Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
J Environ Manage ; 365: 121609, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38943744

RESUMEN

Sustainable management of critical raw materials is of paramount importance to ensure a steady supply and reduce environmental impact. The application of newly synthesized and environmentally friendly ALG@CS material as a bio-adsorbent for the effective rare earth elements removal from aqueous solution has been presented. The synthesized material underwent FTIR, XPS, EDX, and SEM analysis to determine its suitability for metal uptake. To evaluate the adsorption capacity of ALG@CS for rare earth elements several factors were taken into consideration. These factors included alginate:chitosan ratios, bead size, pH level, composite mass, interaction time, metal ion concentration, and temperature, being all varied during the batch mode evaluation process. Under the optimal conditions, the maximum adsorption capacities were found to be 145.90 mg La(III)/g, 168.44 mg Ce(III)/g, 132.51 mg Pr(III)/g, 128.40 mg Nd(III)/g, 154.36 mg Sm(III)/g, and 165.10 mg Ho(III)/g. The equilibrium data fits well with non-linear three-parameter Sips and Redlich-Peterson isotherm models. The PSO model finds the highest process suitability. The synthesized ALG@CS bio-adsorbent showed excellent regenerative capacity in ten cycles, making it a suitable adsorbent for rare earth elements uptake. The unique bio-adsorbents combination allows for efficient critical raw materials adsorption providing a promising solution for their recovery and recycling.


Asunto(s)
Alginatos , Quitosano , Metales de Tierras Raras , Quitosano/química , Adsorción , Alginatos/química , Metales de Tierras Raras/química , Contaminantes Químicos del Agua/química , Concentración de Iones de Hidrógeno , Espectroscopía Infrarroja por Transformada de Fourier , Purificación del Agua/métodos
2.
Environ Res ; 233: 116360, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37295584

RESUMEN

Antibiotic consumption at high levels in both human and veterinary populations pose a risk to their eventual entry into the food chain and/or water bodies, which will adversely affect the health of living organisms. In this work, three materials from forestry and agro-food industries (pine bark, oak ash and mussel shell) were investigated as regards their potential use as bio-adsorbents in the retention of the antibiotics amoxicillin (AMX), ciprofloxacin (CIP) and trimethoprim (TMP). Batch adsorption/desorption tests were conducted, adding increasing concentrations of the pharmaceuticals individually (from 25 to 600 µmol L-1), reaching maximum adsorption capacities of ≈ 12000 µmol kg-1 for the three antibiotics, with removal percentages of ≈ 100% for CIP, 98-99% adsorption for TMP onto pine bark, and 98-100% adsorption for AMX onto oak ash. The presence of high calcium contents and alkaline conditions in the ash favored the formation of cationic bridges with AMX, whereas the predominance of hydrogen bonds between pine bark and TMP and CIP functional groups explain the strong affinity and retention of these antibiotics. The Freundlich's model provided the best prediction for AMX adsorption onto oak ash and mussel shell (heterogeneous adsorption), whereas the Langmuir's model described well AMX adsorption onto pine bark, as well as CIP adsorption onto oak ash (homogeneous and monolayer adsorption), while all three models provided satisfactory results for TMP. In the present study, the results obtained were crucial in terms of valorization of these adsorbents and their subsequent use to improve the retention of antibiotics of emerging concern in soils, thereby preventing contamination of waters and preserving environment quality.


Asunto(s)
Antibacterianos , Contaminantes Químicos del Agua , Humanos , Agricultura Forestal , Adsorción , Amoxicilina , Ciprofloxacina
3.
Environ Res ; 212(Pt A): 113138, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35364043

RESUMEN

Recent trends in adsorption of Chromium (Cr), Copper (Cu), Lead (Pb) and Mercury (Hg) in wastewater using (i) carbonaceous materials including activated carbon (AC) and biochar (BC), and (ii) nanomaterials including nano zero-valent iron (nZVI) and MXenes have been discussed in this paper. It has been found that adsorption capacity depends largely on the adsorbent modification technique, initial pH of wastewater, dosage of adsorbent, contact time and initial concentration of the pollutants. The pH value ranges for maximum removal of Cr, Cu, Pb and Hg have been reported as 2-4, 5-6, 5-8 and 3-8, respectively. Up to 99% removal of metals has been reported using AC, BC, nZVI and MXene. The mechanism involves the reduction and chemical adsorption of metals. AC and BC have a higher surface area (up to 5000 m2/g) compared to nZVI (up to 500 m2/g) and MXene (up to 67.66 m2/g). However, the higher reactivity and regeneration capacity of nZVI and MXene make them suitable adsorbents. From a practical point of view the application of adsorbents for real effluents, cost analysis, regeneration capability and reuse of heavy metals are some aspects that need attention in future studies. The removal efficiencies of AC and BC are comparable to the nZVI and MXene. The cost analysis may be an attractive aspect to decide the future application of these adsorbents at large scale.


Asunto(s)
Mercurio , Nanoestructuras , Contaminantes Químicos del Agua , Adsorción , Carbón Orgánico , Cromo/análisis , Cobre/análisis , Iones/análisis , Hierro/análisis , Plomo/análisis , Mercurio/análisis , Aguas Residuales/análisis , Agua/análisis , Contaminantes Químicos del Agua/análisis
4.
J Environ Manage ; 250: 109509, 2019 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-31509789

RESUMEN

We studied competitive adsorption for the tetracycline antibiotics (TCs) tetracycline (TC), oxytetracycline (OTC), and chlortetracycline (CTC) on three bio-adsorbents (mussel shell, oak wood ash, and pine bark). The results were compared for individual systems (with antibiotics added separately) and ternary systems (with all three antibiotics added simultaneously). In all cases batch-type experiments were carried out, with 24 h of contact time. In the individual systems, concentrations of 200 µmol L-1 were used for each of the three antibiotics, separately. In the ternary system, all three TCs were added simultaneously, using the following total concentrations: 50, 100, 200, 400, 600 µmol L-1, each antibiotic being 1/3 of the total. Taking into account that ionic strength of a solution is related to a measure of the concentration of ions in that solution, the use of individual and ternary systems allows to compare, for each antibiotic, systems having equal concentrations and similar ionic strength (concentrations of 200 µmol L-1), and systems having different concentrations and ionic strength (200 µmol L-1 in the individual systems, and 600 µmol L-1 in the ternary systems, resulting from the sum of 200 µmol L-1 corresponding to each of the three antibiotics). Adsorption/desorption results indicated that these processes were in all cases closely related to pH values, and to carbon and non-crystalline minerals contents in the bio-adsorbents. Both oak ash and pine bark adsorbed close to 100% of TCs in individual and ternary systems, with desorption <4% for oak ash, and <12% for pine bark. However, mussel shell gave clearly poorer results, only relatively acceptable for CTC, with adsorption <56% and desorption even >30% for TC and OTC. In view of the results, oak ash and pine bark can be recommended as effective bio-adsorbents for the three TCs studied, and could be useful to retain/inactive them in wastes, and soil or liquid media receiving these emerging pollutants, thus reducing risks of damage for public health and the environment.


Asunto(s)
Bivalvos , Clortetraciclina , Oxitetraciclina , Quercus , Contaminantes del Suelo , Adsorción , Animales , Antibacterianos , Corteza de la Planta , Tetraciclina
5.
Toxics ; 12(8)2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39195708

RESUMEN

The anticoccidial monensin (MON) is a high-concern emerging pollutant. This research focused on six low-cost bio-adsorbents (alfa, cactus, and palm fibers, and acacia, eucalyptus, and zean oak barks), assessing their potential for MON removal. Batch adsorption/desorption tests were carried out, and the results were fitted to the Freundlich, Langmuir, Linear, Sips, and Temkin models. The concentrations adsorbed by the six materials were very similar when low doses of antibiotic were added, while they differed when adding MON concentrations higher than 20 µmol L-1 (adsorption ranging 256.98-1123.98 µmol kg-1). The highest adsorption corresponded to the sorbents with the most acidic pH (<5.5) and the highest organic matter and effective cation exchange capacity values (eucalyptus bark and acacia bark, reaching 92.3% and 87.8%), whereas cactus and palm fibers showed the lowest values (18.3% and 10.17%). MON desorption was below 8.5%, except for cactus and palm fibers. Temkin was the model showing the best adjustment to the experimental data, followed by the Langmuir and the Sips models. The overall results indicate that eucalyptus bark, alfa fiber, and acacia bark are efficient bio-adsorbents with potential for MON removal, retaining it when spread in environmental compartments, reducing related risks for human and environmental health.

6.
Food Chem ; 438: 138064, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-37995582

RESUMEN

This study successfully constructed a novel multifunctional bio-adsorbent using sodium alginate (SA), ferroferric oxide (FFO), and carboxymethyl Huangshui polysaccharide (CMHSP) with rapid separation, pH sensitivity, efficient adsorption, and reusability for enhancing the removal of methylene blue (MB) in wastewater. FTIR, XRD, SEM, and VSM results indicated CMHSP improved the porosity of the hydrogel spheres, thus significantly enhancing the MB adsorption capacity with the rate-limiting controlled by chemical adsorption, intraparticle diffusion, and film diffusion. The maximum adsorption capacity obtained from Langmuir model of SA-FFO-CMHSP (186.57 mg/g) was obviously higher than that of SA-FFO (178.82 mg/g). Thermodynamic results showed that the MB adsorption process was endothermic, spontaneous, and favorable, and physical adsorption was dominant. Remarkably, MB adsorption maintained 87% ∼ 95% of the initial after four adsorption-desorption cycles, and proper carboxymethylation was conducive to MB adsorption over a broader range pH. These findings provided reference for designing new efficient bio-adsorbents and the recyclable utilization of Huangshui by-products, which was of great value.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Alginatos , Azul de Metileno , Adsorción , Hidrogeles , Colorantes , Purificación del Agua/métodos , Cinética , Concentración de Iones de Hidrógeno
7.
Int J Biol Macromol ; 266(Pt 2): 131110, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38522694

RESUMEN

Chitosan (CS) and sodium alginate (SA)-based biocomposites (CSA) were prepared with the in-situ generation of Calcium Carbonate (CSAX_Ca) through a simple, straightforward, economical, and eco-friendly procedure. Different drying conditions (X) were tested to achieve suitable structural and surface characteristics to enhance adsorption capacity: freeze-dried (L), vacuum-dried with methanol (M), and freeze-dried + vacuum-dried with methanol (LM). Temperature and adsorbent dosage effects on the adsorption capacity of Cu2+ or Pb2+ were examined. Results showed that the higher-yielding biocomposite (CSALM_Ca) exhibited rapid adsorption and good diffusion properties, achieving removal above 90 % within contaminant initial concentration ranges of 10-100 mg/L. At 35 °C, a pseudo-second-order kinetic and the Langmuir model effectively described kinetics and isotherms, revealing maximum adsorption (qe, max) of 429 mgCu2+/L and 1742 mgPb2+/g. Characterization through FTIR, XRD, and SEM of the as-prepared adsorbents confirmed the presence of CaCO3 in vaterite and calcite forms and the influence of drying conditions on the material morphology. Post-adsorption material characterization, in combination with adsorption findings, revealed chemisorption processes involving Ca2+ ion exchange for Cu2+ or Pb2+, resulting in surface-insoluble compounds. The best-performing material showed that after three reuse cycles, the removal of Cu2+ and Pb2+ decreased to 75 % and 62 %, respectively.


Asunto(s)
Alginatos , Carbonato de Calcio , Quitosano , Cobre , Plomo , Contaminantes Químicos del Agua , Purificación del Agua , Quitosano/química , Cobre/química , Alginatos/química , Plomo/química , Adsorción , Carbonato de Calcio/química , Contaminantes Químicos del Agua/química , Cinética , Purificación del Agua/métodos , Agua/química , Propiedades de Superficie , Temperatura
8.
Environ Pollut ; 339: 122720, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37839681

RESUMEN

Rapid industrialization has exacerbated the hazard to health and the environment. Wide spectrums of contaminants pose numerous risks, necessitating their disposal and treatment. There is a need for further remediation methods since pollutant residues cannot be entirely eradicated by traditional treatment techniques. Bio-adsorbents are gaining popularity due to their eco-friendly approach, broad applicability, and improved functional and surface characteristics. Adsorbents that have been modified have improved qualities that aid in their adsorptive nature. Adsorption, ion exchange, chelation, surface precipitation, microbial uptake, physical entrapment, biodegradation, redox reactions, and electrostatic interactions are some of the processes that participate in the removal mechanism of biosorbents. These processes can vary depending on the particular biosorbent and the type of pollutants being targeted. The systematic review focuses on the many modification approaches used to remove environmental contaminants. Different modification or activation strategies can be used depending on the type of bio-adsorbent and pollutant to be remediated. Physical activation procedures such as ultrasonication and pyrolysis are more commonly used to modify bio-adsorbents. Ultrasonication process improves the adsorption efficiency by 15-25%. Acid and alkali modified procedures are the most effective chemical activation strategies for adsorbent modification for pollution removal. Chemical modification increases the removal to around 95-99%. The biological technique involving microbial culture is an emerging field that needs to be investigated further for pollutant removal. A short evaluation of modified adsorbents with multi-pollutant adsorption capability that have been better eliminated throughout the adsorption process has been provided.


Asunto(s)
Contaminantes Ambientales , Contaminantes Químicos del Agua , Purificación del Agua , Aguas Residuales , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos , Biodegradación Ambiental
9.
Int J Biol Macromol ; 253(Pt 2): 126416, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37633556

RESUMEN

Nowadays, wastewater treatment is a critical concern, particularly regarding the removal of heavy metals through adsorption methods. Extensive research has been conducted on obtaining high-yield and environmentally friendly adsorbents. Natural polymer adsorbents especially have shown promise in ion and organic molecule adsorption. To enhance the practical applicability of adsorbents, the combination of biopolymers to form biocomposites is a promising alternative. In this study, adsorbents based on a 1:1 wt./wt. of chitosan (CS) and alginate (SA) were prepared. The influence of the regeneration route and drying conditions on the copper adsorption capacity was investigated, along with reaction parameters such as contact time, adsorbent particle size, and pH. The highest adsorption capacity was observed in the composite material obtained through a one-pot regeneration process and freeze-dried. The CSAR3L sample exhibited a remarkable adsorption capacity of 288 mg Cu(II)/g after 360 min at 25 °C. The synergistic effect between the CS and SA precursors was confirmed by analyzing the individual precursors and their mechanical mixture. The initial adsorption rates at pH 6 followed the order: CSAR3-L > Bk-CSR3L > Bk-SAR3L + Bk-CSR3L > Bk-SAR3L. The physicochemical and morphological properties of the materials were studied by FTIR, XRD, DLS, XPS, optical microscopy, EDS-SEM, elemental chemical analysis, and TGA-DTG. The utilization of different drying methods resulted in the formation of calcium carbonate crystalline phases in the as-prepared materials, thus creating substantial adsorption active sites. After the adsorption process, hydroxylated copper sulfate phases and a significant decrease in calcium concentration were observed, indicating that an ion exchange adsorption mechanism occurred. The analysis of adsorption kinetics and the shape of the adsorption isotherms, in agreement with the characterization results, suggested the presence of multiple active sites and the formation of a chemisorption monolayer.


Asunto(s)
Quitosano , Metales Pesados , Contaminantes Químicos del Agua , Cobre/química , Quitosano/química , Alginatos/química , Contaminantes Químicos del Agua/química , Adsorción , Cinética , Concentración de Iones de Hidrógeno
10.
Bioresour Technol ; 367: 128255, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36347478

RESUMEN

Pine needles (PNs) are one of the largest bio-polymer produced worldwide. Its waste, i.e., fallen PNs, is mostly responsible for forest fires and is a major challenge. In present article, we have reviewed differenteffortsmadeto tackle this situation. PNs have been used in various fields such asin composite, water purification industries,electronic devices, etc. Gasification is one of the appealing processes for turning PNs into bio-energy; pyrolysis technique has been employed to create various carbon-based water purification materials; saccharification combined with fermentation produced good yields of bio-ethanol; Pd or Ni/PNs biocatalyst showed good catalytic properties in variousreactionsand pyrolysis with or without catalyst is an alluring technique to prepare bio-fuel. Nano cellulose extracted from PNs showed appealing thermal and mechanical strength. The air quality of nearbyenvironment was examinedby studying the magnetic properties of PNs. Packing materials made of PNs showed exceptional ethylene scavenging abilities.


Asunto(s)
Pinus , Pirólisis , Celulosa , Fermentación , Etanol
11.
Materials (Basel) ; 15(14)2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35888489

RESUMEN

This research is concerned with the adsorption and desorption of Cu and As(V) on/from different soils and by-products. Both contaminants may reach soils by the spreading of manure/slurries, wastewater, sewage sludge, or pesticides, and also due to pollution caused by mining and industrial activities. Different crop soils were sampled in A Limia (AL) and Sarria (S) (Galicia, NW Spain). Three low-cost by-products were selected to evaluate their bio-adsorbent potential: pine bark, oak ash, and mussel shell. The adsorption/desorption studies were carried out by means of batch-type experiments, adding increasing and individual concentrations of Cu and As(V). The fit of the adsorption data to the Langmuir, Freundlich, and Temkin models was assessed, with good results in some cases, but with high estimation errors in others. Cu retention was higher in soils with high organic matter and/or pH, reaching almost 100%, while the desorption was less than 15%. The As(V) adsorption percentage clearly decreased for higher As doses, especially in S soils, from 60−100% to 10−40%. The As(V) desorption was closely related to soil acidity, being higher for soils with higher pH values (S soils), in which up to 66% of the As(V) previously adsorbed can be desorbed. The three by-products showed high Cu adsorption, especially oak ash, which adsorbed all the Cu added in a rather irreversible manner. Oak ash also adsorbed a high amount of As(V) (>80%) in a rather non-reversible way, while mussel shell adsorbed between 7 and 33% of the added As(V), and pine bark adsorbed less than 12%, with both by-products reaching 35% desorption. Based on the adsorption and desorption data, oak ash performed as an excellent adsorbent for both Cu and As(V), a fact favored by its high pH and the presence of non-crystalline minerals and different oxides and carbonates. Overall, the results of this research can be relevant when designing strategies to prevent Cu and As(V) pollution affecting soils, waterbodies, and plants, and therefore have repercussions on public health and the environment.

12.
Materials (Basel) ; 15(9)2022 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-35591534

RESUMEN

The antibiotic amoxicillin (AMX) may reach soils and other environmental compartments as a pollutant, with potential to affect human and environmental health. To solve/minimize these hazards, it would be clearly interesting to develop effective and low-cost methods allowing the retention/removal of this compound. With these aspects in mind, this work focuses on studying the adsorption/desorption of AMX in different agricultural soils, with and without the amendment of three bio-adsorbents, specifically, pine bark, wood ash and mussel shell. For performing the research, batch-type experiments were carried out, adding increasing concentrations of the antibiotic to soil samples with and without the amendment of these three bio-adsorbents. The results showed that the amendments increased AMX adsorption, with pine bark being the most effective. Among the adsorption models that were tested, the Freundlich equation was the one showing the best fit to the empirical adsorption results. Regarding the desorption values, there was a decrease affecting the soils to which the bio-adsorbents were added, with overall desorption not exceeding 6% in any case. In general, the results indicate that the bio-adsorbents under study contributed to retaining AMX in the soils in which they were applied, and therefore reduced the risk of contamination by this antibiotic, which can be considered useful and relevant to protect environmental quality and public health.

13.
Bioresour Technol ; 338: 125530, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34271498

RESUMEN

Along with the increasing consumption of tea and its extracts, the amount of tea waste grows rapidly, which not only results in huge biomass loss, but also increases environmental stress. In past years, interest has been attracted on utilization of tea waste biomass, and a lot of work has been carried out. This review summarized the progress in conversion of tea waste by thermo-chemical and biological technologies and analyzed the property of the derived products and their performance in applications. It was found that biochar derived from tea waste had relatively large surface area, porous structures, and abundant functional groups, and could be used as bio-adsorbents and catalysts and electrochemical energy storage, while the cost of its largescale production should be evaluated. Profoundly, biological conversion, including ensiling and composting, was suggested to be an effective way to develop the tea waste biomass in practice due to its low-cost and specific functions.


Asunto(s)
Compostaje , Biomasa ,
14.
Int J Biol Macromol ; 190: 700-712, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34520777

RESUMEN

Fast industrialization and population growth are associated with the increased release of hazardous contaminants in the environment. These hazardous substances, including pharmaceutical, biomedical, personal-care products, heavy metals, endocrine-disrupters, and colorants, pollute the ecosystem by disturbing nature's balance. Nanotechnology has paved new horizons in biochemical engineering by designing novel approaches of integrating nanoscale science with biotechnology to construct improved quality materials for target uptake of pollutants. Recently, nanostructured materials have emerged as research and development frontiers owing to their excellent properties. The tailored designing of nanohybrids constructs with physicochemical alteration enables the nano-bioadsorbent with high target specificity and efficiency. The development of eco-friendly, biodegradable, cost-efficient, and biopolymer-based nanohybrid constructs is gaining attention to remove hazardous environmental pollutants. κ-carrageenan biopolymer is frequently used with different nanomaterials to design nanohybrid bio-adsorbents to remove various contaminants. Herein, the potentialities of carrageenan-based nanohybrid constructs in environmental remediation have been summarized. Different nanostructures, e.g., silica, non-magnetic/magnetic, carbon nanotubes/nanorods, nanoclay/nanomembrane, metal organic frameworks, graphene oxide, and other nanomaterials have been described in combination with carrageenan biopolymers focusing on environmental remediation.


Asunto(s)
Carragenina/química , Contaminantes Ambientales/aislamiento & purificación , Restauración y Remediación Ambiental , Nanoestructuras/química , Fenómenos Magnéticos , Estructuras Metalorgánicas/química
15.
Environ Sci Pollut Res Int ; 25(21): 20328-20335, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28382442

RESUMEN

Nitrate contamination of ground and surface waters causes environmental pollution and human health problems in many parts of the world. This study tests the nitrate removal efficiencies of two ion exchange resins (Dowex 21K XLT and iron-modified Dowex 21K XLT (Dowex-Fe)) and two chemically modified bio-adsorbents (amine-grafted corn cob (AG corn cob) and amine-grafted coconut copra (AG coconut copra)) using a dynamic adsorption treatment system. A submerged membrane (microfiltration) adsorption hybrid system (SMAHS) was used for the continuous removal of nitrate with a minimal amount of adsorbents. The efficiency of membrane filtration flux and replacement rate of adsorbent were studied to determine suitable operating conditions to maintain the effluent nitrate concentration below the WHO drinking standard limit of 11.3 mg N/L. The volume of water treated and the amount of nitrate adsorbed per gramme of adsorbent for all four flux tested were in the order Dowex-Fe > Dowex > AG coconut copra > AG corn cob. The volumes of water treated (L/g adsorbent) were 0.91 and 1.85, and the amount of nitrate removed (mg N/g adsorbent) were 9.8 and 22.2 for AG corn cob and Dowex-Fe, respectively, at a flux of 15 L/(m2/h).


Asunto(s)
Filtración/métodos , Resinas de Intercambio Iónico/química , Nitratos/química , Óxidos de Nitrógeno/química , Estructuras de las Plantas/química , Resinas Sintéticas/química , Purificación del Agua/métodos , Adsorción , Aminas , Cocos , Humanos , Hierro , Contaminantes Químicos del Agua/química , Zea mays
16.
Int J Biol Macromol ; 105(Pt 1): 1202-1212, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28757421

RESUMEN

Low-cost and environment-friendly polymeric adsorbents for sorption of heavy metal ions were synthesized by simultaneous graft copolymerization and cross-linking of acrylic acid alone and with comonomers glycidyl methacrylate, acrylamide and acrylonitrile onto chitosan using free radical initiator and cross-linker in aqueous medium. Structural aspects of cross-linked graft copolymers have been characterized by FTIR, SEM, TGA/DTA, XRD and swelling behavior at pH 2.2, 7.0 and 9.4. An attempt has been made to study sorption of Cr(VI), Cu(II) and Fe(II) ions on cross-linked graft copolymers by equilibration method and to establish a relationship between structural aspects of graft copolymers and metal ion uptake efficiency and selectivity. Solutions of individual ions were used for non-competitive sorption onto synthesized bio-adsorbents as a function of change in contact time, temperature, pH and metal ion concentration in feed. Competitive sorption investigation was performed from an aqueous solution of ternary metal ions by batch equilibration at 25°C and at 7.0pH. Cross-linked graft copolymers showed better results than unmodified chitosan and showed preferential sorption of Fe(II) ions than Cu(II) and Cr(VI) ions.


Asunto(s)
Resinas Acrílicas/química , Quitosano/química , Metales Pesados/química , Cromo/química , Cromo/aislamiento & purificación , Cobre/química , Cobre/aislamiento & purificación , Concentración de Iones de Hidrógeno , Hierro/química , Hierro/aislamiento & purificación , Metales Pesados/aislamiento & purificación , Polimerizacion , Temperatura
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda