Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Cell ; 186(15): 3227-3244.e20, 2023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-37339632

RESUMEN

Readthrough into the 3' untranslated region (3' UTR) of the mRNA results in the production of aberrant proteins. Metazoans efficiently clear readthrough proteins, but the underlying mechanisms remain unknown. Here, we show in Caenorhabditis elegans and mammalian cells that readthrough proteins are targeted by a coupled, two-level quality control pathway involving the BAG6 chaperone complex and the ribosome-collision-sensing protein GCN1. Readthrough proteins with hydrophobic C-terminal extensions (CTEs) are recognized by SGTA-BAG6 and ubiquitylated by RNF126 for proteasomal degradation. Additionally, cotranslational mRNA decay initiated by GCN1 and CCR4/NOT limits the accumulation of readthrough products. Unexpectedly, selective ribosome profiling uncovered a general role of GCN1 in regulating translation dynamics when ribosomes collide at nonoptimal codons, enriched in 3' UTRs, transmembrane proteins, and collagens. GCN1 dysfunction increasingly perturbs these protein classes during aging, resulting in mRNA and proteome imbalance. Our results define GCN1 as a key factor acting during translation in maintaining protein homeostasis.


Asunto(s)
Biosíntesis de Proteínas , Ribosomas , Animales , Ribosomas/metabolismo , Proteínas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Codón de Terminación/metabolismo , Mamíferos/metabolismo
2.
EMBO Rep ; 24(8): e55895, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37317656

RESUMEN

Hexanucleotide repeat expansions within C9orf72 are a frequent cause of amyotrophic lateral sclerosis and frontotemporal dementia. Haploinsufficiency leading to reduced C9orf72 protein contributes to disease pathogenesis. C9orf72 binds SMCR8 to form a robust complex that regulates small GTPases, lysosomal integrity, and autophagy. In contrast to this functional understanding, we know far less about the assembly and turnover of the C9orf72-SMCR8 complex. Loss of either subunit causes the concurrent ablation of the respective partner. However, the molecular mechanism underlying this interdependence remains elusive. Here, we identify C9orf72 as a substrate of branched ubiquitin chain-dependent protein quality control. We find that SMCR8 prevents C9orf72 from rapid degradation by the proteasome. Mass spectrometry and biochemical analyses reveal the E3 ligase UBR5 and the BAG6 chaperone complex as C9orf72-interacting proteins, which are components of the machinery that modifies proteins with K11/K48-linked heterotypic ubiquitin chains. Depletion of UBR5 results in reduced K11/K48 ubiquitination and increased C9orf72 when SMCR8 is absent. Our data provide novel insights into C9orf72 regulation with potential implication for strategies to antagonize C9orf72 loss during disease progression.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Humanos , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Ubiquitina/metabolismo , Proteínas Portadoras/metabolismo , Proteínas/genética , Proteínas/metabolismo , Demencia Frontotemporal/genética , Demencia Frontotemporal/metabolismo , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Chaperonas Moleculares/metabolismo
3.
Biochem J ; 480(19): 1583-1598, 2023 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-37747814

RESUMEN

Inclusion body formation is associated with cytotoxicity in a number of neurodegenerative diseases. However, the molecular basis of the toxicity caused by the accumulation of aggregation-prone proteins remains controversial. In this study, we found that disease-associated inclusions induced by elongated polyglutamine chains disrupt the complex formation of BAG6 with UBL4A, a mammalian homologue of yeast Get5. UBL4A also dissociated from BAG6 in response to proteotoxic stresses such as proteasomal inhibition and mitochondrial depolarization. These findings imply that the cytotoxicity of pathological protein aggregates might be attributed in part to disruption of the BAG6-UBL4A complex that is required for the biogenesis of tail-anchored proteins.


Asunto(s)
Cuerpos de Inclusión , Chaperonas Moleculares , Estrés Proteotóxico , Ubiquitinas , Animales , Chaperonas Moleculares/metabolismo , Ubiquitinas/genética , Ubiquitinas/metabolismo , Cuerpos de Inclusión/metabolismo
4.
Proc Natl Acad Sci U S A ; 117(9): 4664-4674, 2020 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-32071216

RESUMEN

During protein degradation by the ubiquitin-proteasome pathway, latent 26S proteasomes in the cytosol must assume an active form. Proteasomes are activated when ubiquitylated substrates bind to them and interact with the proteasome-bound deubiquitylase Usp14/Ubp6. The resulting increase in the proteasome's degradative activity was recently shown to be mediated by Usp14's ubiquitin-like (Ubl) domain, which, by itself, can trigger proteasome activation. Many other proteins with diverse cellular functions also contain Ubl domains and can associate with 26S proteasomes. We therefore tested if various Ubl-containing proteins that have important roles in protein homeostasis or disease also activate 26S proteasomes. All seven Ubl-containing proteins tested-the shuttling factors Rad23A, Rad23B, and Ddi2; the deubiquitylase Usp7, the ubiquitin ligase Parkin, the cochaperone Bag6, and the protein phosphatase UBLCP1-stimulated peptide hydrolysis two- to fivefold. Rather than enhancing already active proteasomes, Rad23B and its Ubl domain activated previously latent 26S particles. Also, Ubl-containing proteins (if present with an unfolded protein) increased proteasomal adenosine 5'-triphosphate (ATP) hydrolysis, the step which commits substrates to degradation. Surprisingly, some of these proteins also could stimulate peptide hydrolysis even when their Ubl domains were deleted. However, their Ubl domains were required for the increased ATPase activity. Thus, upon binding to proteasomes, Ubl-containing proteins not only deliver substrates (e.g., the shuttling factors) or provide additional enzymatic activities (e.g., Parkin) to proteasomes, but also increase their capacity for proteolysis.


Asunto(s)
Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Ubiquitina/metabolismo , Sitios de Unión , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Endopeptidasas/química , Endopeptidasas/metabolismo , Complejo de la Endopetidasa Proteasomal/química , Unión Proteica , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina/química , Ubiquitina Tiolesterasa/química , Ubiquitina Tiolesterasa/metabolismo , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/metabolismo , Peptidasa Específica de Ubiquitina 7/química , Peptidasa Específica de Ubiquitina 7/metabolismo
5.
Cancer Sci ; 113(1): 156-169, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34704338

RESUMEN

Colorectal cancer (CRC) is one of the most common types of cancer and a significant cause of cancer mortality worldwide. Further improvements of CRC therapeutic approaches are needed. BCL2-associated athanogene 6 (BAG6), a multifunctional scaffold protein, plays an important role in tumor progression. However, regulation of BAG6 in malignancies remains unclear. This study showed that guided entry of tail-anchored proteins factor 4 (GET4), a component of the BAG6 complex, regulates the intercellular localization of BAG6 in CRC. Furthermore, GET4 was identified as a candidate driver gene on the short arm of chromosome 7, which is often amplified in CRC, by our bioinformatics approach using the CRC dataset from The Cancer Genome Atlas. Clinicopathologic and prognostic analyses using CRC datasets showed that GET4 was overexpressed in tumor cells due to an increased DNA copy number. High GET4 expression was an independent poor prognostic factor in CRC, whereas BAG6 was mainly overexpressed in the cytoplasm of tumor cells without gene alteration. The biological significance of GET4 was examined using GET4 KO CRC cells generated with CRISPR-Cas9 technology or transfected CRC cells. In vitro and in vivo analyses showed that GET4 promoted tumor growth. It appears to facilitate cell cycle progression by cytoplasmic enrichment of BAG6-mediated p53 acetylation followed by reduced p21 expression. In conclusion, we showed that GET4 is a novel driver gene and a prognostic biomarker that promotes CRC progression by inducing the cytoplasmic transport of BAG6. GET4 could be a promising therapeutic molecular target in CRC.


Asunto(s)
Neoplasias Colorrectales/patología , Chaperonas Moleculares/genética , Regulación hacia Arriba , Acetilación , Animales , Línea Celular Tumoral , Proliferación Celular , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Células Hep G2 , Humanos , Masculino , Ratones , Estadificación de Neoplasias , Trasplante de Neoplasias , Pronóstico , Proteína p53 Supresora de Tumor/metabolismo
6.
Exp Eye Res ; 220: 109110, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35569519

RESUMEN

Retinitis pigmentosa (RP) is the most common inherited retinal degenerative disease which is the major cause of vision loss. X-linked RP patients account for 5%-15% of all inherited RP cases and mutations in RP2 (Retinitis pigmentosa 2) were responsible for about 20% X-linked RP families. A majority of RP2 pathogenic mutations displayed a vulnerable protein stability and degraded rapidly through ubiquitin-proteasome system (UPS). Though the RP2 protein could be readily recovered by proteasome inhibitors, e.g., MG132, their applications for RP2-related RP therapy were limited by their nonspecific characterization. In the present study, we aimed to identify UPS-related factors, such as E3 ligases, which are specifically involved in degradation of RP2 pathogenic mutants. We identified several E3 ligases, such as HUWE1, and the co-chaperon BAG6 specifically interacting with RP2 pathogenic mutants. Knockdown of HUWE1 and BAG6 could partially rescue the reduced protein levels of RP2 mutants. BAG6 is required for recruitment of HUWE1 to ubiquitinate RP2 mutants at the K268 site. The HUWE1 inhibitor BI8622 could restore the levels of RP2 mutant and then the binding to its partner ARL3 in retina cell lines. This study revealed the details of UPS-related degradation of RP2 mutants and possibly provided a potential treatment for RP2-related RP.


Asunto(s)
Proteínas del Ojo , Retinitis Pigmentosa , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Proteínas de Unión al GTP/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ligasas/metabolismo , Proteínas de la Membrana/genética , Chaperonas Moleculares/metabolismo , Retinitis Pigmentosa/patología , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/genética
7.
FASEB J ; 35(2): e21361, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33522017

RESUMEN

Bcl-2-associated athanogen-6 (BAG6) is a nucleocytoplasmic shuttling protein involved in protein quality control. We previously demonstrated that BAG6 is essential for autophagy by regulating the intracellular localization of the acetyltransferase EP300, and thus, modifying accessibility to its substrates (TP53 in the nucleus and autophagy-related proteins in the cytoplasm). Here, we investigated BAG6 localization and function in the cytoplasm. First, we demonstrated that BAG6 is localized in the mitochondria. Specifically, BAG6 is expressed in the mitochondrial matrix under basal conditions, and translocates to the outer mitochondrial membrane after mitochondrial depolarization with carbonyl cyanide m-chlorophenyl hydrazine, a mitochondrial uncoupler that induces mitophagy. In SW480 cells, the deletion of BAG6 expression abrogates its ability to induce mitophagy and PINK1 accumulation. On the reverse, its ectopic expression in LoVo colon cancer cells, which do not express endogenous BAG6, reduces the size of the mitochondria, induces mitophagy, leads to the activation of the PINK1/PARKIN pathway and to the phospho-ubiquitination of mitochondrial proteins. Finally, BAG6 contains two LIR (LC3-interacting Region) domains specifically found in receptors for selective autophagy and responsible for the interaction with LC3 and for autophagosome selectivity. Site-directed mutagenesis showed that BAG6 requires wild-type LIRs domains for its ability to stimulate mitophagy. In conclusion, we propose that BAG6 is a novel mitophagy receptor or adaptor that induces PINK1/PARKIN signaling and mitophagy in a LIR-dependent manner.


Asunto(s)
Mitofagia , Chaperonas Moleculares/metabolismo , Proteínas Quinasas/metabolismo , Transducción de Señal , Sitios de Unión , Línea Celular Tumoral , Humanos , Mitocondrias/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Unión Proteica , Ubiquitina-Proteína Ligasas/metabolismo
8.
J Biol Chem ; 295(23): 7865-7876, 2020 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-32332095

RESUMEN

Mitochondrial dysfunction is implicated in sporadic and familial Parkinson's disease (PD). However, the mechanisms that impair homeostatic responses to mitochondrial dysfunction remain unclear. Previously, we found that chronic, low-dose administration of the mitochondrial complex I inhibitor 1-methyl-4-phenylpyridinium (MPP+) dysregulates mitochondrial fission-fusion, mitophagy, and mitochondrial biogenesis. Given that PTEN-induced kinase 1 (PINK1) regulates mitochondrial function, dynamics, and turnover, we hypothesized that alterations in endogenous PINK1 levels contribute to depletion of mitochondria during chronic complex I injury. Here we found that chronic MPP+ treatment of differentiated SH-SY5Y neuronal cells significantly decreases PINK1 expression prior to reductions in other mitochondrial components. Furthermore, Bcl2-associated athanogene 6 (BAG6, BAT3, or Scythe), a protein involved in protein quality control and degradation, was highly up-regulated during the chronic MPP+ treatment. BAG6 interacted with PINK1, and BAG6 overexpression decreased the half-life of PINK1. Conversely, siRNA-mediated BAG6 knockdown prevented chronic MPP+ stress-induced loss of PINK1, reversed MPP+-provoked mitochondrial changes, increased cell viability, and prevented MPP+-induced dendrite shrinkage in primary neurons. These results indicate that BAG6 up-regulation during chronic complex I inhibition contributes to mitochondrial pathology by decreasing the levels of endogenous PINK1. Given that recessive mutations in PINK1 cause familial PD, the finding of accelerated PINK1 degradation in the chronic MPP+ model suggests that PINK1 loss of function represents a point of convergence between the neurotoxic and genetic causes of PD.


Asunto(s)
1-Metil-4-fenilpiridinio/farmacología , Chaperonas Moleculares/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Quinasas/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Animales , Muerte Celular/efectos de los fármacos , Células Cultivadas , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Chaperonas Moleculares/genética , Neuritas/efectos de los fármacos , Neuritas/metabolismo , Proteínas Nucleares/genética , Embarazo
9.
EMBO Rep ; 20(4)2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30804014

RESUMEN

Rab family small GTPases are master regulators of distinct steps of intracellular vesicle trafficking in eukaryotic cells. GDP-bound cytoplasmic forms of Rab proteins are prone to aggregation due to the exposure of hydrophobic groups but the machinery that determines the fate of Rab species in the cytosol has not been elucidated in detail. In this study, we find that BAG6 (BAT3/Scythe) predominantly recognizes a cryptic portion of GDP-associated Rab8a, while its major GTP-bound active form is not recognized. The hydrophobic residues of the Switch I region of Rab8a are essential for its interaction with BAG6 and the degradation of GDP-Rab8a via the ubiquitin-proteasome system. BAG6 prevents the excess accumulation of inactive Rab8a, whose accumulation impairs intracellular membrane trafficking. BAG6 binds not only Rab8a but also a functionally distinct set of Rab family proteins, and is also required for the correct distribution of Golgi and endosomal markers. From these observations, we suggest that Rab proteins represent a novel set of substrates for BAG6, and the BAG6-mediated pathway is associated with the regulation of membrane vesicle trafficking events in mammalian cells.


Asunto(s)
Chaperonas Moleculares/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular , Membrana Celular/metabolismo , Citoplasma/metabolismo , Citosol/metabolismo , Retículo Endoplásmico/metabolismo , Endosomas/metabolismo , Eliminación de Gen , Aparato de Golgi/metabolismo , Humanos , Modelos Biológicos , Chaperonas Moleculares/genética , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Transporte de Proteínas , Proteolisis , ARN Interferente Pequeño/genética , Ubiquitina/metabolismo , Proteínas de Unión al GTP rab/química , Proteínas de Unión al GTP rab/genética
10.
Exp Cell Res ; 387(1): 111776, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31838060

RESUMEN

Microtubule-binding proteins provide an alternative and vital pathway to the functional diversity of microtubules. Considerable work is still required to understand the complexities of microtubule-associated cellular processes and to identify novel microtubule-binding proteins. In this study, we identify Bcl2-associated athanogene cochaperone 6 (BAG6) as a novel microtubule-binding protein and reveal that it is crucial for primary ciliogenesis. By immunofluorescence we show that BAG6 largely colocalizes with intracellular microtubules and by co-immunoprecipitation we demonstated that it can interact with α-tubulin. Additionally, both the UBL and BAG domains of BAG6 are indispensable for its interaction with α-tubulin. Moreover, the assembly of primary cilia in RPE-1 cells is significantly inhibited upon the depletion of BAG6. Notably, BAG6 inhibition leads to an abnormal G0/G1 transition during the cell cycle. In addition, BAG6 colocalizes and interactes with the centrosomal protein γ-tubulin, suggesting that BAG6 might regulate primary ciliogenesis through its action in centrosomal function. Collectively, our findings suggest that BAG6 is a novel microtubule-bindng protein crucial for primary ciliogenesis.


Asunto(s)
Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Chaperonas Moleculares/metabolismo , Tubulina (Proteína)/metabolismo , Proteínas Portadoras/metabolismo , Línea Celular , Línea Celular Tumoral , Fase G1/fisiología , Células HEK293 , Células HeLa , Humanos , Unión Proteica/fisiología , Fase de Descanso del Ciclo Celular/fisiología
11.
Exp Cell Res ; 396(2): 112310, 2020 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-32991875

RESUMEN

BACKGROUND: Cleft palate is a common craniofacial defect, which occurs when the palate fails to fuse during development. During fusion, the palatal shelves migrate towards the embryonic midline to form a seam. Apoptotic elimination of medial edge epithelium (MEE) cells along this seam is required for the completion of palate fusion. METHODS: Whole exome sequencing (WES) of six Chinese cleft palate families was applied to identify novel cleft palate-associated gene variants. Palatal fusion and immunofluorescence studies were performed in a murine palatal shelf organ culture model. Gene and protein expression were analyzed by qPCR and immunoblotting in murine MEE cells during seam formation in vivo. Mechanistic immunoprecipitation studies were performed in murine MEE cells in vitro. RESULTS: WES identified Bcl-2 associated anthanogene 6 (BAG6) as a novel cleft palate-associated gene. In murine MEE cells, we discovered upregulation of Bag6 and the transcription factor forkhead box protein O1 (FoxO1) during seam formation in vivo. Using a palatal shelf organ culture model, we demonstrate that nuclear-localized Bag6 enhances MEE cell apoptosis by promoting p300's acetylation of FoxO1, thereby promoting transcription of the pro-apoptotic Fas ligand (FasL). Subsequent gain- and loss-of-function studies in the organ culture model demonstrated that FasL is required for Bag6/acFoxO1-mediated activation of pro-apoptotic Bax/caspase-3 signaling, MEE apoptosis, and palate fusion. Palatal shelf contact was shown to enhance Bag6 nuclear localization and upregulate nuclear acFoxO1 in MEE cells. CONCLUSIONS: These findings demonstrate that nuclear-localized Bag6 and p300 co-operatively enhance FoxO1 acetylation to promote FasL-mediated MEE apoptosis during palate fusion.


Asunto(s)
Apoptosis , Fisura del Paladar/genética , Proteína Ligando Fas/metabolismo , Proteína Forkhead Box O1/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas Nucleares/metabolismo , Hueso Paladar/embriología , Acetilación , Animales , Pueblo Asiatico/genética , Núcleo Celular/metabolismo , Proteína p300 Asociada a E1A/metabolismo , Técnicas de Silenciamiento del Gen , Humanos , Ratones Endogámicos C57BL , Chaperonas Moleculares/genética , Proteínas Nucleares/genética , Unión Proteica , Transporte de Proteínas
12.
Biochem J ; 477(2): 477-489, 2020 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-31904842

RESUMEN

Protein quality control is crucial for maintaining cellular homeostasis and its dysfunction is closely linked to human diseases. The post-translational protein quality control machinery mainly composed of BCL-2-associated athanogene 6 (BAG6) is responsible for triage of mislocalized membrane proteins (MLPs). However, it is unknown how the BAG6-mediated degradation of MLPs is regulated. We report here that PAQR9, a member of the Progesterone and AdipoQ receptor (PAQR) family, is able to modulate BAG6-mediated triage of MLPs. Analysis with mass spectrometry identified that BAG6 is one of the major proteins interacting with PAQR9 and such interaction is confirmed by co-immunoprecipitation and co-localization assays. The protein degradation rate of representative MLPs is accelerated by PAQR9 knockdown. Consistently, the polyubiquitination of MLPs is enhanced by PAQR9 knockdown. PAQR9 binds to the DUF3538 domain within the proline-rich stretch of BAG6. PAQR9 reduces the binding of MLPs to BAG6 in a DUF3538 domain-dependent manner. Taken together, our results indicate that PAQR9 plays a role in the regulation of protein quality control of MLPs via affecting the interaction of BAG6 with membrane proteins.


Asunto(s)
Homeostasis/genética , Proteínas de la Membrana/genética , Chaperonas Moleculares/genética , Receptores de Progesterona/genética , Humanos , Proteínas de la Membrana/química , Chaperonas Moleculares/química , Unión Proteica/genética , Dominios Proteicos/genética , Transporte de Proteínas/genética , Proteínas Proto-Oncogénicas c-bcl-2/química , Proteínas Proto-Oncogénicas c-bcl-2/genética , Receptores de Progesterona/química , Ubiquitinación/genética , Ubiquitinas/química , Ubiquitinas/genética
13.
Int J Mol Sci ; 22(4)2021 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-33671836

RESUMEN

NKp30 (Natural Cytotoxicity Receptor 1, NCR1) is a powerful cytotoxicity receptor expressed on natural killer (NK) cells which is involved in tumor cell killing and the regulation of antitumor immune responses. Ligands for NKp30, including BAG6 and B7-H6, are upregulated in virus-infected and tumor cells but rarely detectable on healthy cells. These ligands are released by tumor cells as part of the cellular secretome and interfere with NK cell activity. BAG6 is secreted via the exosomal pathway, and BAG6-positive extracellular vesicles (EV-BAG6) trigger NK cell cytotoxicity and cytokine release, whereas the soluble protein diminishes NK cell activity. However, the extracellular format and activity of B7-H6 remain elusive. Here, we used HEK293 as a model cell line to produce recombinant ligands and to study their impact on NK cell activity. Using this system, we demonstrate that soluble B7-H6 (sB7-H6), like soluble BAG6 (sBAG6), inhibits NK cell-mediated target cell killing. This was associated with a diminished cell surface expression of NKG2D and NCRs (NKp30, NKp40, and NKp46). Strikingly, a reduced NKp30 mRNA expression was observed exclusively in response to sBAG6. Of note, B7-H6 was marginally released in association with EVs, and EVs collected from B7-H6 expressing cells did not stimulate NK cell-mediated killing. The molecular analysis of EVs on a single EV level using nano flow cytometry (NanoFCM) revealed a similar distribution of vesicle-associated tetraspanins within EVs purified from wildtype, BAG6, or B7-H6 overexpressing cells. NKp30 is a promising therapeutic target to overcome NK cell immune evasion in cancer patients, and it is important to unravel how extracellular NKp30 ligands inhibit NK cell functions.


Asunto(s)
Antígenos B7/metabolismo , Chaperonas Moleculares/metabolismo , Receptor 3 Gatillante de la Citotoxidad Natural/metabolismo , Antígenos B7/genética , Vesículas Extracelulares/metabolismo , Células HEK293 , Humanos , Integrina beta1/metabolismo , Células K562 , Células Asesinas Naturales/metabolismo , Ligandos , Chaperonas Moleculares/genética , Receptor 3 Gatillante de la Citotoxidad Natural/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Escape del Tumor
14.
Int J Mol Sci ; 22(11)2021 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-34072612

RESUMEN

The BAG proteins are a family of multi-functional co-chaperones. In plants, BAG proteins were found to play roles both in abiotic and biotic stress tolerance. However, the function of Arabidopsis BAG2 remains largely unknown, whereas BAG6 is required for plants' defense to pathogens, although it remains unknown whether BAG6 is involved in plants' tolerance to abiotic stresses. Here, we show that both BAG2 and BAG6 are expressed in various tissues and are upregulated by salt, mannitol, and heat treatments and by stress-related hormones including ABA, ethylene, and SA. Germination of bag2, bag6 and bag2 bag6 seeds is less sensitive to ABA compared to the wild type (WT), whereas BAG2 and BAG6 overexpression lines are hypersensitive to ABA. bag2, bag6, and bag2 bag6 plants show higher survival rates than WT in drought treatment but display lower survival rates in heat-stress treatment. Consistently, these mutants showed differential expression of several stress- and ABA-related genes such as RD29A, RD29B, NCED3 and ABI4 compared to the WT. Furthermore, these mutants exhibit lower levels of ROS after drought and ABA treatment but higher ROS accumulation after heat treatment than the WT. These results suggest that BAG2 and BAG6 are negatively involved in drought stress but play a positive role in heat stress in Arabidopsis.


Asunto(s)
Adaptación Fisiológica , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas Mitocondriales/genética , Chaperonas Moleculares/genética , Proteínas Nucleares/genética , Estrés Fisiológico , Proteínas de Arabidopsis/metabolismo , Sequías , Proteínas Mitocondriales/metabolismo , Chaperonas Moleculares/metabolismo , Mutación , Proteínas Nucleares/metabolismo , Desarrollo de la Planta/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo
15.
J Inherit Metab Dis ; 43(5): 1037-1045, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32395830

RESUMEN

The transmembrane domain recognition complex (TRC) targets cytoplasmic C-terminal tail-anchored (TA) proteins to their respective membranes in the endoplasmic reticulum (ER), Golgi, and mitochondria. It is composed of three proteins, GET4, BAG6, and GET5. We identified an individual with compound heterozygous missense variants (p.Arg122His, p.Ile279Met) in GET4 that reduced all three TRC proteins by 70% to 90% in his fibroblasts, suggesting a possible defect in TA protein targeting. He presented with global developmental delay, intellectual disabilities, seizures, facial dysmorphism, and delayed bone age. We found the TA protein, syntaxin 5, is poorly targeted to Golgi membranes compared to normal controls. Since GET4 regulates ER to Golgi transport, we hypothesized that such transport would be disrupted in his fibroblasts, and discovered that retrograde (but not anterograde) transport was significantly reduced. Despite reduction in the three TRC proteins, their mRNA levels were unchanged, suggesting increased degradation in patient fibroblasts. Treating fibroblasts with the FDA-approved proteasome inhibitor, bortezomib (10 nM), restored syntaxin 5 localization and nearly normalized the levels of all three TRC proteins. Our study identifies the first individual with GET4 mutations.


Asunto(s)
Trastornos Congénitos de Glicosilación/genética , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Chaperonas Moleculares/genética , Niño , Humanos , Masculino , Modelos Moleculares , Mutación , Transporte de Proteínas , Transducción de Señal
16.
Plant Mol Biol ; 100(1-2): 73-82, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30796711

RESUMEN

KEY MESSAGE: (1) The fes1a bag6 double mutant shows an increased short term thermotolerance compared to fes1a. BAG6 is a suppressor of Fes1A; (2) IQ motif is essential to effective performance of BAG6. (3) Calmodulin was involved in signal transduction. (4) BAG6 is localized in the nucleus. HSP70s play an important role in the heat-induced stress tolerance of plants. However, effective HSP70 function requires the assistance of many co-chaperones. BAG6 and Fes1A are HSP70-binding proteins that are critical for Arabidopsis thaliana thermotolerance. Despite this importance, little is known about how these co-chaperones interact. In this study, we assessed the thermotolerance of a fes1a bag6 double mutant. We found that the fes1a bag6 double mutant shows an increased short-term thermotolerance compared to fes1a. However, calmodulin inhibitors diminished this enhanced thermotolerance in the fes1a bag6 double mutant. In addition, we found the IQ motif to be essential for effective BAG6 performance. Since BAG6 is localized in the nucleus, the signal transduction is likely to involve nuclear calcium signaling.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Proteínas Portadoras/metabolismo , Técnicas de Inactivación de Genes , Chaperonas Moleculares/metabolismo , Proteínas Nucleares/metabolismo , Termotolerancia , Arabidopsis/genética , Calmodulina/metabolismo , Núcleo Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Calor , Mutación/genética , Unión Proteica
17.
EMBO Rep ; 17(6): 842-57, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27113755

RESUMEN

The majority of transmembrane proteins are integrated into the endoplasmic reticulum (ER) by virtue of a signal sequence-mediated co-translational process. However, a substantial portion of transmembrane proteins fails to reach the ER, leading to mislocalized cytosolic polypeptides. Their appropriate recognition and removal are of the utmost importance to avoid proteotoxic stress. Here, we identified UBQLN4 as a BAG6-binding factor that eliminates newly synthesized defective polypeptides. Using a truncated transmembrane domain protein whose degradation occurs during a pre-ER incorporation process as a model, we show that UBQLN4 recognizes misassembled proteins in the cytoplasm and targets these to the proteasome. We suggest that the exposed transmembrane segment of the defective polypeptides is essential for the UBQLN4-mediated substrate discrimination. Importantly, UBQLN4 recognizes not only the defective model substrate but also a pool of endogenous defective proteins that were induced by the depletion of the SRP54 subunit of the signal recognition particle. This study identifies a novel quality control mechanism for newly synthesized and defective transmembrane domain polypeptides that fail to reach their correct destination at the ER membrane.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Nucleares/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas Portadoras/química , Proteínas Portadoras/genética , Línea Celular , Citoplasma/metabolismo , Técnicas de Silenciamiento del Gen , Humanos , Ratones , Proteínas Nucleares/química , Proteínas Nucleares/genética , Péptidos/química , Péptidos/metabolismo , Agregado de Proteínas , Unión Proteica , Biosíntesis de Proteínas , Dominios y Motivos de Interacción de Proteínas , Estabilidad Proteica , Proteolisis , Receptores de Interleucina-2/química , Receptores de Interleucina-2/metabolismo , Partícula de Reconocimiento de Señal/genética , Partícula de Reconocimiento de Señal/metabolismo , Ubiquitinas/metabolismo
18.
J Cell Biochem ; 118(8): 2261-2270, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28075048

RESUMEN

There are five Ubiquilin proteins (UBQLN1-4, UBQLN-L), which are evolutionarily conserved and structurally similar. UBQLN proteins have three functional domains: N-terminal ubiquitin-like domain (UBL), C-terminal ubiquitin-associated domain (UBA), and STI chaperone-like regions in the middle. Alterations in UBQLN1 gene have been detected in a variety of disorders ranging from Alzheimer's disease to cancer. UBQLN1 has been largely studied in neurodegenerative disorders in the context of protein quality control. Several studies have hypothesized that the UBA domain of UBQLN1 binds to poly-ubiquitin chains of substrate and shuttles it to the proteasome via its UBL domain for degradation. UBQLN1 either facilitates degradation (Ataxin3, EPS15) or stabilizes (PSEN1/2, BCLb) substrates it binds to. The signal that determines this fate is unknown and there is conflicting data to support the existing working model of UBQLN1. Using BCLb as a model substrate, we characterized UBQLN1-substrate interaction. We identified the first two STI domains of UBQLN1 as critical for binding to BCLb. Interaction of UBQLN1 with BCLb is independent of ubiquitination of BCLb, but interaction with ubiquitin via UBA domain is required for stabilization of BCLb. Similarly, we showed that UBQLN1 interacts with IGF1R and ESYT2 through the STI domains and stabilizes these proteins through its UBA domain. Interactions that are not dependent on STI domains, for example, UBL mediated interaction with PSMD4 and BAG6, do not appear to be stabilized by UBQLN1. We conclude that fate of substrates that UBQLN1 associates with, is interaction domain specific. J. Cell. Biochem. 118: 2261-2270, 2017. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteostasis/fisiología , Proteínas Adaptadoras Transductoras de Señales , Proteínas Relacionadas con la Autofagia , Proteínas Portadoras/química , Proteínas Portadoras/genética , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Línea Celular , Citoplasma/metabolismo , Humanos , Espectrometría de Masas , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Plásmidos/genética , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Proteostasis/genética , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas de Unión al ARN , Receptor IGF Tipo 1 , Receptores de Somatomedina/genética , Receptores de Somatomedina/metabolismo , Ubiquitina/metabolismo
19.
J Cell Sci ; 128(17): 3187-96, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26169395

RESUMEN

Rpn13 is an intrinsic ubiquitin receptor of the 26S proteasome regulatory subunit that facilitates substrate capture prior to degradation. Here we show that the C-terminal region of Rpn13 binds to the tetratricopeptide repeat (TPR) domain of SGTA, a cytosolic factor implicated in the quality control of mislocalised membrane proteins (MLPs). The overexpression of SGTA results in a substantial increase in steady-state MLP levels, consistent with an effect on proteasomal degradation. However, this effect is strongly dependent upon the interaction of SGTA with the proteasomal component Rpn13. Hence, overexpression of the SGTA-binding region of Rpn13 or point mutations within the SGTA TPR domain both inhibit SGTA binding to the proteasome and substantially reduce MLP levels. These findings suggest that SGTA can regulate the access of MLPs to the proteolytic core of the proteasome, implying that a protein quality control cycle that involves SGTA and the BAG6 complex can operate at the 19S regulatory particle. We speculate that the binding of SGTA to Rpn13 enables specific polypeptides to escape proteasomal degradation and/or selectively modulates substrate degradation.


Asunto(s)
Proteínas Portadoras/metabolismo , Moléculas de Adhesión Celular/metabolismo , Glicoproteínas de Membrana/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Animales , Proteínas Portadoras/genética , Moléculas de Adhesión Celular/genética , Células HEK293 , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular , Glicoproteínas de Membrana/genética , Ratones , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Mutación Puntual , Complejo de la Endopetidasa Proteasomal/genética , Estructura Terciaria de Proteína
20.
J Cell Sci ; 127(Pt 21): 4728-39, 2014 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-25179605

RESUMEN

Hydrophobic amino acids are normally shielded from the cytosol and their exposure is often used as an indicator of protein misfolding to enable the chaperone-mediated recognition and quality control of aberrant polypeptides. Mislocalised membrane proteins (MLPs) represent a particular challenge to cellular quality control, and, in this study, membrane protein fragments have been exploited to study a specialised pathway that underlies the efficient detection and proteasomal degradation of MLPs. Our data show that the BAG6 complex and SGTA compete for cytosolic MLPs by recognition of their exposed hydrophobicity, and the data suggest that SGTA acts to maintain these substrates in a non-ubiquitylated state. Hence, SGTA might counter the actions of BAG6 to delay the ubiquitylation of specific precursors and thereby increase their opportunity for successful post-translational delivery to the endoplasmic reticulum. However, when SGTA is overexpressed, the normally efficient removal of aberrant MLPs is delayed, increasing their steady-state level and promoting aggregation. Our data suggest that SGTA regulates the cellular fate of a range of hydrophobic polypeptides should they become exposed to the cytosol.


Asunto(s)
Proteínas Portadoras/metabolismo , Citosol/metabolismo , Western Blotting , Proteínas Portadoras/genética , Células HeLa , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Inmunoprecipitación , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Microscopía Fluorescente , Chaperonas Moleculares
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda