Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Dairy Sci ; 107(6): 3700-3715, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38135043

RESUMEN

Reproductive performance is a key determinant of cow longevity in a pasture-based, seasonal dairy system. Unfortunately, direct fertility phenotypes such as intercalving interval or pregnancy rate tend to have low heritabilities and occur relatively late in an animal's life. In contrast, age at puberty (AGEP) is a moderately heritable, early-in-life trait that may be estimated using an animal's age at first measured elevation in blood plasma progesterone (AGEP4) concentrations. Understanding the genetic architecture of AGEP4 in addition to genetic relationships between AGEP4 and fertility traits in lactating cows is important, as is its relationship with body size in the growing animal. Thus, the objectives of this research were 3-fold. First, to estimate the genetic and phenotypic (co)variances between AGEP4 and subsequent fertility during first and second lactations. Second, to quantify the associations between AGEP4 and height, length, and BW measured when animals were approximately 11 mo old (standard deviation = 0.5). Third, to identify genomic regions that are likely to be associated with variation in AGEP4. We measured AGEP4, height, length, and BW in approximately 5,000 Holstein-Friesian or Holstein-Friesian × Jersey crossbred yearling heifers across 54 pasture-based herds managed in seasonal calving farm systems. We also obtained calving rate (CR42, success or failure to calve within the first 42 d of the seasonal calving period), breeding rate (PB21, success or failure to be presented for breeding within the first 21 d of the seasonal breeding period) and pregnancy rate (PR42, success or failure to become pregnant within the first 42 d of the seasonal breeding period) phenotypes from their first and second lactations. The animals were genotyped using the Weatherby's Versa 50K SNP array (Illumina, San Diego, CA). The estimated heritabilities of AGEP4, height, length, and BW were 0.34 (90% credibility interval [CRI]: 0.30, 0.37), 0.28 (90% CRI: 0.25, 0.31), 0.21 (90% CRI: 0.18, 0.23), and 0.33 (90% CRI: 0.30, 0.36), respectively. In contrast, the heritabilities of CR42, PB21 and PR42 were all <0.05 in both first and second lactations. The genetic correlations between AGEP4 and these fertility traits were generally moderate, ranging from 0.11 to 0.60, whereas genetic correlations between AGEP4 and yearling body-conformation traits ranged from 0.02 to 0.28. Our GWAS highlighted a genomic window on chromosome 5 that was strongly associated with variation in AGEP4. We also identified 4 regions, located on chromosomes 14, 6, 1, and 11 (in order of decreasing importance), that exhibited suggestive associations with AGEP4. Our results show that AGEP4 is a reasonable predictor of estimated breeding values for fertility traits in lactating cows. Although the GWAS provided insights into genetic mechanisms underpinning AGEP4, further work is required to test genomic predictions of fertility that use this information.


Asunto(s)
Fertilidad , Estudio de Asociación del Genoma Completo , Lactancia , Animales , Bovinos/genética , Fertilidad/genética , Femenino , Lactancia/genética , Fenotipo , Maduración Sexual/genética , Embarazo , Genotipo
2.
BMC Genomics ; 20(1): 150, 2019 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-30786866

RESUMEN

BACKGROUND: Genome-wide association studies (GWAS) are utilized in cattle to identify regions or genetic variants associated with phenotypes of interest, and thus, to identify design strategies that allow for the increase of the frequency of favorable alleles. Visual scores are important traits of cattle production in Brazil because they are utilized as selection criteria, helping to choose more harmonious animals. Despite its importance, there are still no studies on the genome association for these traits. This study aimed to identify genome regions associated with the traits of conformation, precocity and muscling, based on a visual score measured at weaning. RESULTS: Bayesian approaches with BayesC and Bayesian LASSO were utilized with 2873 phenotypes of Nellore cattle for a GWAS. The animals were genotyped with Illumina BovineHD BeadChip, and a total of 309,865 SNPs were utilized after quality control. In the analyses, phenotype and deregressed breeding values were utilized as dependent variables; a threshold model was utilized for the former and a linear model for the latter. The association criterion was the percentage of genetic variance explained by SNPs found in 1 Mb-long windows. The Bayesian approach BayesC was better adjusted to the data because it could explain a larger phenotypic variance for both dependent variables. CONCLUSIONS: There were no large effects for the visual scores, indicating that they have a polygenic nature; however, regions in chromosomes 1, 3, 5, 7, 14, 15, 16, 19, 20 and 23 were identified and explained a large part of the genetic variance.


Asunto(s)
Estudio de Asociación del Genoma Completo , Genómica , Fenotipo , Animales , Cruzamiento , Bovinos , Femenino , Variación Genética , Genómica/métodos , Genotipo , Masculino , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo
3.
Genetica ; 146(4-5): 361-368, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29948517

RESUMEN

Genomic prediction is feasible for estimating genomic breeding values because of dense genome-wide markers and credible statistical methods, such as Genomic Best Linear Unbiased Prediction (GBLUP) and various Bayesian methods. Compared with GBLUP, Bayesian methods propose more flexible assumptions for the distributions of SNP effects. However, most Bayesian methods are performed based on Markov chain Monte Carlo (MCMC) algorithms, leading to computational efficiency challenges. Hence, some fast Bayesian approaches, such as fast BayesB (fBayesB), were proposed to speed up the calculation. This study proposed another fast Bayesian method termed fast BayesC (fBayesC). The prior distribution of fBayesC assumes that a SNP with probability γ has a non-zero effect which comes from a normal density with a common variance. The simulated data from QTLMAS XII workshop and actual data on large yellow croaker were used to compare the predictive results of fBayesB, fBayesC and (MCMC-based) BayesC. The results showed that when γ was set as a small value, such as 0.01 in the simulated data or 0.001 in the actual data, fBayesB and fBayesC yielded lower prediction accuracies (abilities) than BayesC. In the actual data, fBayesC could yield very similar predictive abilities as BayesC when γ ≥ 0.01. When γ = 0.01, fBayesB could also yield similar results as fBayesC and BayesC. However, fBayesB could not yield an explicit result when γ ≥ 0.1, but a similar situation was not observed for fBayesC. Moreover, the computational speed of fBayesC was significantly faster than that of BayesC, making fBayesC a promising method for genomic prediction.


Asunto(s)
Interpretación Estadística de Datos , Genómica/métodos , Análisis de Secuencia de ADN/métodos , Algoritmos , Animales , Teorema de Bayes , Predicción/métodos , Genotipo , Humanos , Cadenas de Markov , Modelos Genéticos , Método de Montecarlo , Perciformes/genética , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Análisis de Secuencia de ADN/estadística & datos numéricos , Programas Informáticos
4.
Asian-Australas J Anim Sci ; 31(12): 1863-1870, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30056688

RESUMEN

OBJECTIVE: The Bayesian first-order antedependence models, which specified single nucleotide polymorphisms (SNP) effects as being spatially correlated in the conventional BayesA/B, had more accurate genomic prediction than their corresponding classical counterparts. Given advantages of BayesCπ over BayesA/B, we have developed hyper-BayesCπ, ante-BayesCπ, and ante-hyper-BayesCπ to evaluate influences of the antedependence model and hyperparameters for vg and sg2 on BayesCπ. METHODS: Three public data (two simulated data and one mouse data) were used to validate our proposed methods. Genomic prediction performance of proposed methods was compared to traditional BayesCπ, ante-BayesA and ante-BayesB. RESULTS: Through both simulation and real data analyses, we found that hyper-BayesCπ, ante-BayesCπ and ante-hyper-BayesCπ were comparable with BayesCπ, ante-BayesB, and ante-BayesA regarding the prediction accuracy and bias, except the situation in which ante-BayesB performed significantly worse when using a few SNPs and π = 0.95. CONCLUSION: Hyper-BayesCπ is recommended because it avoids pre-estimated total genetic variance of a trait compared with BayesCπ and shortens computing time compared with ante-BayesB. Although the antedependence model in BayesCπ did not show the advantages in our study, larger real data with high density chip may be used to validate it again in the future.

5.
J Dairy Sci ; 99(9): 7308-7312, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27423951

RESUMEN

Due to the absence of accurate pedigree information, it has not been possible to implement genetic evaluations for crossbred cattle in African small-holder systems. Genomic selection techniques that do not rely on pedigree information could, therefore, be a useful alternative. The objective of this study was to examine the feasibility of using genomic selection techniques in a crossbred cattle population using data from Kenya provided by the Dairy Genetics East Africa Project. Genomic estimated breeding values for milk yield were estimated using 2 prediction methods, GBLUP and BayesC, and accuracies were calculated as the correlation between yield deviations and genomic breeding values included in the estimation process, mimicking the situation for young bulls. The accuracy of evaluation ranged from 0.28 to 0.41, depending on the validation population and prediction method used. No significant differences were found in accuracy between the 2 prediction methods. The results suggest that there is potential for implementing genomic selection for young bulls in crossbred small-holder cattle populations, and targeted genotyping and phenotyping should be pursued to facilitate this.


Asunto(s)
Cruzamiento/métodos , Bovinos/genética , Cruzamientos Genéticos , África Oriental , Animales , Industria Lechera/métodos , Femenino , Genómica/métodos , Genotipo , Lactancia/genética , Masculino , Modelos Estadísticos , Linaje , Fenotipo , Polimorfismo de Nucleótido Simple , Selección Genética
6.
Anim Genet ; 45(3): 350-6, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24605821

RESUMEN

Improvement in growth and meat quality is one of the main objectives in sire line pig breeding programmes. Mapping quantitative trait loci for these traits using experimental crosses and a linkage-based approach has been performed frequently in the past. The Piétrain breed often was involved as a founder breed to establish the experimental crosses. This breed was selected for muscularity and leanness but shows relatively poor meat quality. It is frequently used as a sire line breed. With the advent of genome-wide and dense SNP chips in pig genomic research, it is possible to also conduct genome-wide association studies within the Piétrain breed. In this study, around 500 progeny-tested sires were genotyped with 60k SNPs. Data filtering showed that around 48k SNPs were useable in this sample. These SNPs were used to conduct a genome-wide association study for growth, muscularity and meat quality traits. Because it is known that a mutation in the RYR1 gene located on chromosome 6 shows a major effect on meat quality, this mutation was included in the models. Single-marker and multimarker association analyses were performed. The results revealed between zero and eight significant associations per trait with P < 5 × 10(-5) . Of special interest are SNPs located on SSC6, SSC10 and SSC15.


Asunto(s)
Estudio de Asociación del Genoma Completo/veterinaria , Carne/normas , Músculo Esquelético/fisiología , Polimorfismo de Nucleótido Simple , Sus scrofa/fisiología , Animales , Cruzamiento , Alemania , Masculino , Músculo Esquelético/crecimiento & desarrollo , Sus scrofa/genética , Sus scrofa/crecimiento & desarrollo
7.
Front Genet ; 12: 665344, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34149806

RESUMEN

Improvement of prediction accuracy of estimated breeding values (EBVs) can lead to increased profitability for swine breeding companies. This study was performed to compare the accuracy of different popular genomic prediction methods and traditional best linear unbiased prediction (BLUP) for future performance of back-fat thickness (BFT), average daily gain (ADG), and loin muscle depth (LMD) in Canadian Duroc, Landrace, and Yorkshire swine breeds. In this study, 17,019 pigs were genotyped using Illumina 60K and Affymetrix 50K panels. After quality control and imputation steps, a total of 41,304, 48,580, and 49,102 single-nucleotide polymorphisms remained for Duroc (n = 6,649), Landrace (n = 5,362), and Yorkshire (n = 5,008) breeds, respectively. The breeding values of animals in the validation groups (n = 392-774) were predicted before performance test using BLUP, BayesC, BayesCπ, genomic BLUP (GBLUP), and single-step GBLUP (ssGBLUP) methods. The prediction accuracies were obtained using the correlation between the predicted breeding values and their deregressed EBVs (dEBVs) after performance test. The genomic prediction methods showed higher prediction accuracies than traditional BLUP for all scenarios. Although the accuracies of genomic prediction methods were not significantly (P > 0.05) different, ssGBLUP was the most accurate method for Duroc-ADG, Duroc-LMD, Landrace-BFT, Landrace-ADG, and Yorkshire-BFT scenarios, and BayesCπ was the most accurate method for Duroc-BFT, Landrace-LMD, and Yorkshire-ADG scenarios. Furthermore, BayesCπ method was the least biased method for Duroc-LMD, Landrace-BFT, Landrace-ADG, Yorkshire-BFT, and Yorkshire-ADG scenarios. Our findings can be beneficial for accelerating the genetic progress of BFT, ADG, and LMD in Canadian swine populations by selecting more accurate and unbiased genomic prediction methods.

8.
Animals (Basel) ; 11(1)2020 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-33375575

RESUMEN

Selection on genomic breeding values (GBVs) is now readily available for ranking candidates in improvement schemes. Our objective was to quantify benefits in terms of accuracy of prediction from including genomic information in the single-trait estimation of breeding values (BVs) for a New Zealand mixed breed dairy goat herd. The dataset comprised phenotypic and pedigree records of 839 does. The phenotypes comprised estimates of 305-day lactation yields of milk, fat, and protein and average somatic cell score from the 2016 production season. Only 388 of the goats were genotyped with a Caprine 50K SNP chip and 41,981 of the single nucleotide polymorphisms (SNPs) passed quality control. Pedigree-based best linear unbiased prediction (PBLUP) was used to obtain across-breed breeding values (EBVs), whereas a single-step BayesC model (ssBC) was used to estimate across-breed GBVs. The average prediction accuracies ranged from 0.20 to 0.22 for EBVs and 0.34 to 0.43 for GBVs. Accuracies of GBVs were up to 103% greater than EBVs. Breed effects were more reliably estimated in the ssBC model compared with the PBLUP model. The greatest benefit of genomic prediction was for individuals with no pedigree or phenotypic records. Including genomic information improved the prediction accuracy of BVs compared with the current pedigree-based BLUP method currently implemented in the New Zealand dairy goat population.

9.
Mar Biotechnol (NY) ; 20(5): 559-565, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29943315

RESUMEN

The Japanese flounder is one of the most widely farmed economic flatfish species throughout eastern Asia including China, Korea, and Japan. Edwardsiella tarda is a major species of pathogenic bacteria that causes ascites disease and, consequently, a huge economy loss for Japanese flounder farming. After generation selection, traditional breeding methods can hardly improve the E. tarda resistance effectively. Genomic selection is an effective way to predict the breeding potential of parents and has rarely been used in aquatic breeding. In this study, we chose 931 individuals from 90 families, challenged by E. tarda from 2013 to 2015 as a reference population and 71 parents of these families as selection candidates. 1,934,475 markers were detected via genome sequencing and applied in this study. Two different methods, BayesCπ and GBLUP, were used for genomic prediction. In the reference population, two methods led to the same accuracy (0.946) and Pearson's correlation results between phenotype and genomic estimated breeding value (GEBV) of BayesCπ and GBLUP were 0.912 and 0.761, respectively. In selection candidates, GEBVs from two methods were highly similar (0.980). A comparison of GEBV with the survival rate of families that were structured by selection candidates showed correlations of 0.662 and 0.665, respectively. This study established a genomic selection method for the Japanese flounder and for the first time applied this to E. tarda resistance breeding.


Asunto(s)
Edwardsiella tarda/patogenicidad , Enfermedades de los Peces/genética , Enfermedades de los Peces/microbiología , Proteínas de Peces/metabolismo , Lenguado/metabolismo , Genómica/métodos , Animales , Proteínas de Peces/genética , Lenguado/genética , Lenguado/microbiología , Perfilación de la Expresión Génica
10.
Front Genet ; 7: 151, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27594861

RESUMEN

Genomic Best Linear Unbiased Predictor (GBLUP) assumes equal variance for all single nucleotide polymorphisms (SNP). When traits are influenced by major SNP, Bayesian methods have the advantage of SNP selection. To overcome the limitation of GBLUP, unequal variance or weights for all SNP are applied in a method called weighted GBLUP (WGBLUP). If only a fraction of animals is genotyped, single-step WGBLUP (WssGBLUP) can be used. Default weights in WGBLUP or WssGBLUP are obtained iteratively based on single SNP effect squared (u (2)) and/or heterozygosity. When the weights are optimal, prediction accuracy, and ability to detect major SNP are maximized. The objective was to develop optimal weights for WGBLUP-based methods. We evaluated 5 new procedures that accounted for locus-specific or windows-specific variance to maximize accuracy of predicting genomic estimated breeding value (GEBV) and SNP effect. Simulated datasets consisted of phenotypes for 13,000 animals, including 1540 animals genotyped for 45,000 SNP. Scenarios with 5, 100, and 500 simulated quantitative trait loci (QTL) were considered. The 5 new procedures for SNP weighting were: (1) u (2) plus a constant equal to the weight of the top SNP; (2) from a heavy-tailed distribution (similar to BayesA); (3) for every 20 SNP in a window along the whole genome, the largest effect (u (2)) among them; (4) the mean effect of every 20 SNP; and (5) the summation of every 20 SNP. Those methods were compared to the default WssGBLUP, GBLUP, BayesB, and BayesC. WssGBLUP methods were evaluated over 10 iterations. The accuracy of predicting GEBV was the correlation between true and estimated genomic breeding values for 300 genotyped animals from the last generation. The ability to detect the simulated QTL was also investigated. For most of the QTL scenarios, the accuracies obtained with all WssGBLUP procedures were higher compared to those from BayesB and BayesC, partly due to automatic inclusion of parent average in the former. Manhattan plots had higher resolution with 5 and 100 QTL. Using a common weight for a window of 20 SNP that sums or averages the SNP variance enhances accuracy of predicting GEBV and provides accurate estimation of marker effects.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda