Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros

Banco de datos
País como asunto
Tipo del documento
Publication year range
1.
Cryobiology ; 114: 104794, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37981093

RESUMEN

Beijing You Chicken, a valuable local chicken breed from Beijing, China, was once listed as an endangered breed. From the point of view of conservation, the preservation of this breed is an important task for the local researchers. Semen cryopreservation is a popular method to maintain valuable species. However, during cryopreservation, semen is susceptible to oxidative damage. Melatonin is a potent antioxidant and free radical scavenger, so it has been selected to improve the efficiency of sperm cryopreservation. In this study, the chicken semen was treated with different concentrations of melatonin in the cryopreservation solution. The results showed that melatonin at concentrations of 10-3 M and 10-5 M significantly improved sperm progressive motility and total motility, respectively, compared to the control (P < 0.05). Melatonin at 10-3 M also significantly improved the plasma membrane and acrosome integrity of spermatozoa compared to the control. The mechanisms are that melatonin significantly reduces the level of ROS and preserves sperm mitochondrial membrane potential. Most importantly, the melatonin-treated cryopreserved chicken sperm after artificial insemination significantly increased the hatching rate of chicks compared to the control (p < 0.05). The results show that melatonin has a positive effect on the quality of the cryopreserved spermatozoa. These results provide the theoretical and practical basis for using melatonin to improve Beijing You Chicken conservation, and they may also be applicable to poultry as a whole.


Asunto(s)
Melatonina , Preservación de Semen , Masculino , Animales , Pollos , Melatonina/farmacología , Criopreservación/métodos , Semen , Beijing , Crioprotectores/farmacología , Crioprotectores/metabolismo , Preservación de Semen/veterinaria , Preservación de Semen/métodos , Espermatozoides , Motilidad Espermática , Análisis de Semen
2.
Anim Genet ; 54(2): 155-165, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36541281

RESUMEN

Runs of homozygosity (ROHs) has become an effective method for analysing inbreeding in livestock populations. Moreover, ROHs is well-suited to detect signatures of selection via ROH islands. This study aimed to investigate the occurrence and distribution of ROHs, compare the genomic inbreeding coefficients and identify the genomic regions with high ROH frequencies in different Beijing-You chicken (BY) populations, including a random conservation population (BY_R), a pedigree conservation population (BY_P), and a commercial population obtained from the market (BY_C). Among them, BY_R in 2010 and 2019 were BY_R1 and BY_R2 respectively. A total of 27 916 ROHs were identified. The average number of ROHs per individual across the three BY populations ranged from 213 (BY_P) to 161 (BY_C), and the average length of ROHs ranged from 0.432 Mb (BY_R2) to 0.451 Mb (BY_P). The highest inbreeding coefficient calculated based on ROHs (FROH ) was 0.1 in BY_P, whereas the lowest FROH was 0.0743 in BY_C. In addition, the inbreeding coefficient of BY_R2 (FROH  = 0.0798) was higher than that of BY_R1 (FROH  = 0.0579). Furthermore, the highest proportion of long ROH fragments (>4 Mb) was observed in BY_P and BY_C. This study showed the top 10 ROH islands of each population, and these ROH islands harboured 53 genes, some of which were related to limb development, body size and immune response. These findings contribute to the understanding of genetic diversity and population demography, and might help improve breeding and conservation strategies for BY populations.


Asunto(s)
Pollos , Endogamia , Animales , Pollos/genética , Beijing , Polimorfismo de Nucleótido Simple , Genómica/métodos , Homocigoto , Genotipo
3.
J Anim Physiol Anim Nutr (Berl) ; 107(2): 671-679, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35668577

RESUMEN

This study was done to compare the energy and nutrient utilisation of corn in Arbor Acres (AA) broilers and Beijing You (BJY) chickens. BJY chickens with the same age as AA broilers were named BJY1 chickens, and with the same body weight as AA broilers were named BJY2 chickens. Three groups of broilers (36 male AA broilers, 72 male BJY1 chickens, and 36 male BJY2 chickens), 2 treatments per group, 6 replicates per treatment, 3 chickens or 6 chickens per replicate. During each period, birds were fed in chambers for 11 days, including 5 days for adaptation to the feed, 3 days for excreta and gas data collection and another 3 days for fasting were recorded. Results showed that the fasting heat production (FHP) of AA, BJY1 and BJY2 chickens gradually stabilised after fasting for 72 h, the FHP of AA, BJY1 and BJY2 chickens were 486.54, 536.22 and 548.90 KJ/kg BW0.70 /day respectively. AA broilers had significantly lower (p < 0.01) apparent total tract digestibility (ATTD) of starch in corn than that of BJY1 and BJY2 chickens, whereas there were no significant differences (p > 0.05) observed in ATTD of dry matter, crude protein, ether extract and crude fibre. The apparent metabolisable energy (AME) values of corn in AA, BJY1 and BJY2 chickens were 16.18, 16.81, and 16.39 MJ/kg dry matter (DM) and the corresponding nitrogen-corrected AME (AMEn) values were 15.71, 16.38 and 15.99 MJ/kg DM respectively. The net energy (NE) values of corn in AA, BJY1 and BJY2 chickens were 12.03, 12.28 and 11.97 MJ/kg DM respectively. In conclusion, BJY chickens had a higher maintenance energy requirement than that of AA broilers, and AA broilers of the same age and weight as BJY chickens showed no significant differences in AME, AMEn and NE values of corn.


Asunto(s)
Pollos , Dieta , Animales , Masculino , Dieta/veterinaria , Pollos/metabolismo , Zea mays , Beijing , Fenómenos Fisiológicos Nutricionales de los Animales , Alimentación Animal/análisis , Metabolismo Energético , Digestión
4.
Foods ; 13(16)2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39200476

RESUMEN

Unique metabolites contribute to the performance of meat flavor and potential function. In this study, UHPLC-Q Exactive HF-X-based metabolomics and multivariate analysis were applied to explore the characteristic metabolites in the breast meat of Beijing-You chicken (BYC) aged 150, 300, and 450 days (D150, D300, and D450). Based on the criteria of variable importance in the projection (VIP) > 1 and p < 0.05, a total of 154 and 97 differential metabolites (DMs) were screened out compared with D450 (D450 vs. D150, D450 vs. D300), respectively. In general, the relative content of carnosine, L-L-homoglutathione, demethyloleuropein, neohesperidin dihydrochalcone, 7-chloro-2-(3,4-dimethoxyphenyl)-3,5-dihydroxy-6,8-dimethoxy-4H-chromen-4-one, glycerophospholipids, exhibited the highest abundance at D450, while balenine, anserine, L-beta-aspartyl-L-leucine, glutathione, oxidized glutathione, stearoylcarnitine, ganoderic acid alpha, oleuroside, Lysoglycerophospholipid species (LGP) presented a downward trend with age. These 210 DMs were involved in 10 significantly enriched pathways related to the synthesis and metabolism of amino acids, peptides, and glycerophospholipid, such as glutathione metabolism, histidine metabolism, glycerophospholipid metabolism, arginine biosynthesis, tyrosine metabolism, and lysine degradation. In conclusion, this work could not only facilitate a better understanding of the differences of chicken flavor and benefit properties with age, but also provide potential valuable bioactive compounds for further research.

5.
Poult Sci ; 102(9): 102904, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37453280

RESUMEN

Egg products from indigenous chickens have growing market shares as consumers are pursuing differentiation in egg consumption. The genetic improvement in egg production performance of those breeds is crucial for increasing the economic profit. This study aimed to estimate genetic parameters for egg production and clutch-related traits in indigenous Beijing-You chickens for understanding the genetic architecture and exploring proper biological traits for selection. Data on traits including age at first egg (AFE), egg number (EN), average clutch length (ACL), maximum clutch length (MCL), number of clutches (NC) and pauses (NP), and average pause length (APL) were collected from 4 generations of purebred Beijing-You chickens based on the 43-wk and 66-wk of individual egg production record. The heritabilities, genetic and phenotypic correlations were analyzed by the DMU software with the restricted maximum likelihood method in a multivariate animal model. The results showed that the AFE of Beijing-You chickens was 174.45 d of age, and its heritability was as high as 0.62. The heritability was 0.26 for EN43 and 0.18 for EN66. The clutch traits including ACL, MCL, NC, and NP were moderate to high heritable (h2 = 0.15-0.39), but APL was very low heritable (h2 = 0.05). Genetic correlations were high between AFE and EN (rG(AFE, EN43) = -0.79, rG(AFE, EN66) = -0.39), whereas low between AFE and ACL (rG(AFE, ACL43) = -0.08, rG(AFE, ACL66) = 0.01) and MCL (rG(AFE, MCL) = -0.07). EN had higher correlations with ACL (rG(EN43, ACL43) = 0.59, rG(EN66, ACL66) = 0.40) than that with MCL (rG(EN43, MCL43) = 0.56, rG(EN66, MCL66) = 0.32). The heritability for ACL43 (h2 = 0.38) was higher than that for MCL43 (h2 = 0.33). ACL43 had a positive correlation with EN66 (rG(ACL43, EN66) = 0.62). These results indicated that the egg production of whole laying period could be improved by early selection for AFE and ACL at the same time in Beijing-You chickens.


Asunto(s)
Pollos , Óvulo , Animales , Pollos/genética , Beijing , Fenotipo , Oviposición/genética
6.
Poult Sci ; 102(11): 103035, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37672836

RESUMEN

Intramuscular fat (IMF) is an important factor affecting chicken quality. However, the age-related mechanism of IMF deposition has not yet been elucidated. In this study, the IMF, phospholipids (PL), triglycerides (TG), and fatty acid (FA) content in the breast muscle of Beijing-You chicken (BJY) at 1, 56, 98, and 120 d of age was measured, and mRNA and miRNA sequencing was integrated to explore the regulatory genes of IMF deposition. The results showed that the IMF content of BJY at 1 d of age was significantly higher than that at later stage of birth (P < 0.05). The transcriptome sequencing results showed that 7, 225 differentially expressed genes (DEGs) and 243 differentially expressed miRNAs (DE-miRNAs) were identified. The cluster analysis showed that the expression of DEGs and DE-miRNAs at 1 d of age was significantly different from that at later stages of birth. Furthermore, a potential mRNA-miRNA regulatory network related to IMF deposition was established by weighted gene co-expression network analysis (WGCNA); gga-miR-29c-3p-PIK3R1, gga-miR-6701-3p-PTEN, gga-miR-363-3p-PTEN, gga-miR-1563-WWP1, gga-miR-449c/d-5p-TRAF6, and gga-miR-6701-3p-BMPR1B were identified as key mRNA-miRNA pairs for the regulation of IMF deposition. These results will help elucidate the mechanism of IMF formation mediated by miRNAs in chickens, and provide a theoretical foundation for the genetic improvement of broiler meat quality.

7.
Food Chem X ; 17: 100550, 2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-36845483

RESUMEN

Chicken meat quality and flavor are determined by abundant metabolites. In this study, HPLC-QTRAP-MS-based metabolomic analysis was used to evaluate the characteristic metabolites in the breast muscle of Beijing You chickens aged 56, 98, and 120 days. A total of 544 metabolites in 32 categories were identified, among which amino acids and organic acids were the most abundant. 60 and 55 differential metabolites were identified between 56 and 98 days of age, 98 and 120 days of age, respectively. The content of l-carnitine, l-methionine and 3-hydroxybutyrate increased significantly at 98 or 120 days of age. Arginine biosynthesis, purine metabolism, alanine, aspartic acid, and glutamic acid metabolism were important metabolic pathways that affect chicken meat flavor. This study can help to elucidate the metabolic mechanism of breast muscle during Beijing You chicken development and provide a theoretical reference for the improvement of chicken meat quality and flavor.

8.
Foods ; 12(5)2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36900542

RESUMEN

The flavor of chicken meat is influenced by muscle metabolites and regulatory genes and varies with age. In this study, the metabolomic and transcriptomic data of breast muscle at four developmental stages (days 1, 56, 98, and 120) of Beijing-You chickens (BJYs) were integrated and 310 significantly changed metabolites (SCMs) and 7,225 differentially expressed genes (DEGs) were identified. A Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that SCMs and DEGs were enriched in amino acid, lipid, and inosine monophosphate (IMP) metabolism pathways. Furthermore, genes highly associated with flavor amino acids, lipids, and IMP were identified by a weighted gene co-expression network analysis (WGCNA), including cystathionine ß-synthase (CBS), glycine amidinotransferase (GATM), glutamate decarboxylase 2 (GAD2), patatin-like phospholipasedomain containing 6 (PNPLA6), low-specificity L-threonine aldolase (ItaE), and adenylate monophosphate deaminase 1 (AMPD1) genes. A regulatory network related to the accumulation of key flavor components was constructed. In conclusion, this study provides new perspectives regarding the regulatory mechanisms of flavor metabolites in chicken meat during development.

9.
Foods ; 12(15)2023 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-37569170

RESUMEN

Chicken age contributes to the meat characteristics; however, knowledge regarding the pathways and proteins associated with meat quality and muscle development are still scarce, especially in chicken thigh meat. Hence, the objective of this study was to elucidate the intricate relationship between these traits by liquid chromatography mass spectrometry at three different ages. A total of 341 differential expressed proteins (DEPs) were screened out (fold change ≥ 1.50 or ≤0.67 and p < 0.05) among 45 thigh meat samples (15 samples per age) of Beijing-You chicken (BYC), collected at the age of 150, 300, or 450 days (D150, D300, and D450), respectively. Subsequently, based on the protein interaction network and Markov cluster algorithm (MCL) analyses, 91 DEPs were divided into 26 MCL clusters, which were associated with pathways of lipid transporter activity, nutrient reservoir activity, signaling pathways of PPAR and MAPK, focal adhesion, ECM-receptor interaction, the cell cycle, oocyte meiosis, ribosomes, taurine and hypotaurine metabolism, glutathione metabolism, muscle contraction, calcium signaling, nucleic acid binding, and spliceosomes. Overall, our data suggest that the thigh meat of BYC at D450 presents the most desirable nutritional value in the term of free amino acids (FAAs) and intramuscular fat (IMF), and a series of proteins and pathways associated with meat quality and development were identified. These findings also provide comprehensive insight regarding these traits across a wide age spectrum.

10.
Animals (Basel) ; 13(21)2023 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-37958174

RESUMEN

The physical properties, free amino acids, and metabolites of Beijing-You chicken (BYC) breast meat aged 90, 120, and 150 days were analyzed to investigate the flavor changes with age. The shear force and intramuscular fat increased from 90 to 120 days significantly. The contents of total free amino acids and essential amino acids decreased from 90 to 120 days significantly. No significant differences were detected between 120 and 150 days. The contents of sweet amino acids, bitter amino acids, and umami amino acids showed no significant differences between different ages. In addition, GC-MS and LC-MS were integrated for metabolite detection in breast meat. A total of 128, 142, and 88 differential metabolites were identified in the comparison groups of 120 d vs. 90 d, 150 d vs. 90 d, and 150 d vs. 120 d. Amino acids and lipids were the main differential metabolites. The pathway analysis showed that arginine biosynthesis, histidine metabolism, purine metabolism, and cysteine and methionine metabolism were the main pathways involved in flavor formation during BYC development. It was also found that the metabolites associated with flavor, such as methionine, cysteine, glucose, anserine, arachidonic acid, and glycerol 1-phosphate, were significantly affected by age.

11.
Food Chem ; 403: 134362, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36183464

RESUMEN

Thigh meat from Cobb 500 broiler (Cobb) and Beijing-You chicken (BYC) at marketable age were compared to explore the impact of growth rate on meat quality. BYC had a higher water capacity, as well as lower shear forces and IMF content than Cobb, indicating that the growth rate has a significant influence on meat quality. Additionally, 144 upregulated and 44 downregulated differential metabolites were identified using gas chromatography mass spectroscopy (GC-MS) and liquid chromatography mass spectrometer (LC-MS). Moreover, we found a significant difference between the dominant expression of metabolites in the two genotypes. The highly expressed metabolites in Cobb were amino acids and their derivatives, including l-citrulline, dimethylglycine, 1,4-butanediamine, alanine, and creatine. In contrast, BYC deposited more bioactive compounds, such as, α-linolenic acid, linoleic acid, eicosapentaenoic acid, anserine, and taurine. These results indicate that meat quality and metabolite profiles differ greatly between fast- and slow-growing chickens.


Asunto(s)
Alimentación Animal , Pollos , Animales , Pollos/genética , Alimentación Animal/análisis , Cromatografía de Gases y Espectrometría de Masas , Muslo , Cromatografía Liquida , Espectrometría de Masas en Tándem , Carne/análisis
12.
Foods ; 11(6)2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-35327204

RESUMEN

The objective of this study was to reveal the secrets of the unique meat characteristics of Beijing-you chicken (BJY) and to compare the difference of quality and flavor with Luhua chicken (LH) and Arbor Acres broiler (AA) at their typical market ages. The results showed the meat of BJY was richer in essential amino acids, arachidonic acid contents, inosine monophosphate (IMP), and guanosine monophosphate (GMP). The total fatty acid and unsaturated fatty acid contents of BJY chicken and LH chicken were lower than that of AA broilers, whereas the ratios of unsaturated fatty acids/saturated fatty acids (2.31) and polyunsaturated fatty acids/monounsaturated fatty acids (1.52) of BJY chicken were the highest. The electronic nose and SPME-GC/MS analysis confirmed the significant differences among these three chickens, and the variety and relative content of aldehydes might contribute to a richer flavor of BJY chicken. The meat characteristics of BJY were fully investigated and showed that BJY chicken might be favored among these three chicken breeds with the best flavor properties and the highest nutritional value. This study also provides an alternative way to identify BJY chicken from other chickens.

13.
Food Sci Nutr ; 10(2): 487-498, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35154685

RESUMEN

The molecular regulatory mechanism underlying meat quality between different chicken genotypes remains elusive. This study aimed to identify the differences in metabolites and pathways in pectoralis major (breast muscle) between a commercial fast-growing chicken genotype (Cobb500) and a slow-growing Chinese native chicken genotype (Beijing-You chickens, BYC) at market ages respectively based on ultra-high-performance liquid chromatography-quadrupole/time of flight mass spectrometry (UHPLC-QTOF/MS). Eighteen metabolites were identified as potential biomarkers between BYC and Cobb500 at market ages. Among them, L-cysteine exhibited a higher relative intensity in BYC compared with Cobb500 and was enriched into 10 potential flavor-associated KEGG pathways. In addition, the glycerophospholipid metabolism pathway was found to be associated with chicken meat flavor and the accumulation of sn-glycerol 3-phosphate and acetylcholine was more predominant in BYC than that in Cobb500, which were catalyzed by glycerophosphocholine phosphodiesterase (GPCPD1, EC:3.1.4.2), choline O-acetyltransferase (CHAT, EC:2.3.1.6), and acetylcholinesterase (ACHE, EC:3.1.1.7). Overall, the present study provided some metabolites and pathways for further investigating the roles of the differences in meat flavor quality in breast muscle between Cobb500 and BYC at market ages.

14.
Front Vet Sci ; 9: 908862, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35782537

RESUMEN

The disparity in fatty acids (FA) composition exhibits a significant impact on meat quality, however, the molecular regulatory mechanisms underlying this trait in chicken are far from clear. In this study, a total of 45 female Beijing-You chicken (BYC) hens, fed on the same diet, were collected at the slaughter age of 150, 300, or 450 days (D150, D300, and D450) from sexual maturation stage to culling stage (15 birds per age). Gas chromatography-mass spectrometry (GC-MS) and tandem mass tag labeling technology based on liquid chromatography mass spectrometry (TMT-LC-MS/MS) analysis strategies were applied to profile FA compositions and to compare differential expressed proteins (DEPs) between these different slaughter ages, respectively. The FA profiling showed that increasing hen ages resulted in increased contents of both saturated and unsaturated fatty acids. Proteomic analyses showed a total of 4,935 proteins in chicken breast muscle with the false discovery rate (FDR) < 1% and 664 of them were differentially expressed (fold change > 1.50 or < 0.67 and P < 0.01). There were 410 up- and 116 down-regulated proteins in D150 vs. D300 group, 32 up- and 20 down-regulated in D150 vs. D450 group, and 72 up- and 241 down-regulated in D300 vs. D450 group. A total of 57 DEPs related to FA/lipid-related metabolisms were obtained according to the enrichment analysis of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). These DEPs were involved in 21 significantly enriched (P < 0.05) pathways, including well-known pathways for FA synthesis (metabolism, desaturation, and elongation) and the signaling pathways for lipid metabolism (PPAR, adipocytokine, calcium, VEGF, MAPK, and Wnt). In addition, there existed several representative DEPs (FABP, FABP3, apoA-I, apoA-IV, apoC-III, apoB, VTG1, and VTG2) involved in the regulation of FA/lipid transportation. The construction of the interaction networks indicated that HADH, ACAA2, HADHA, ACSL1, CD36, CPT1A, PPP3R1, and SPHK1 were the key core nodes. Finally, eight DEPs were quantified using parallel reaction monitoring (PRM) to validate the results from TMT analysis. These results expanded our understanding of how the laying age affects the FA compositions and metabolism in hen breast meat.

15.
Poult Sci ; 100(4): 100943, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33652241

RESUMEN

We investigated the effects of housing systems and dietary glucose oxidase (GOD) on the growth performance and intestinal health of Beijing You chickens (BYC). The experiment was designed as a factorial arrangement of 2 housing systems × 2 dietary treatments. Chickens were fed a basal diet or a diet with 200 U/kg GOD and were reared on the floor with deep litter or in the cages. Compared with the litter floor groups, the decreased average daily feed intake of 1 to 42 d, decreased feed conversion ratio (FCR), improved average daily gain of 42 to 77 d, and the whole period were identified in the cage rearing groups (P < 0.05). The FCR of 42 to 77 d and the whole period, the 42-d ileal pH, and 77-d jejunal and ileal pH decreased with the supplement of GOD (P < 0.05). Additionally, 16S rRNA gene of ileum contents was sequenced by high-throughput sequencing. Sequencing data indicated that the Firmicutes phylum of 42 d and the Bacteroidetes phylum were significantly higher in the litter group with GOD supplement (P < 0.05). The jejunal Occludin, Mucin-2 mRNA expression levels were higher in the litter floor groups than those in the cage rearing groups on 42 d (P < 0.05). The Mucin-2 and TNF-α mRNA expression levels increased with cage rearing on 77 d (P < 0.05). The Occludin and TLR-4 mRNA expression levels increased with the supplementation of GOD on 77 d (P < 0.05). Moreover, the upregulation effects of Occludin and ZO-1 mRNA expression levels were more obvious in the litter floor group fed with GOD diet on 77 d (P < 0.05). The serum endotoxin content of 42-day-old cage rearing groups were higher than that of the litter floor groups, and the serum endotoxin content significantly decreased with the supplement of GOD on 77 d. The results indicated that the litter floor systems were beneficial to the development of intestinal barrier junction in the early stage, but the cage systems were more conducive to the growth performance of BYC. The dietary GOD could inhibit the harmful bacteria and promote the beneficial bacteria, which might be related to the improvement of the growth performance and intestinal barrier function.


Asunto(s)
Pollos , Glucosa Oxidasa , Alimentación Animal/análisis , Animales , Beijing , Dieta/veterinaria , Suplementos Dietéticos , Vivienda , ARN Ribosómico 16S , Distribución Aleatoria
16.
Front Physiol ; 12: 658711, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33815156

RESUMEN

Chronological age is one of the important factors influencing muscle development and meat quality in chickens. To evaluate the protein expression profiles during skeletal muscle development, we performed a tandem mass tag (TMT)-based quantitative proteomic strategy in pectoralis major (breast muscle) of Beijing-You chicken (BYC) at the chronological age of 90, 120, and 150 days. Each chronological age contained 3 pooling samples or 15 birds (five birds per pooling sample). A total of 1,413 proteins were identified in chicken breast muscle with FDR < 1% and 197 of them were differentially expressed (fold change ≥1.2 or ≤0.83 and p < 0.05). There were 110 up- and 71 down-regulated proteins in 120 d vs 90 d group, 13 up- and 10 down-regulated proteins in 150 d vs 120 d group. The proteomic profiles of BYC at 120 d were very similar to those at 150 d and highly different from those at 90 d, suggesting that 120 d might be an important chronological age for BYC. Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses indicated that these differentially expressed proteins were mainly involved in the pathway of glycolysis/gluconeogenesis, adrenergic signaling in cardiomyocytes, focal adhesion, oocyte meiosis and phagosome. Furthermore, some DEPs were quantified using parallel reaction monitoring (PRM) to validate the results from TMT analysis. In summary, these results provided some candidate protein-coding genes for further functional validation and contribute to a comprehensive understanding of muscle development and age-dependent meat quality regulation by proteins in chickens.

17.
Poult Sci ; 98(5): 2250-2259, 2019 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-30496504

RESUMEN

This study was conducted to investigate the effects of alfalfa meal supplementation on growth performance, carcass characteristics, meat and egg quality, and intestinal microbiota in chickens. A total of 600 healthy 20-wk female Beijing-you chickens (a local Chinese chicken breed) were selected and randomly assigned into 4 dietary treatments: 0, 5, 8, and 10% alfalfa meal supplementation. Chickens were raised in a free-range system for 56 d. Microbiota inhabiting 3 different intestinal sections (duodenum, ileum, and cecum) was determined using high-throughput sequencing. The results showed that chickens given alfalfa meal had lower (P < 0.05) feed conversion ratio, mortality, abdominal fat yield, and yolk cholesterol content, and higher (P < 0.05) breast muscle contents of inosine monophosphate, total amino acids, essential amino acids, non-essential amino acids, delicious amino acids, yolk protein, albumen protein, and yolk color compared to those given no alfalfa meal. The Lactobacillus was the dominant genus in both duodenum and ileum, while the microbiota in cecum was mainly composed of the Bacteroides. Although small changes in the dominant intestinal microbiota of chickens fed with or without alfalfa meal were observed, supplementation of alfalfa meal tended to stimulate the proliferation of beneficial bacteria, such as the Lactobacillus and Bacteroides, and inhibit potential pathogens, including the Clostridium. Therefore, dietary supplementation of alfalfa meal was feasible to Beijing-you chickens raised in a free-range system, and 10% was recommended as the relatively optimal level.


Asunto(s)
Pollos/fisiología , Huevos/análisis , Microbioma Gastrointestinal , Carne/análisis , Medicago sativa/química , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Pollos/crecimiento & desarrollo , Dieta/veterinaria , Suplementos Dietéticos/análisis , Relación Dosis-Respuesta a Droga , Femenino , Microbioma Gastrointestinal/efectos de los fármacos , Distribución Aleatoria
18.
Anim Sci J ; 86(7): 729-35, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25494700

RESUMEN

Beijing-you is a Chinese local chicken which is raised for both meat and eggs. In the present study, we detected the effects of different rearing systems on growth, slaughtering performances and meat quality of Beijing-you chickens at 26-40 weeks of age. Six hundred Beijing-you hens were randomly allocated into two groups at 16 weeks of age and raised in free range or battery cage systems. The body weight, slaughtering performance and meat quality were measured for each group at the ages of 26, 30, 35 and 40 weeks. Some of the traits were dramatically influenced by the two systems, although most of them did not show significant changes. For the meat fiber microstructure, we found that the diameter of thigh and breast muscle fiber in the free range group were significantly increased than in the cage group (P < 0.05) at 26 weeks of age. The ratio of fast muscle fiber in thigh muscle samples of the free range group was significantly reduced compared to that of cage group at both 35 (P < 0.01) and 40 (P < 0.01) weeks of age, indicating that the free range system could promote the transforming of fast muscle fiber to slow muscle fiber.


Asunto(s)
Crianza de Animales Domésticos/métodos , Pollos/crecimiento & desarrollo , Huevos , Calidad de los Alimentos , Carne , Animales , Peso Corporal , China , Femenino
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda