the signal intensity declines with increasing distance. This requires permanent amplification processes, feedback loops and cross-talks among the different traveling molecules and probably a short-term memory, to refresh the propagation process. Recent studies show that volatiles activate defense responses in systemic tissues but also play important roles in the maintenance of the propagation of traveling signals within the plant. The distal organs can respond immediately to the systemic signals or memorize the threat information and respond faster and stronger when they are exposed again to the same or even another threat. Transmission and storage of information is accompanied by loss of specificity about the threat that activated the process. I summarize our knowledge about the proposed long-distance traveling compounds and discuss their possible connections.
Asunto(s)
Ambiente , Fenómenos Fisiológicos de las Plantas , Plantas/genética , Plantas/metabolismo , Transporte Biológico , Biomarcadores , Calcio/metabolismo , Resistencia a la Enfermedad , Fenómenos Electrofisiológicos , Interacciones Huésped-Patógeno , Luz , Especificidad de Órganos , Fotosíntesis , Fitocromo/metabolismo , Enfermedades de las Plantas , Plantas/microbiología , Plantas/efectos de la radiación , ARN de Planta , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Compuestos Orgánicos Volátiles/metabolismoRESUMEN
Inhibitors of proximal tubular Na+-glucose cotransporter 2 (SGLT2) are natriuretic, and they lower blood pressure. There are reports that the activities of SGLT2 and Na+-H+ exchanger 3 (NHE3) are coordinated. If so, then part of the natriuretic response to an SGLT2 inhibitor is mediated by suppressing NHE3. To examine this further, we compared the effects of an SGLT2 inhibitor, empagliflozin, on urine composition and systolic blood pressure (SBP) in nondiabetic mice with tubule-specific NHE3 knockdown (NHE3-ko) and wild-type (WT) littermates. A single dose of empagliflozin, titrated to cause minimal glucosuria, increased urinary excretion of Na+ and bicarbonate and raised urine pH in WT mice but not in NHE3-ko mice. Chronic empagliflozin treatment tended to lower SBP despite higher renal renin mRNA expression and lowered the ratio of SBP to renin mRNA, indicating volume loss. This effect of empagliflozin depended on tubular NHE3. In diabetic Akita mice, chronic empagliflozin enhanced phosphorylation of NHE3 (S552/S605), changes previously linked to lesser NHE3-mediated reabsorption. Chronic empagliflozin also increased expression of genes involved with renal gluconeogenesis, bicarbonate regeneration, and ammonium formation. While this could reflect compensatory responses to acidification of proximal tubular cells resulting from reduced NHE3 activity, these effects were at least in part independent of tubular NHE3 and potentially indicated metabolic adaptations to urinary glucose loss. Moreover, empagliflozin increased luminal α-ketoglutarate, which may serve to stimulate compensatory distal NaCl reabsorption, while cogenerated and excreted ammonium balances urine losses of this "potential bicarbonate." The data implicate NHE3 as a determinant of the natriuretic effect of empagliflozin.
Asunto(s)
Compuestos de Bencidrilo/farmacología , Diabetes Mellitus/tratamiento farmacológico , Glucósidos/farmacología , Túbulos Renales Proximales/efectos de los fármacos , Natriuresis/efectos de los fármacos , Natriuréticos/farmacología , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Transportador 2 de Sodio-Glucosa/metabolismo , Intercambiador 3 de Sodio-Hidrógeno/metabolismo , Equilibrio Ácido-Base/efectos de los fármacos , Animales , Glucemia/metabolismo , Presión Sanguínea/efectos de los fármacos , Diabetes Mellitus/metabolismo , Diabetes Mellitus/fisiopatología , Modelos Animales de Enfermedad , Glucosuria/metabolismo , Glucosuria/fisiopatología , Túbulos Renales Proximales/metabolismo , Túbulos Renales Proximales/fisiopatología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Fosforilación , Intercambiador 3 de Sodio-Hidrógeno/deficiencia , Intercambiador 3 de Sodio-Hidrógeno/genéticaRESUMEN
Azelaic acid is a dicarboxylic acid that has recently been shown to play a role in plant-bacteria signalling and also occurs naturally in several cereals. Several bacteria have been reported to be able to utilize azelaic acid as a unique source of carbon and energy, including Pseudomonas nitroreducens. In this study, we utilize P. nitroreducens as a model organism to study bacterial degradation of and response to azelaic acid. We report genetic evidence of azelaic acid degradation and the identification of a transcriptional regulator that responds to azelaic acid in P. nitroreducens DSM 9128. Three mutants possessing transposons in genes of an acyl-CoA ligase, an acyl-CoA dehydrogenase and an isocitrate lyase display a deficient ability in growing in azelaic acid. Studies on transcriptional regulation of these genes resulted in the identification of an IclR family repressor that we designated as AzeR, which specifically responds to azelaic acid. A bioinformatics survey reveals that AzeR is confined to a few proteobacterial genera that are likely to be able to degrade and utilize azelaic acid as the sole source of carbon and energy.