Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
BMC Genomics ; 22(Suppl 5): 921, 2022 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-35681126

RESUMEN

BACKGROUND: The collection of circRNAs mostly focused on their sequence composition such as protein/miRNA binding motif, and/or regulatory elements such as internal ribosome entry site. However, less attention was paid to subcellular localization. CircVIS aimed to provide a collection of circRNAs with information of subcellular compartments and also integrated the circRNA entries from previous circRNA databases. RESULTS: A collection of circRNAs from public circRNA databases and de novo identification were annotated according to subcellular localizations including nucleoplasm, chromatin-associated parts, cytoplasm and polyribosome. All circRNAs were aligned to a selected major transcript, and if presence, the circRNA-derived open reading frame with annotation of functional domain were compared to its parental protein. The results showed that distinct circRNAs may exert their molecular and cellular functions in different subcellular compartments. The web service is made freely available at http://lab-x-omics.nchu.edu.tw/circVIS . CONCLUSIONS: CircVIS allows users to visualize the alignment between a given circRNA and its most relevant reference transcript along with information of subcellular localization.


Asunto(s)
MicroARNs , ARN Circular , Sitios Internos de Entrada al Ribosoma , MicroARNs/genética , Sistemas de Lectura Abierta , Proteínas/genética , ARN/metabolismo
2.
Methods ; 155: 41-48, 2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30391514

RESUMEN

Recent developments in high-throughput RNA sequencing methods coupled with innovative bioinformatic tools have uncovered thousands of circular (circ)RNAs. CircRNAs have emerged as a vast and novel class of regulatory RNAs with potential to modulate gene expression by acting as sponges for microRNAs (miRNAs) and RNA-binding proteins (RBPs). The biochemical enrichment of circRNAs by exoribonuclease treatment or by depletion of polyadenylated RNAs coupled with deep-sequencing is widely used for the systematic identification of circRNAs. Although these methods enrich circRNAs substantially, they do not eliminate efficiently non-polyadenylated and highly-structured RNAs. Here, we describe a method we termed RPAD, based on initial RNase R treatment followed by Polyadenylation and poly(A)+ RNA Depletion. These joint interventions drastically depleted linear RNAs leading to isolation of highly pure circRNAs from total RNA pools. By facilitating the isolation of highly pure circRNAs, RPAD enables the elucidation of circRNA biogenesis, sequence, and function.


Asunto(s)
Biología Computacional/métodos , Poli A/genética , ARN Mensajero/genética , ARN/aislamiento & purificación , Análisis de Secuencia de ARN/métodos , Proteínas de Ciclo Celular , Proteínas del Citoesqueleto , Exorribonucleasas/genética , Exorribonucleasas/metabolismo , Células HeLa , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Poli A/metabolismo , Poliadenilación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , ARN/genética , ARN/metabolismo , ARN Circular , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
3.
Int J Mol Sci ; 20(16)2019 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-31426285

RESUMEN

High-throughput RNA sequencing and novel bioinformatic pipelines have identified thousands of circular (circ)RNAs containing backsplice junction sequences. However, circRNAs generated from multiple exons may contain different combinations of exons and/or introns arising from alternative splicing, while the backsplice junction sequence is the same. To be able to identify circRNA splice variants, we developed a method termed circRNA-Rolling Circle Amplification (circRNA-RCA). This method detects full-length circRNA sequences by performing reverse transcription (RT) in the absence of RNase H activity, followed by polymerase chain reaction (PCR) amplification of full-length circRNAs using a forward primer spanning the backsplice junction sequence and a reverse primer exactly upstream of the forward primer. By sequencing the PCR products, circRNA splice variants bearing the same backsplice junctions, which were otherwise only predicted computationally, could be experimentally validated. The splice variants were further predicted to associate with different subsets of target RNA-binding proteins and microRNAs, supporting the notion that different circRNA splice variants can have different biological impacts. In sum, the circRNA-RCA method allows the accurate identification of full-length circRNA sequences, offering unique insight into their individual function.


Asunto(s)
ADN Complementario/genética , Empalme del ARN , ARN Circular/genética , Empalme Alternativo , Secuencia de Bases , Células HeLa , Humanos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Análisis de Secuencia de ARN/métodos
4.
Methods Mol Biol ; 2765: 193-208, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38381341

RESUMEN

Back-splicing of eukaryotic exon(s) leads to the production of covalently closed circular RNAs (circRNAs). Generally, most circRNAs contain overlapping sequences to their cognate linear RNAs from the same gene loci, leading to difficulties in distinguishing them from each other. A recent study has shown that some circRNAs can be specifically depleted by using base editing systems to target their predominantly back-splice sites for circularization, suggesting an efficient approach for circRNA knockout (KO). Here, we describe the detailed protocol for applying base editors to disrupt back-splice sites of predominantly circularized exons for circRNA KO at the genomic DNA level.

5.
Front Bioinform ; 2: 834655, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36304334

RESUMEN

Circular RNA (circRNA) is a class of endogenous non-coding RNA characterized by a back-splice junction (BSJ). In general, large-scale circRNA BSJ detection is performed based on RNA sequencing data, followed by the selection and validation of circRNAs of interest using RT-qPCR with circRNA-specific PCR primers. Such a primer pair is convergent and functional on the circRNA template but divergent and non-functional on the linear host gene. Although a few circRNA primer design pipelines have been published, none of them offer large-scale, easy-to-use circRNA primer design. Other limitations are that these tools generally do not take into account assay specificity, secondary structures, and SNPs in the primer annealing regions. Furthermore, these tools are limited to circRNA primer design for humans (no other organisms possible), and no wet-lab validation is demonstrated. Here, we present CIRCprimerXL, a circRNA RT-qPCR assay design pipeline based on the primer design framework primerXL. CIRCprimerXL takes a circRNA BSJ position as input, and designs BSJ-spanning primers using Primer3. The user can choose to use the unspliced or spliced circRNA sequence as template. Prior to primer design, sequence regions with secondary structures and common SNPs are flagged. Next, the primers are filtered based on predicted specificity and the absence of secondary structures of the amplicon to select a suitable primer pair. Our tool is both available as a user-friendly web tool and as a stand-alone pipeline based on Docker and Nextflow, allowing users to run the pipeline on a wide range of computer infrastructures. The CIRCprimerXL Nextflow pipeline can be used to design circRNA primers for any species by providing the appropriate reference genome. The CIRCprimerXL web tool supports circRNA primer design for human, mouse, rat, zebrafish, Xenopus tropicalis, and C. elegans. The design process can easily be scaled up for the qPCR assay design of tens of thousands of circRNAs within a couple of hours. We show how CIRCprimerXL has been successfully used to design qPCR assays for over 15,000 human circRNAs of which 20 were empirically validated. CIRCprimerXL software, documentation, and test data can be found at: https://github.com/OncoRNALab/CIRCprimerXL. CIRCprimerXL is also implemented as a webtool at: https://circprimerxl.cmgg.be.

6.
Genes (Basel) ; 13(7)2022 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-35885916

RESUMEN

Circular RNAs (circRNAs) constitute a type of RNA formed through back-splicing. In breast cancer, circRNAs are implicated in tumor onset and progression. Although histone methylation by PRMT1 is largely involved in breast cancer development and metastasis, the effect of circular transcripts deriving from this gene has not been examined. In this study, total RNA was extracted from four breast cancer cell lines and reversely transcribed using random hexamer primers. Next, first- and second-round PCRs were performed using gene-specific divergent primers. Sanger sequencing followed for the determination of the sequence of each novel PRMT1 circRNA. Lastly, bioinformatics analysis was conducted to predict the functions of the novel circRNAs. In total, nine novel circRNAs were identified, comprising both complete and truncated exons of the PRMT1 gene. Interestingly, we demonstrated that the back-splice junctions consist of novel splice sites of the PRMT1 exons. Moreover, the circRNA expression pattern differed among these four breast cancer cell lines. All the novel circRNAs are predicted to act as miRNA and/or protein sponges, while five circRNAs also possess an open reading frame. In summary, we described the complete sequence of nine novel circRNAs of the PRMT1 gene, comprising distinct back-splice junctions and probably having different molecular properties.


Asunto(s)
Neoplasias de la Mama , MicroARNs , Neoplasias de la Mama/genética , Femenino , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Proteína-Arginina N-Metiltransferasas/genética , Proteína-Arginina N-Metiltransferasas/metabolismo , Empalme del ARN/genética , ARN Circular/genética , Proteínas Represoras/genética , Proteínas Represoras/metabolismo
7.
Genes (Basel) ; 12(8)2021 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-34440432

RESUMEN

Mammalian circRNAs are covalently closed circular RNAs often generated through backsplicing of precursor linear RNAs. Although their functions are largely unknown, they have been found to influence gene expression at different levels and in a wide range of biological processes. Here, we investigated if some circRNAs may be differentially abundant in Alzheimer's Disease (AD). We identified and analyzed publicly available RNA-sequencing data from the frontal lobe, temporal cortex, hippocampus, and plasma samples reported from persons with AD and persons who were cognitively normal, focusing on circRNAs shared across these datasets. We identified an overlap of significantly changed circRNAs among AD individuals in the various brain datasets, including circRNAs originating from genes strongly linked to AD pathology such as DOCK1, NTRK2, APC (implicated in synaptic plasticity and neuronal survival) and DGL1/SAP97, TRAPPC9, and KIF1B (implicated in vesicular traffic). We further predicted the presence of circRNA isoforms in AD using specialized statistical analysis packages to create approximations of entire circRNAs. We propose that the catalog of differentially abundant circRNAs can guide future investigation on the expression and splicing of the host transcripts, as well as the possible roles of these circRNAs in AD pathogenesis.


Asunto(s)
Enfermedad de Alzheimer/genética , Encéfalo/metabolismo , Plasticidad Neuronal/genética , ARN Circular/genética , Proteína de la Poliposis Adenomatosa del Colon/genética , Enfermedad de Alzheimer/epidemiología , Enfermedad de Alzheimer/patología , Encéfalo/patología , Femenino , Perfilación de la Expresión Génica , Redes Reguladoras de Genes/genética , Genoma Humano/genética , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Cinesinas/genética , Masculino , Glicoproteínas de Membrana/genética , MicroARNs/genética , Neuronas/metabolismo , Neuronas/patología , Empalme del ARN/genética , Receptor trkB/genética , Análisis de Secuencia de ARN , Proteínas de Unión al GTP rac/genética
8.
Methods Mol Biol ; 2372: 193-202, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34417753

RESUMEN

Circular RNAs (circRNAs) comprise a vast class of covalently closed transcripts, generated primarily via backsplicing. Most circRNAs arise from full or partial exons, but they can also arise from introns, and from combinations of introns and exons. While high-throughput RNA-sequencing analysis has identified tens of thousands of circRNAs expressed in different tissues and growth conditions, the function of circRNAs has only been described for a handful of them. As most circRNAs appear not to encode peptides, their function is presumed to be linked to their interaction with a range of molecules, particularly other nucleic acids (notably microRNAs) and proteins. A major impediment to identifying circRNA-associated molecules is a lack of suitable methodologies capable of analyzing specifically circRNAs and not their linear RNA counterparts with which they share most of their sequence. Here, we describe a flexible and robust method for identifying the proteins that associate with a given circRNA. The affinity pulldown assay is based on the use of a biotinylated antisense oligomer that recognizes the circRNA-specific junction sequence. Following pulldown using streptavidin beads, the proteins are eluted from the circRNP (circribonucleoprotein) complex and identified by mass spectroscopy; validation by Western blot analysis and other methods would then confirm the identity of the circRNA-associated proteins. We present a detailed step-by-step protocol, tips to optimize the analysis, troubleshooting suggestions, and assistance in interpreting the results. In sum, this protocol enables the discovery of proteins present in circRNPs, a critical effort toward elucidating circRNA function.


Asunto(s)
ARN Circular/genética , Exones , Intrones , MicroARNs , ARN/genética , Análisis de Secuencia de ARN
9.
Comput Struct Biotechnol J ; 19: 910-928, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33598105

RESUMEN

Circular RNAs (circRNAs) are a very interesting class of conserved single-stranded RNA molecules derived from exonic or intronic sequences by precursor mRNA back-splicing. Unlike canonical linear RNAs, circRNAs form covalently closed, continuous stable loops without a 5'end cap and 3'end poly(A) tail, and therefore are resistant to exonuclease digestion. The majority of circRNAs are highly abundant, and conserved across different species with a tissue or developmental-stage-specific expression. circRNAs have been shown to play important roles as microRNA sponges, regulators of gene splicing and transcription, RNA-binding protein sponges and protein/peptide translators. Emerging evidence reveals that circRNAs function in various human diseases, particularly cancers, and may function as better predictive biomarkers and therapeutic targets for cancer treatment. In consideration of their potential clinical relevance, circRNAs have become a new research hotspot in the field of tumor pathology. In the present study, the current understanding of the biogenesis, characteristics, databases, research methods, biological functions subcellular distribution, epigenetic regulation, extracellular transport and degradation of circRNAs was discussed. In particular, the multiple databases and methods involved in circRNA research were first summarized, and the recent advances in determining the potential roles of circRNAs in tumor growth, migration and invasion, which render circRNAs better predictive biomarkers, were described. Furthermore, future perspectives for the clinical application of circRNAs in the management of patients with cancer were proposed, which could provide new insights into circRNAs in the future.

10.
Wiley Interdiscip Rev RNA ; 11(1): e1566, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31489773

RESUMEN

Eukaryotic cells express a myriad of circular RNAs (circRNAs), many of them displaying tissue-specific expression patterns. They arise from linear precursor RNAs in which 5' and 3' ends become covalently ligated. Given these features, biochemical and computational approaches traditionally used to study linear RNA must be adapted for analysis of circular RNAs. Such circRNA-specific methodologies are allowing the systematic identification of circRNAs and the analysis of their biological functions. Here, we review the resources and molecular methods currently utilized to quantify circRNAs, visualize their distribution, identify interacting partners, and elucidate their function. We discuss the challenges of analyzing circRNAs and propose alternative approaches for studying this unique class of transcripts. This article is characterized under: RNA Structure and Dynamics > RNA Structure, Dynamics, and Chemistry RNA Methods > RNA Analyses in vitro and In Silico RNA Methods > RNA Analyses in Cells.


Asunto(s)
ARN Circular/análisis , Animales , Biología Computacional , Eucariontes/metabolismo , Humanos , Cinética , ARN Circular/metabolismo
11.
Methods Mol Biol ; 1724: 57-67, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29322440

RESUMEN

Polymerase chain reaction enables the detection and characterization of circular RNA expression. The use of divergent primer pairs flanking the back-splice site, being the unique sequence element of a circular RNA, enables the detection of circular RNA expression. Here we describe the basic techniques to detect different circular transcripts of a gene or one circular RNA specifically by PCR and highlight the advantages and drawbacks of both.


Asunto(s)
Biología Computacional/métodos , Regulación de la Expresión Génica , Reacción en Cadena de la Polimerasa/métodos , ARN Mensajero/genética , ARN/genética , Análisis de Secuencia de ARN/métodos , Sitios de Unión , Humanos , Empalme del ARN , ARN Circular
12.
Bio Protoc ; 8(6)2018 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-29644261

RESUMEN

Gene expression in eukaryotic cells is tightly regulated at the transcriptional and posttranscriptional levels. Posttranscriptional processes, including pre-mRNA splicing, mRNA export, mRNA turnover, and mRNA translation, are controlled by RNA-binding proteins (RBPs) and noncoding (nc)RNAs. The vast family of ncRNAs comprises diverse regulatory RNAs, such as microRNAs and long noncoding (lnc)RNAs, but also the poorly explored class of circular (circ)RNAs. Although first discovered more than three decades ago by electron microscopy, only the advent of high-throughput RNA-sequencing (RNA-seq) and the development of innovative bioinformatic pipelines have begun to allow the systematic identification of circRNAs (Szabo and Salzman, 2016; Panda et al., 2017b; Panda et al., 2017c). However, the validation of true circRNAs identified by RNA sequencing requires other molecular biology techniques including reverse transcription (RT) followed by conventional or quantitative (q) polymerase chain reaction (PCR), and Northern blot analysis (Jeck and Sharpless, 2014). RT-qPCR analysis of circular RNAs using divergent primers has been widely used for the detection, validation, and sometimes quantification of circRNAs (Abdelmohsen et al., 2015 and 2017; Panda et al., 2017b). As detailed here, divergent primers designed to span the circRNA backsplice junction sequence can specifically amplify the circRNAs and not the counterpart linear RNA. In sum, RT-PCR analysis using divergent primers allows direct detection and quantification of circRNAs.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda