Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Crit Rev Food Sci Nutr ; : 1-17, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38693696

RESUMEN

Lipid-based delivery systems (LDS) have emerged as cornerstone techniques for bolstering the bioavailability of lipophilic bioactive compounds, addressing challenges related to solubility, stability, and absorption. This critical review examined a substantial dataset of 6,907 scientific articles and 3,021 patents from 2001-2023, elucidating the multifaceted evolution of LDS, with a particular focus on its industrial and patent-driven perspective. Notably, there were pronounced surges in functional food patent applications in 2004, 2011, and 2019. The trajectory revealed a shift from foundational nanoemulsions to more complex structures, such as double/multiple emulsions, solid lipid nanoparticles, Pickering emulsions, and bigels. The review further identified the top 10 leading institutions shaping this domain. Technologies like spray-drying, microfluidics, and phase gelation had revolutionized the landscape, resulting in refined sensory experiences, innovative reduced-fat formulations, enriched beverages, tailor-made infant nutrition, and nuanced release mechanisms for flavors. The review also spotlighted current research frontiers, notably Pickering emulsions, bigels, and multiple emulsions. These emerging technologies not only exemplified the ongoing innovation in the field but also underscored their potential in reshaping the future landscape of value-added functional foods.

2.
J Sci Food Agric ; 104(4): 1920-1927, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-37884466

RESUMEN

BACKGROUND: Butter has been widely used in bakery products and it contains high level of saturated fats. However, excessive consumption of saturated fats would increase the risk of chronic disease. This study was to fabricate water-in-oil (W/O) type bigels as butter replacers to improve the quality attributes of breads. RESULTS: A stable water-in-oil (W/O) type bigel system was fabricated based on mixed oleogelators (rice bran wax and glycerol monostearate) and sodium alginate hydrogel. The ratios of oleogel to hydrogel could significantly affect the stability, microstructure and rheological properties of bigels. All of the bigels exhibited solid-like properties, with increased oleogel fractions, and the network structure of bigel became more compact and orderly with smaller sodium alginate gel particles. Meanwhile, the viscoelastic modulus and firmness of bigel increased, contributing to a higher stability. The bigel dough exhibited lower gel strength and relatively higher extensibility compared to the butter dough. Regardless of oleogel fractions, all the bigel produced bread with a higher specific volume and softer texture than the butter bread. When the oleogel fractions was less than 80%, increasing the oleogel fractions was more beneficial for improving the specific volume, softness and fluffy structure of bread. CONCLUSION: W/O type bigel as butter replacers showed great potential in improving the appearance, structure and textural properties of bread. © 2023 Society of Chemical Industry.


Asunto(s)
Pan , Mantequilla , Hidrogeles/química , Alginatos , Agua , Compuestos Orgánicos
3.
AAPS PharmSciTech ; 24(8): 240, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37989918

RESUMEN

The objective of the present research was to develop fluconazole-loaded transferosomal bigels for transdermal delivery by employing statistical optimization (23 factorial design-based). Thin-film hydration was employed to prepare fluconazole-loaded transferomal suspensions, which were then incorporated into bigel system. A 23 factorial design was employed where ratios of lipids to edge activators, lipids (soya lecithin to cholesterol), and edge activators (sodium deoxycholate to Tween 80) were factors. Ex vivo permeation flux (Jss) of transferosomal bigels across porcine skin was analyzed as response. The optimal setting for optimized formulation (FO) was A= 4.96, B= 3.82, and C= 2.16. The optimized transferosomes showed 52.38 ± 1.76% DEE, 76.37 nm vesicle size, 0.233 PDI, - 20.3 mV zeta potential, and desirable deformability. TEM of optimized transferosomes exhibited a multilamelar structure. FO bigel's FE-SEM revealed a globule-shaped vesicular structure. Further, the optimized transferosomal suspension was incorporated into thyme oil (0.1% w/w)-containing bigel (TO-FO). Ex vivo transdermal fluconazole permeation from different transferosomal bigels was sustained over 24 h. The highest permeation flux (4.101 µg/cm2/h) was estimated for TO-FO bigel. TO-FO bigel presented 1.67-fold more increments of antifungal activity against Candida albicans than FO bigel. The prepared thyme oil (0.1% w/w)-containing transfersomal bigel formulations can be used as topical delivery system to treat candida related fungal infections.


Asunto(s)
Liposomas , Absorción Cutánea , Liposomas/metabolismo , Fluconazol/metabolismo , Administración Cutánea , Lecitinas/metabolismo , Sistemas de Liberación de Medicamentos , Piel/metabolismo
4.
Drug Dev Ind Pharm ; 47(6): 954-962, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34280061

RESUMEN

OBJECTIVE: The objective of this study was to prepare and evaluate the doxycycline hyclate containing bigel for the effective treatment of acne. METHODS: Bigels are biphasic systems formed by water-based hydrogels and oil-based organogel. Carbopol 940 was used to prepare the hydrogel phase, whereas Span-60 and olive oil for the oleogel phase. RESULTS: The microstructure of bigel confirmed the oil in water type emulsion formation. The average droplet size of formulations was found 15-50 µm, and a bell-shaped droplet distribution curve, rheological, or viscosity studies suggested that the consistency and stability of bigel decrease with high organogel concentration. Three formulations (F1, F2, and F3) of the different ratios of hydrogel:oleogel (60:40, 70:30, and 80:20) were prepared in which F1 was less stable compared to F2 and F3. The drug content of F2 and F3 was respectively 79.94 and 71.33%. Formulation F2 was found more effective as compared to F3 based on in vitro drug release studies. Bigel also showed better results during in vivo studies at the rabbit ear model, which reduce acne diameter up to 1.10 mm from 4.9 mm while gel reduced it up to 1.20 mm.


Asunto(s)
Acné Vulgar , Doxiciclina , Acné Vulgar/tratamiento farmacológico , Resinas Acrílicas , Animales , Sistemas de Liberación de Medicamentos , Hidrogeles , Aceite de Oliva , Conejos
5.
Drug Dev Ind Pharm ; 44(9): 1488-1497, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29669437

RESUMEN

Periodontal disease is a chronic inflammation of gum and tissues that surround and support the teeth. Nonsteroidal anti-inflammatory drugs (NSAIDs) can be used in the treatment of periodontitis to ease swelling and inflammation. One approach of treating periodontitis is loading the NSAIDs in local drug delivery systems. Therefore, the objective of this study was to investigate the local delivery of the NSAIDs model drug ibuprofen to treat periodontitis using different types of gel formulations (hydrogel, oleogel, and bigel). Gel formulations were characterized in terms of their rheological properties (flow behavior, viscoelastic, and bioadhesive properties) using a controlled-stress rheometer. The in vitro drug release of ibuprofen from gel formulations was investigated using Franz diffusion cells. Gels exhibited more solid-like (elastic) behavior. The viscosity and viscoelastic properties were in the order of oleogel > bigel > hydrogel, respectively. In bioadhesion study, mucin dispersion/plain ibuprofen-hydrogel mixture showed a frequency-dependent interaction of ΔG' = -31 and ΔG' = + 53 Pa at 1 and 10 rad/s, respectively. A strong positive interaction (ΔG' = + 6000 and +130,667 Pa at 1 and 10 rad/s, respectively) was found in mucin dispersion/plain ibuprofen-oleogel mixture. The extent of the negative interaction increased in mucin dispersion/plain ibuprofen-bigel mixture (ΔG' = -59,000 and -79,375 Pa at 1 and 10 rad/s, respectively). After 6 h, ibuprofen release from hydrogel, oleogel, and bigel was 59.5 ± 2.2, 80.6 ± 3.9, and 94.6 ± 3.2%, respectively. Results showed that the rheological and bioadhesive properties and in vitro drug release were influenced by the type of gel formulations.


Asunto(s)
Hidrogeles/química , Ibuprofeno/química , Ibuprofeno/farmacología , Periodontitis/tratamiento farmacológico , Antiinflamatorios no Esteroideos/química , Antiinflamatorios no Esteroideos/farmacología , Química Farmacéutica/métodos , Portadores de Fármacos/química , Composición de Medicamentos/métodos , Sistemas de Liberación de Medicamentos/métodos , Compuestos Orgánicos/química , Reología/métodos , Viscosidad/efectos de los fármacos
6.
AAPS PharmSciTech ; 19(3): 1116-1123, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29181705

RESUMEN

Coenzyme Q10 (CoQ10) is a vitamin-like oil-soluble molecule that has anti-oxidant and anti-ageing effects. To determine the most optimal CoQ10 delivery vehicle, CoQ10 was solubilised in both water and fish oil, and formulated into hydrogel, oleogel and bigel. Permeability of CoQ10 from each formulation across porcine ear skin was then evaluated. Furthermore, the effects of the omega-3 fatty eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids from fish oil on skin permeation were investigated by means of nuclear magnetic resonance (NMR) and computerised molecular modelling docking experiments. The highest drug permeation was achieved with the bigel formulation that proved to be the most effective vehicle in delivering CoQ10 across the skin membrane due to a combination of its adhesive, viscous and lipophilic properties. Furthermore, the interactions between CoQ10 and fatty acids revealed by NMR and molecular modelling experiments likely accounted for skin permeability of CoQ10. NMR data showed dose-dependent changes in proton chemical shifts in EPA and DHA. Molecular modelling revealed complex formation and large binding energies between fatty acids and CoQ10. This study advances the knowledge about bigels as drug delivery vehicles and highlights the use of NMR and molecular docking studies for the prediction of the influence of drug-excipient relationships at the molecular level.


Asunto(s)
Antioxidantes/administración & dosificación , Ácidos Docosahexaenoicos/química , Ácido Eicosapentaenoico/química , Ubiquinona/análogos & derivados , Animales , Antioxidantes/química , Antioxidantes/metabolismo , Aceites de Pescado/química , Hidrogeles , Simulación del Acoplamiento Molecular , Permeabilidad , Vehículos Farmacéuticos , Piel/metabolismo , Absorción Cutánea , Porcinos , Ubiquinona/administración & dosificación , Ubiquinona/química , Ubiquinona/metabolismo
7.
Int J Biol Macromol ; 260(Pt 1): 129530, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38296666

RESUMEN

This study developed new biphasic gel systems containing a walnut oil-based oleogel and a chitosan hydrogel and evaluated the application on food spread. The effects of different oleogelators [γ-oryzanol/ß-sitosterol (γ-ORY/ß-SIT), candelilla wax/span 65 (CW/SA), and mono- and diglycerides of fatty acids] were explored. Rheological analysis showed that γ-ORY/ß-SIT-based bigel had the strongest gel strength, but XRD confirmed that ß' crystal form (d = 3.72 Å, 4.12 Å) was predominantly in the CW/SA-based bigel, which was more appropriate for application as spread. The characteristics of CW/SA-based bigel with different oleogel fractions (40-80 wt%) were investigated. The microscopic images indicated that the hydrogels were dispersed as small droplets in the oleogels after oleogel fraction reaching 60 %. The highest crystallinity was achieved when the oleogel fraction was 60 %, and its oil binding capacity was 96.49 %. Textural analysis showed that the CW/SA-based bigel (OG-60 %) had similar properties with commercial spread B, and can be used as a partial replacement for spread B. Replacing 75 % of the commercial spread B with the bigel was found to be optimal and displayed acceptable sensory features. This study developed a healthy bigel based on walnut oil and provided the in-depth information for bigels as an alternative to plastic fats.


Asunto(s)
Quitosano , Juglans , Fenilpropionatos , Hidrogeles/química , Compuestos Orgánicos/química
8.
Nanomedicine (Lond) ; 19(18-20): 1659-1673, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39056145

RESUMEN

Aim: The aim of this study was to optimize, develop, characterize and evaluate a topical nanobigel (BG) formulation containing Berberine (BRB) that exhibits anti-melanogenic properties.Materials & methods: The Berberine-loaded bigel (BRB@BG) formulation was prepared by homogenously mixing the optimized hydrogel and oleogel. BRB@BG was characterized in vitro and cytotoxicity study was conducted to evaluate its effects on murine skin melanoma B16F10 cell lines.Results: The optimized BRB@BG exhibited uniform texture with nanometric size, desirable spreadability and extrudability, suitable for topical applications. Cytotoxicity studies revealed that BRB@BG had a lower IC50 value (4.84 µg/ml) on B16F10 cell lines compared with drug alone.Conclusion: In conclusion, the developed BRB@BG formulation showed good potential as safe and effective topical treatment for hyperpigmentation.


Hyperpigmentation is a common skin disease in which the melanin content becomes abnormally high. The existing treatment options are associated with side effects and therefore research is being aimed to develop a topical nanoformulation based on natural compounds. Berberine (BRB) is one such natural compound that is known to inhibit the production of melanin in skin. This study was aimed to develop a bigel formulation of BRB that can be applied on skin, which can treat the hyperpigmentation and is safe. The developed nanomedicine was found to have all good properties of a topical formulation and was more effective than the drug alone. Various studies on animals were conducted to assess its safety and it was found that the formulation did not show any toxicity to the skin.


Asunto(s)
Berberina , Hiperpigmentación , Melanoma Experimental , Berberina/farmacología , Berberina/administración & dosificación , Berberina/química , Animales , Ratones , Línea Celular Tumoral , Hiperpigmentación/tratamiento farmacológico , Melanoma Experimental/tratamiento farmacológico , Melanoma Experimental/patología , Supervivencia Celular/efectos de los fármacos , Hidrogeles/química , Humanos , Portadores de Fármacos/química , Tamaño de la Partícula
9.
Int J Biol Macromol ; 277(Pt 4): 134540, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39111465

RESUMEN

Algal proteins are an emerging source of functional foods. Herein, Chlorella pyrenoidosa protein (CPP)/xanthan gum-based hydrogels (HG) and beeswax-gelled oleogels (OG) are adopted to fabricate bigels. The phase inversion of bigels can be regulated by the ratio of OG and HG: As the OG increased, bigels turn from OG-in-HG (OG/HG) to a semicontinuous state and then HG-in-OG (HG/OG). In OG/HG bigels (OG ≤ 50 %), hydrophilic CPP acts as the emulsifier at the interface of OG and HG, while beeswax emulsifies the system in HG/OG bigels (OG = 80 %). A semicontinuous bigel appears during the transition between HG/OG and OG/HG. The increase of OG can enhance the viscoelasticity, hardness, adhesiveness, chewiness, and thermal stability. OG/HG bigels exhibit stronger thixotropic recovery and oil-holding capacity than HG/OG bigels. In the in-vitro digestion and food 3D printing, the high specific surface area and the highest thixotropic recovery caused by the emulsion structure of the OG/HG bigel (OG = 50 %) are conducive to the release of free fatty acids and molding of 3D-printed objects, respectively. This study provides a new approach to structure the gelled water-oil system with CPP and helps to develop edible algal proteins-based multiphase systems in food engineering or pharmacy.


Asunto(s)
Chlorella , Impresión Tridimensional , Ceras , Ceras/química , Chlorella/química , Hidrogeles/química , Digestión , Compuestos Orgánicos/química , Emulsiones/química , Proteínas Algáceas/química , Proteínas Algáceas/metabolismo
10.
Gels ; 10(5)2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38786266

RESUMEN

This study presents a novel approach to developing a probiotic butter spread product. We evaluated the prebiotic activity of soluble dietary fibers extracted from cranberry and sea buckthorn berry pomace with different probiotic strains (Limosilactobacillus reuteri, Lacticaseibacillus paracasei, and Lactiplantibacillus plantarum), uploaded selected compatible combination in the bigel matrix, and applied it in the probiotic butter spread formulation. Bigels and products were characterized by physical stability, rheological, textural properties, and viability of probiotics during storage at different conditions. The highest prebiotic activity score was observed in soluble cranberry (1.214 ± 0.029) and sea buckthorn (1.035 ± 0.009) fibers when cultivated with L. reuteri. The bigels loaded with probiotics and prebiotic fiber exhibited a significant increase in viscosity (higher consistency coefficient 40-45 Pa·sn) and better probiotic viability (>6 log CFU/g) during long-term storage at +4 °C temperature, surpassing the bigels loaded with probiotics alone. Bigels stored at a lower temperature (-18 °C) maintained high bacterial viability (above 8.5 log CFU/g). The butter spread enriched with the bigel matrix was softer (7.6-14.2 N), indicating improved spreadability. The butter spread product consistently met the required 6 log CFU/g for a functional probiotic food product until 60 days of storage at +4 °C temperature. The butter stored at -18 °C remained probiotic throughout the entire storage period, confirming the protective effect of the bigel matrix. The study's results showed the potential of the bigel to co-encapsulate, protect, and deliver probiotics during prolonged storage under different conditions.

11.
Food Chem ; 459: 140429, 2024 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-39024880

RESUMEN

The ideal physicochemical properties of bigels are important for food applications. Therefore, a new bigel was prepared based on mixed beef tallow and soybean oil oleogel and deacetylated konjac glucomannan (KGM) hydrogel. The effect of the deacetylation degree of KGM on the physicochemical properties and microstructure of bigels was studied. The bigel containing moderate deacetylation degree of KGM had better rheological properties and hardness (319.84 g) than that with low and high deacetylation degrees of KGM. The interactions among the bigel components were analyzed by Fourier transform infrared spectroscopy and molecular dynamics simulation, indicating that the formation of the bigels was dominated by electrostatic interactions. Overall, the bigels containing moderate deacetylation degree of KGM had better physical properties, which may provide a theoretical foundation to develop bigels with low cholesterol, trans and saturated fats levels to replace traditional solid fats in food industry.


Asunto(s)
Celulosa , Hidrogeles , Mananos , Reología , Mananos/química , Hidrogeles/química , Celulosa/química , Celulosa/análogos & derivados , Compuestos Orgánicos/química , Acetilación , Animales , Amorphophallus/química , Bovinos , Aceite de Soja/química , Grasas
12.
Pharmaceutics ; 16(3)2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38543261

RESUMEN

The formulation of biphasic gels as potential semi-solid carriers for hydrophilic and lipophilic active substances is promising for the development of pharmaceutical preparations. The aim of this study was to design a stable bigel composition and to determine the influence of the organogel/hydrogel ratio on the gel's physical-chemical and structural-mechanical properties. The investigated compositions of organogel/hydrogel remained stable at ratios ranging from 5/95 to 40/60. After texture and microstructure analysis, bigels with 20/80 and 25/75 ratios were selected as carriers for the active ingredients, sodium diclofenac and camphor, for use as topical preparations for the treatment of muscle-joint inflammation and pain. Although other researchers have published data on the preparation and evaluation of bigels, there are no scientific results on the development of a two-phase gel with our proposed combination of APIs. Sodium diclofenac release was found to be higher when combined with camphor, which revealed the advantages of the biphasic formulation. The pseudoplastic behavior, thixotropy, and thermal stability of flow of the studied bigel samples was investigated by rheological analysis. Ongoing stability studies confirmed the minimal 6-month period.

13.
Int J Biol Macromol ; 256(Pt 1): 127963, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37951424

RESUMEN

In the food industry, there is a growing demand for bigels that offer both adaptable oral sensations and versatile delivery properties. Herein, we developed bigels using a binary hydrogel of konjac glucomannan (KGM) and gelatin (G) combined with a stearic acid oleogel. We closely examined how the oleogel/hydrogel volume ratio (φ) and the KGM/G mass ratio (γ) influenced various characteristics of the bigels, including their microstructure, texture, rheological properties, thermal-sensitivity, oral tribology, digestive stability, and nutraceutical delivery efficiency. A noteworthy observation was the structural evolution of the bigels with increasing φ values: transitioning from oleogel-in-hydrogel to a bicontinuous structure, and eventually to hydrogel-in-oleogel. Lower γ values yielded a softer, thermally-responsive bigel, whereas higher γ values imparted enhanced viscosity, stickiness, and spreadability to the bigel. Oral tribology assessments demonstrated that φ primarily influenced the friction sensations at lower chewing intensities. In contrast, γ played a significant role in augmenting oral friction perceptions during more intense chewing. Additionally, φ dictated the controlled release and bioaccessibility of curcumin, while γ determined digestive stability. This study provides valuable insights, emphasizing that through meticulous selection and adjustment of the hydrogel matrix composition, bigels can be custom-fabricated to achieve specific oral sensations and regulated digestive behaviors.


Asunto(s)
Gelatina , Hidrogeles , Gelatina/química , Hidrogeles/química , Mananos/química , Compuestos Orgánicos
14.
Food Res Int ; 188: 114352, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38823826

RESUMEN

In the ongoing quest to formulate sensory-rich, low-fat products that maintain structural integrity, this work investigated the potential of bigels, especially those created using innovative Pickering techniques. By harnessing the unique properties of whey protein isolate (WPI) and whey protein microgel (WPM) as interfacial stabilizers, WPM-based Pickering bigels exhibited a remarkable particle localization at the interface due to specific intermolecular interactions. The rise in protein concentration not only intensified particle coverage and interface stabilization but also amplified attributes like storage modulus, yield stress, and adhesiveness, owing to enhanced intermolecular forces and a compact gel matrix. Impressively, WPM-based Pickering bigels outshone in practical applications, showcasing exceptional oil retention during freeze-thaw cycles and extended flavor release-a promising indication for frozen food product applications. Furthermore, these bigels underwent a sensory evolution from a lubricious texture at lower concentrations to a stable plateau at higher ones, offering an enriched consumer experience. In a comparative digestibility assessment, WPM-based Pickering bigels demonstrated superior prowess in decelerating the release of free fatty acids, indicating slowed lipid digestion. This study demonstrates the potential to fine-tune oral sensations and digestive profiles in bigels by modulating Pickering particle concentrations.


Asunto(s)
Digestión , Microgeles , Gusto , Proteína de Suero de Leche , Proteína de Suero de Leche/química , Humanos , Microgeles/química , Manipulación de Alimentos/métodos , Tracto Gastrointestinal/metabolismo , Sensación
15.
Pharmaceuticals (Basel) ; 17(1)2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38256935

RESUMEN

Tamanu oil has traditionally been used to treat various skin problems. The oil has wound-healing and skin-regenerating capabilities and encourages the growth of new skin cells, all of which are helpful for fading scars and hyperpigmentation, as well as promoting an all-around glow. The strong nutty odor and high viscosity are the major disadvantages associated with its application. The aim of this study was to create bigels using tamanu oil for its anti-scarring properties and predict the possible mechanism of action through the help of molecular docking studies. In silico studies were performed to analyze the binding affinity of the protein with the drug, and the anti-scarring activity was established using a full-thickness excision wound model. In silico studies revealed that the components inophyllum C, 4-norlanosta-17(20),24-diene-11,16-diol-21-oic acid, 3-oxo-16,21-lactone, calanolide A, and calophyllolide had docking scores of -11.3 kcal/mol, -11.1 kcal/mol, -9.8 kcal/mol, and -8.6 kcal/mol, respectively, with the cytokine TGF-ß1 receptor. Bigels were prepared with tamanu oil ranging from 5 to 20% along with micronized xanthan gum and evaluated for their pH, viscosity, and spreadability. An acute dermal irritation study in rabbits showed no irritation, erythema, eschar, or edema. In vivo excisional wound-healing studies performed on Wistar rats and subsequent histopathological studies showed that bigels had better healing properties when compared to the commercial formulation (MurivennaTM oil). This study substantiates the wound-healing and scar reduction potential of tamanu oil bigels.

16.
Artículo en Inglés | MEDLINE | ID: mdl-38837118

RESUMEN

This study aimed to incorporate green-synthesized zinc oxide nanoparticles (ZnO NPs), functionalized with polyethylene glycol (PEG) and linked to doxorubicin (DOX), into various topical gel formulations (hydrogel, oleogel, and bigel) to enhance their dermal delivery. The ZnO NPs were produced using the aqueous extract of the root hair of Phoenix dactylifera. The optimized green-synthesized ZnO NPs, PEGylated and conjugated to DOX, demonstrated a particle size below 100 nm, low polydispersity index, and zeta potential between - 11 and - 19 mV. The UV-Vis spectroscopy analysis confirmed characteristic absorption peaks at 351 and 545 nm for ZnO and DOX, respectively. The transmission electron microscope (TEM) images revealed well-dispersed spherical nanoparticles without aggregation. Additionally, ZnO NPs-loaded gels exhibited uniformity, cohesion, no phase separation, pseudoplastic flow, and viscoelastic properties. The in vitro release studies showed that DOX-PEG-ZnO NPs hydrogel released 99.5% of DOX after 5 h of starting the release. Moreover, the penetration of DOX-PEG-ZnO NPs through excised rat skin was visualized by TEM. In conclusion, the hydrogel formulation containing green-synthesized DOX-PEG-ZnO NPs holds great promise for dermal administration in skin cancer treatment. Furthermore, the release rate and skin penetration of DOX from gels were varied based on the type of gel matrix and corroborated with their corresponding rheological properties.

17.
Int J Biol Macromol ; 263(Pt 2): 130081, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38423907

RESUMEN

Solid fats contribute to a delicate and pleasant flavor for food, but its excessive intake increases the risk of cardiovascular disease. Bigel is considered a promising solid fat substitute as it significantly reduces fat content while meeting consumer demands for food flavor and a balanced diet. In this study, bigels were prepared by mixing glyceryl monolaurate-based oleogel (10 wt%) and gellan gum-based hydrogel (0.8 wt%) at ratios of 1:3, 1:1, and 3:1. The microscopic results indicated that the oleogel/hydrogel ratios influenced the structure of bigels, forming oil-in-water, bi-continuous, and water-in-oil bigels with the increase of oleogel proportion, respectively. All bigels presented a semi-solid structure dominated by elasticity, and their hardness, gumminess, chewiness, and cohesiveness increased with the enhancement of hydrogel proportion. Among them, the bigels (S25:L75 and S25:H75) prepared with an oleogel/hydrogel ratio of 1:3 showed excellent freeze-thaw stability, maintaining an oil holding capacity of >95 % after three freeze-thaw cycles. Meanwhile, they also presented good oxidative stabilities, where the peroxide values and malondialdehyde contents were below 0.07 g/100 g and 1.5 mg MDA/kg at 12 d, respectively. Therefore, S25:L75 and S25:H75 are expected to be green, low-cost, healthy, and sustainable alternatives to solid fats.


Asunto(s)
Sustitutos de Grasa , Polisacáridos Bacterianos , Hidrogeles/química , Agua , Compuestos Orgánicos
18.
Int J Biol Macromol ; 237: 124057, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36933592

RESUMEN

The current study focused on analysing and predicting the effect of physicochemical parameters on the rheological properties of the novel polysaccharide-based bigel. This is the first study to report a bigel fabricated entirely from polysaccharides and develop a neural network to predict the modulation in its rheology. This bi-phasic gel had gellan and κ-carrageenan as the constitutive elements in the aqueous and the organic phase, respectively. Physicochemical studies revealed the influence of organogel in eliciting high mechanical strength and smooth surface morphology to the bigel. Furthermore, variation in physiochemical parameters indicated the bigel's inertness towards change in pH of the system. However, variation in temperature led to a noticeable change in the rheology of the bigel. It was observed that after gradual decline, the bigel regained its original viscosity as the temperature increased beyond 80 °C. Insights from this study can pave way for the development of highly-stable polysaccharide bigels.


Asunto(s)
Redes Neurales de la Computación , Polisacáridos Bacterianos , Carragenina/química , Viscosidad , Polisacáridos Bacterianos/química , Concentración de Iones de Hidrógeno , Reología , Geles
19.
Gels ; 9(7)2023 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-37504471

RESUMEN

Nanoemulsions and bigels are biphasic delivery systems that can be used for topical applications. The aim of this study was to incorporate an oil-in-water ciprofloxacin hydrochloride nanoemulsion (CIP.HCl NE) into two types of bigels, Type I (oleogel (OL)-in-hydrogel (WH)) and Type II (WH-in-OL) to enhance drug penetration into skin and treat topical bacterial infections. Bigels were prepared at various ratios of OL and WH (1:1, 1:2, and 1:4). Initially, CIP.HCl NE was prepared and characterized in terms of droplet size, zeta potential, polydispersity index, morphology, and thermodynamic and chemical stability. Then CIP.HCl NE was dispersed into the OL or WH phase of the bigel. The primary physical stability studies showed that Type I bigels were physically stable, showing no phase separation. Whereas Type II bigels were physically unstable, hence excluded from the study. Type I bigels were subjected to microstructural, rheological, in vitro release, antimicrobial, and stability studies. The microscopic images showed a highly structured bigel network with nanoemulsion droplets dispersed within the bigel network. Additionally, bigels exhibited pseudoplastic flow and viscoelastic properties. A complete drug release was achieved after 4-5 h. The in vitro and ex vivo antimicrobial studies revealed that bigels exhibited antimicrobial activity against different bacterial strains. Moreover, stability studies showed that the rheological properties and physical and chemical stability varied based on the bigel composition over three months. Therefore, the physicochemical and rheological properties, drug release rate, and antimicrobial activity of Type I bigels could be modified by altering the OL to WH ratio and the phase in which the nanoemulsion dispersed in.

20.
Food Chem ; 423: 136304, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37159969

RESUMEN

Gel based formulations offer an opportunity to fortify bioactives in food. However, a comparative evaluation of gel systems is scantly available. Thus, this study intended to evaluate the impact of various gel formulations (hydrogel, oleogel, emulsion gel, bigels of different compositions) on the delivery and antioxidant activity of lutein. Ethyl cellulose (EC,15 %w/w) and guar-xanthan gum mixture (1:1,1.5 %w/w) was used as oleogelator and hydrogelator, respectively. The microscopic evaluation indicated an oil-based continuous-phase for bigel with 75% oleogel. An increase in oleogel content enhanced textural and rheological properties. An increase in hydrogel composition (25%-75%) of bigel improved the lutein release (70.4%-83.2%). The highest release of lutein was recorded for emulsion gel (84.9%) and bigel with 25% oleogel (83.2%). The antioxidant activity was comparatively lower in gastric medium than simulated intestinal fluid. It could be inferred that the gel matrix significantly affected the lutein release, antioxidant profile, physiochemical and mechanical characteristics.


Asunto(s)
Antioxidantes , Luteína , Preparaciones de Acción Retardada/química , Emulsiones , Hidrogeles/química
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda