RESUMEN
Particle feeding plays a crucial role in the gasifier due to its effects on the efficiency and performance metrics of the thermochemical process. Investigating particle size distribution's impact on downdraft gasification reactor performance, this study delves into the significance of feedstock characteristics (moisture, volatile matter, fixed carbon, and ash contents) during the particle feeding stage. Various biomass wastes (date palm waste, olive pomace and sewage sludge) at diverse compositions and sizes are subjected to empirical determination of mass flow rates (MFR), power ratings, and storage times for each feedstock. The preheating process in the gasifier is considered, employing both an approximation and analytical solution. In addition, the influence of the equivalence ratio (ER) on the syngas yield is analyzed. The collected data reveals that for average particle size of 200 µm, the highest MFR (in g/min) are 0.518 ± 0.033, 7.691 ± 0.415, and 16.111 ± 1.050, for palm wood biomass, olive pomace and sewage sludge, respectively. Smaller particles (80 µm) led to extended storage times. Moreover, the lumped capacitance approximation method consistently underestimates preheating time, with a percentage error of 6.26%-17.08%. Response surface methodology (RSM) optimization analysis provides optimal gasification conditions for palm wood biomass, olive pomace, and sewage sludge with maximum cold gas efficiencies (CGEs) of 58.01%, 63.29%, and 52.27%. The peak conversion was attained at gasification temperatures of 1089.83 °C, 1151.93 °C, and 1102.91 °C for palm wood biomass, olive pomace, and sewage sludge, respectively. In addition, gasification equilibrium model determined optimal gasification temperatures as 1150 °C for palm biomass, 1200 °C for olive pomace, and 1150 °C for sewage sludge with respective syngas efficiencies of 59.62%, 64.13%, and 53.66%. Consequently, the examination of the dosing procedure, preheating dynamics, particle dimensions, ER, storage time, and their combined impacts offer practical insights to effectively control downdraft gasifiers in handling a variety of feedstocks.
Asunto(s)
Biomasa , Tamaño de la Partícula , Olea/química , Aguas del Alcantarillado/química , Aguas del Alcantarillado/análisis , Gases/análisisRESUMEN
Adopting biomass energy as an alternative to fossil fuels for electricity production presents a viable strategy to address the prevailing energy deficits and environmental concerns, although it faces challenges related to suboptimal energy efficiency levels. This study introduces a novel combined cooling and power (CCP) system, incorporating an externally fired gas turbine (EFGT), steam Rankine cycle (SRC), absorption refrigeration cycle (ARC), and organic Rankine cycle (ORC), aimed at boosting the efficiency of biomass integrated gasification combined cycle systems. Through the development of mathematical models, this research evaluates the system's performance from both thermodynamic and exergoeconomic perspectives. Results show that the system could achieve the thermal efficiency, exergy efficiency, and levelized cost of exergy (LCOE) of 70.67%, 39.13%, and 11.67 USD/GJ, respectively. The analysis identifies the combustion chamber of the EFGT as the component with the highest rate of exergy destruction. Further analysis on parameters indicates that improvements in thermodynamic performance are achievable with increased air compressor pressure ratio and gas turbine inlet temperature, or reduced pinch point temperature difference, while the LCOE can be minimized through adjustments in these parameters. Optimized operation conditions demonstrate a potential 5.7% reduction in LCOE at the expense of a 2.5% decrease in exergy efficiency when compared to the baseline scenario.
RESUMEN
Volatile organic compounds (VOCs) evolved from biomass gasification plays a positive role in the formation of PM2.5 and odor pollution. In order to improve the removal rate of various VOCs produced by biomass gasification, a nickel-based supported HZSM-5 cataly st (Ni/HZSM-5 and Ni-Ca-Co/HZSM-5) was prepared by different auxiliary methods, Ni loadings, and pyrolysis temperatures. The catalytic cracking performance of Ni/HZSM-5 catalysts for different VOCs model compounds such as toluene, phenol, furan, acetic acid and cyclohexane were studied in a fixed-bed reactor. The catalysts were further characterized and analyzed by XRD, SEM, XPS and BET. The results showed that the Ni/HZSM--C-Co5 catalyst prepared by ultrasonic-assisted excess impregnation method with Ni loading of 8 wt%, Ca loading of 4 wt%, Co loading of 0.1 wt% had strong catalytic activity for VOCs degradation. With the increase of the cracking temperature, the conversion rate and gas yield of from model compound cracking improved significantly. At 800 °C, the conversion of each model compound was more than 90%, accompanied by the generation of cracking gases such as H2 and CH4. The selectivity of H2 and CH4 from toluene cracking reached 93%, and cyclohexane reached 98%. The models with higher oxygen content and lower bond energy were more likely to undergo reforming reaction to form small molecular gas. Model compounds with large molecular weight and high carbon content provided more carbon sources. Under the conversion degree towards the gas direction was high. This study provides a new idea on the removal of VOCs for the efficient utilization of biomass resources.
Asunto(s)
Compuestos Orgánicos Volátiles , Biomasa , Gases/química , Catálisis , Carbono , Tolueno/químicaRESUMEN
The need to reduce the dependency of chemicals on fossil fuels has recently motivated the adoption of renewable energies in those sectors. In addition, due to a growing population, the treatment and disposition of residual biomass from agricultural processes, such as sugar cane and orange bagasse, or even from human waste, such as sewage sludge, will be a challenge for the next generation. These residual biomasses can be an attractive alternative for the production of environmentally friendly fuels and make the economy more circular and efficient. However, these raw materials have been hitherto widely used as fuel for boilers or disposed of in sanitary landfills, losing their capacity to generate other by-products in addition to contributing to the emissions of gases that promote global warming. For this reason, this work analyzes and optimizes the biomass-based routes of biochemical production (namely, hydrogen and ammonia) using the gasification of residual biomasses. Moreover, the capture of biogenic CO2 aims to reduce the environmental burden, leading to negative emissions in the overall energy system. In this context, the chemical plants were designed, modeled, and simulated using Aspen plus™ software. The energy integration and optimization were performed using the OSMOSE Lua Platform. The exergy destruction, exergy efficiency, and general balance of the CO2 emissions were evaluated. As a result, the irreversibility generated by the gasification unit has a relevant influence on the exergy efficiency of the entire plant. On the other hand, an overall negative emission balance of -5.95 kgCO2/kgH2 in the hydrogen production route and -1.615 kgCO2/kgNH3 in the ammonia production route can be achieved, thus removing from the atmosphere 0.901 tCO2/tbiomass and 1.096 tCO2/tbiomass, respectively.
RESUMEN
Biomass valorization via catalytic gasification is a potential technology for commercizalization to industrial scale. However, the generated tar during biomass valorization posing numerous problems to the overall reaction process. Thus, catalytic tar removal via reforming, cracking and allied processes was among the priority areas to researchers in the recent decades. This paper reports new updates on the areas of catalyst development for tar reduction. The catalyst survey include metallic and metal-promoted materials, nano-structured systems, mesoporous supports like zeolites and oxides, group IA and IIA compounds and natural catalysts based on dolomite, palygorskite, olivine, ilmenite, goethite and their modified derivatives. The influence of catalyst properties and parameters such as reaction conditions, catalyst preparation procedures and feedstock nature on the overall activity/selectivity/stability properties were simultaneously discussed. This paper not only cover to model compounds, but also explore to real biomass-derived tar for consistency. The area that require further investigation was identified in the last part of this review.
Asunto(s)
Gases , Óxidos , Biomasa , CatálisisRESUMEN
A novel cooling, heating, and power system integrated with a solid oxide fuel cell and biomass gasification was proposed and analyzed. The thermodynamic models of components and evaluation indicators were established to present energetic and exergetic analysis. After the validations of thermodynamic models, the system performances under design work conditions were evaluated. The proposed system's electrical, energy, and exergy efficiencies reached up to 52.6%, 68.0%, and 43.9%, respectively. The gasifier and fuel cell stack were the most significant components of exergy destruction in this system, accounting for 41.0% and 15.1%, respectively, which were primarily caused by the gasification and electrochemical reactions' irreversibility. The influences of the key parameters of the ratio of steam to biomass mass flow rate (S/B), the biomass flow rate (Mbio), and the temperature and pressure of the fuel cell (Top and Psofc) on system energy performances were analyzed: doubling S/B (from 0.5 to 1.0) reduced the energy efficiency by 5.3%, while increasing the electrical efficiency by 4.6% (from 52.6% to 55.0%) and raising the biomass mass flow rate by 40% increased the energy and exergy efficiencies by 2.4% and 2.1%, respectively. When raising the SOFC operating temperature by 31.3%, the energy and exergy efficiencies rose by 61.2% (from 50.0% to 80.6%) and 45.1% (from 32.8% to 47.6%), respectively, but this likely would result in a higher operating cost. Increasing the SOFC pressure from 2 to 7 bar increased the electrical efficiency by 10.6%, but additional energy for pumping and compression was consumed.
RESUMEN
The paper deals with the analysis of the combustion of volatiles evolved during thermolysis (thermal treatment) of biomass feedstock. The process is tailored to produce charcoal (biochar), heat and electricity and the whole system consists of a carbonizer, afterburning chamber and steam recovery boiler. In order to maintain safe operation of the carbonizer the process temperature has to be maintained at an acceptable level and thus the majority of gases evolved during biomass processing have to be combusted outside in the afterburning chamber. In this paper the combustion of those gases in a specially-designed combustion chamber was investigated numerically. The calculation results indicated that the production of the biochar has to be carried out with tight integration and management of the heat produced from the combustion of the volatiles and the emission of CO and methane may be maintained at a low level by optimization of the combustion process. The most promising effects were achieved in cases C4 and C5 where the gas was fed tangentially into the afterburning chamber. The calculation results were then used for the design and manufacture of a pilot reactor-from which the parameters and operational data will be presented and discussed in a separate paper.
RESUMEN
Remediation of polluted soils using phytoremediation techniques is an effective strategy. However, the use of the biomass from these soils for energy purposes may raise efficiency and pollution emission problems and there is currently little research on this issue. In this work, the main results of a fluidized-bed gasification treatment conducted on poplar biomass pruning residues from a multi-contaminated area are presented. The samples were collected from an experimental site in which a plant-assisted bioremediation (PABR) technology has been applied since 2013 to reduce the soil heavy metal (HM) and polychlorinated biphenyl (PCB) contents. The main goal of this study was to identify the specific treatment necessary, in addition to conventional tar reforming, for trapping possible residues of HMs and PCBs in ashes during the gasification process. In our study, we demonstrate that gasification of contaminated biomass coming from PABR (where contaminant residues are concentrated mainly in the roots and are insignificant in the shoots) produces syngas whose characteristics are similar to those obtained using non-contaminated biomass. The results showed that contaminant concentrations in the prunings were negligible; the total amount of PCBs was 1.63â¯ng/g, while HMs ranged from 0.01 to 0.70â¯mg/kg, except for Cu and Zn (â¼20â¯mg/kg). Furthermore, the presence in the biomass of Ca and traces of other metals showed a possible catalytic effect with an improvement in the tar conversion in the gasifier leading to a reduction of 5-10% in tar content. The overall results suggest that a specific treatment for pollutant capture is necessary only when the roots, the part of the plants where these contaminants are concentrated, are sampled and used for the gasification process. Although energy from biomass produced on a contaminated site is currently considered waste and involves disposal costs, this paper shows that the poplar biomass grown on a multi-contaminated soil can be used for energy purposes without any impact on the environment.
Asunto(s)
Populus , Contaminantes del Suelo , Biodegradación Ambiental , Biomasa , SueloRESUMEN
Coal-fired power plants are major stationary sources of carbon dioxide and environmental constraints demand technologies for abatement. Although Carbon Capture and Storage is the most mature route, it poses severe economic penalty to power generation. Alternatively, this penalty is potentially reduced by Carbon Capture and Utilization, which converts carbon dioxide to valuable products, monetizing it. This work evaluates a route consisting of carbon dioxide bio-capture by Chlorella pyrenoidosa and use of the resulting biomass as feedstock to a microalgae-based biorefinery; Carbon Capture and Storage route is evaluated as a reference technology. The integrated arrangement comprises: (a) carbon dioxide biocapture in a photobioreactor, (b) oil extraction from part of the produced biomass, (b) gasification of remaining biomass to obtain bio-syngas, and (c) conversion of bio-syngas to methanol. Calculation of capital and operational expenditures are estimated based on mass and energy balances obtained by process simulation for both routes (Carbon Capture and Storage and the biorefinery). Capital expenditure for the biorefinery is higher by a factor of 6.7, while operational expenditure is lower by a factor of 0.45 and revenues occur only for this route, with a ratio revenue/operational expenditure of 1.6. The photobioreactor is responsible for one fifth of the biorefinery capital expenditure, with footprint of about 1000 ha, posing the most significant barrier for technical and economic feasibility of the proposed biorefinery. The Biorefinery and Carbon Capture and Storage routes show carbon dioxide capture efficiency of 73% and 48%, respectively, with capture cost of 139$/t and 304$/t. Additionally, the biorefinery has superior performance in all evaluated metrics of environmental impacts.
Asunto(s)
Dióxido de Carbono , Carbono/química , Chlorella/química , Microalgas/química , Centrales Eléctricas/economía , Biomasa , ImpuestosRESUMEN
The present research is focused on cultivation of microalgae strain Chlorella vulgaris for bio-fixation of CO2 coupled with biomass production. In this regard, a single semi-batch vertical tubular photobioreactor and four similar photobioreactors in series have been employed. The concentration of CO2 in the feed stream was varied from 2 to 12 % (v/v) by adjusting CO2 to air ratio. The amount of CO2 capture and algae growth were monitored by measuring decrease of CO2 concentration in the gas phase, microalgal cell density, and algal biomass production rate. The results show that 4 % CO2 gives maximum amount of biomass (0.9 g L(-1)) and productivity (0.118 g L(-1) day(-1)) of C. vulgaris in a single reactor. In series reactors, average productivity per reactor found to be 0.078 g L(-1) day(-1). The maximum CO2 uptake for single reactor also found with 4 % CO2, and it is around 0.2 g L(-1) day(-1). In series reactors, average CO2 uptake is 0.13 g L(-1) day(-1) per reactor. TOC analysis shows that the carbon content of the produced biomass is around 40.67 % of total weight. The thermochemical characteristics of the cultivated C. vulgaris samples were analyzed in the presence of air. All samples burn above 200 °C and the combustion rate become faster at around 600 °C. Almost 98 wt% of the produced biomass is combustible in this range.
Asunto(s)
Biomasa , Reactores Biológicos , Dióxido de Carbono/metabolismo , Chlorella vulgaris/crecimiento & desarrollo , Modelos BiológicosRESUMEN
Gasification is a thermochemical process that has gained significant interest in the field of biomass energy conversion. Despite the level of technological maturity of the process, the dynamic variation of the process as a result of changes in both the properties of the gasifying agent and biomass has not been analysed in sufficient depth. Therefore, the present study characterizes the process dynamically as a function of step-type changes in rice husk biomass moisture content and gasifying airflow. To identify stability conditions and the range for inducing disturbances, steady-state tests were carried out using a 32-factorial design. The experimental results demonstrate that within the tested range of airflow, the gasification process operates in the oxygen-limited zone. Despite increasing the airflow from 20 to 40 standard liters per minute (SLPM) and driving the reaction towards the combustion zone, the high temperatures achieved resulted in the gas reaching a peak Lower Heating Value (LHV) of 2.6 MJ/Nm3 and a gas power of 2.6 kW, with a Cold Gas Efficiency (CGE) of 62%. In contrast, the effect of biomass moisture content was negligible due to the thermal inertia of the reactor and the natural variation of the process. Dynamic evaluation revealed that the oxidation temperature and gas concentration were the variables that took the longest to return to stability after air disturbances. It took approximately 1200 s for the hydrogen (H2) concentration to stabilize, while the gas power required about 300 s. No clear results were observed regarding the impact of the dynamic disturbance in moisture content, which varied between 12.3% w.t and 21.5% w.t.
RESUMEN
This research aims to evaluate the techno-economic viability and commercial potential of biomass gasification across different capacities. Sensitivity analysis was conducted based on an established downdraft gasifier model using Aspen Plus. Results underscored the significant impact of gasification temperature and equivalence ratio (ER) on syngas composition, low heating value (LHV), and cold gas efficiency (CGE). Among the feedstocks tested, coconut shell emerged as a feasible feedstock, yielding syngas with an LHV of 8.93 MJ/Nm3 and achieving a CGE of up to 71.12 %. Optimal gasification temperatures ranged between 750 °C to 1,000 °C, with peak ER falling within 0.1 to 0.3. Economic analysis revealed that smaller-scale operations like Plant A resulted in a negative net present value of - US$0.63 million, indicating unfavorable investments. The internal rate of return notably increased from 9.53 % for Plant B compared to -2.56 % for Plant A (20 kW). Plant D, with larger capacity of 20 MW, showed an impressive payback period of less than two years (1.69 years). Medium to large-scale plants such as Plant C (2 MW) and Plant D demonstrated greater economic resilience, with Plant D achieving a significantly lower levelized cost of electricity of US$ 0.19/kWh compared to Plant A at US$ 0.86/kWh. It was noted that the impact of capital costs, operating expenses, and revenue variations is less pronounced at larger scales. The findings from this study shed light on the feasibility of biomass gasification for power generation as a viable option, thereby unlocking the potential for its large-scale commercialization.
Asunto(s)
Biomasa , Centrales Eléctricas/economía , Gases , Biocombustibles/economíaRESUMEN
Tar build-up is one of the bottlenecks of biomass gasification processes. Dry reforming of tar is an alternative solution if the oxygen chemical potential on the catalyst surface is at a sufficient level. For this purpose, an oxygen-donor perovskite, LaCoO3, was used as a catalyst for the dry reforming of tar. To circumvent the complexity of the tar and its constituents, the benzene molecule was chosen as a model compound. Dry reforming of benzene vapor on the LaCoO3 catalyst was investigated at temperatures of 600, 700, and 800 °C; at CO2/C6H6 ratios of 3, 6, and 12; and at space velocities of 14,000 and 28,000 h-1. The conventional Ni(15 wt.%)/Al2O3 catalyst was also used as a reference material to determine the relative activity of the LaCoO3 catalyst. Different characterization techniques such as X-ray diffraction, N2 adsorption-desorption, temperature-programmed reduction, and oxidation were used to determine the physicochemical characteristics of the catalysts. The findings demonstrated that the LaCoO3 catalyst has higher CO2 conversion, higher H2 and CO yields, and better stability than the Ni(15 wt.%)/γ-Al2O3 catalyst. The improvement in activity was attributed to the strong capacity of LaCoO3 for oxygen exchange. The transfer of lattice oxygen from the surface of the LaCoO3 catalyst facilitates the oxidation of carbon and other surface species and leads to higher conversion and yields.
RESUMEN
In this research, a dielectric barrier discharge (DBD) reactor is used to study the cracking of the toluene into C1-C6 hydrocarbons. The combined effect of parameters such as temperature (20-400 °C) and plasma power (10-40 W) was investigated to evaluate the DBD reactor performance. The main gaseous products from the decomposition of toluene include lower hydrocarbon (C1-C6). The cracking of toluene increases with power at all temperatures (20-400 °C). On the otherhand, it decreases from 92.8 to 73.1% at 10 W, 97.2 to 80.5% at 20, 97.5 to 86.5% at 30 W, and 98.4 to 93.7% at 40 W with raising the temperature from 20 to 400 °C. Nonetheless, as the temperature and plasma input power increase, the methane yield increases. At 40 W, the maximum methane yield was 5.1%. At 10 and 20 W, the selectivity to C2 increases as the temperature rises up to 400 °C. At 30 and 40 W, it began to drop after 300 °C due to the formation of methane and the yield of methane increases significantly beyond this temperature.
RESUMEN
Compared to extensive studies on affecting parameters in sulfur removal with ZnO adsorbents from coal gasification syngas, similar studies conducted for biomass gasification syngas (BGS) are quite rare. Thus, considering the BGSs with high water content, this study was performed to investigate the effect of H2O presence in syngas on sulfur removal capacity (SRC) of ZnO adsorbents. Initially, the effect of gas composition and temperature on SRC in binary gas mixture was investigated. While H2O decreased the SRC, as expected, the highest reduction in the capacity occurred in the CO-H2S gas mixture due to observed COS formation. Second, the SRCs and resulting COS formation were compared for synthetic syngas mixtures having different water contents and for different amounts of adsorbents. Finally, the separate and combined effects of temperature and H2O on SRC and COS formation in synthetic syngas were investigated by comparing SRCs of typical syngas under wet and dry conditions. The results showed that increasing the amount of adsorbent and temperature results in higher SRC due to a reduction in COS formation through the reactions of COS with H2 and H2O. This indicates that it is critical to control the residence time of syngas and temperature to reduce COS formation during ZnO adsorption.
Asunto(s)
Óxido de Zinc , Gases , Azufre , Temperatura , Carbón Mineral , BiomasaRESUMEN
This study aims to introduce, conceptualize, and design a novel biomass/gasification-driven hybrid energy configuration. The proposed hybrid configuration has four subsystems: reformer solid oxide fuel cell (RSOFC), biomass/gasification, homogeneous charge compression ignition engine (HCCIE) plus waste heat recovery system (WHRS). RSOFC and HCCIE systems are embedded to generate electric energy. The syngas required for these two subsystems is captured from the biomass/gasification subsystem. In addition to generating electrical energy, fuel cell is responsible for providing combustible fuel to the HCCIE subsystem. The embedded engine in the system can improve the proposed configuration efficiency by increasing the rate of electrical energy production. In addition, the dissipated heat of fuel cell and engine subsystems is recovered by WHRS. The proposed energy configuration is evaluated and discussed from energetically, exergetically and exergoeconomic and environmental aspects to obtain a comprehensive feasibility study of the plant. The offered hybrid design has new component's structure and relationships that have not been reported in the publications. The analysis indicated that the proposed hybrid configuration is capable of generating approximately 1100 kW and 366.3 W of electric and thermal power, respectively, with the overall energetic and exergetic efficiencies of 69.4% and 52.1%. Exergoeconomic analysis results revealed that the specific fuel cost of the total proposed configuration was approximately 1.96 USD per GJ. In addition, compared to a coal and petroleum oil-based power generation plants, the proposed hybrid configuration can have approximately 2.75-fold and 97.7% lower CO2 emissions, sequentially. Besides, the proposed system can rival other similar biomass-driven designs.
Asunto(s)
Dióxido de Carbono , Combustibles Fósiles , Dióxido de Carbono/análisis , Calor , Biomasa , Centrales Eléctricas , ÓxidosRESUMEN
Machine learning methods have recently shown a broad application prospect in biomass gasification modeling. However, a significant drawback of the machine learning approaches is their poor physical interpretability when relying on limited experimental data. In the present work, a physics-informed neural network method (PINN) is developed to predict biomass gasification products (N2, H2, CO, CO2, and CH4). PINN simultaneously considers regression, structure, and physical monotonicity constraints in the loss function, providing physically feasible predictions. Specifically, the PINN models have outperformed prediction capability (average test R2 0.91-0.97) compared to five other machine learning methods through 50 times random sample classifications. Furthermore, it is demonstrated that the developed models can maintain correct monotonicity even if the feedstock characteristics or gasification conditions are outside the training data. By using a reliable physical mechanism to guide machine learning, the model can ensure better generalizability and scientific interpretability.
Asunto(s)
Biomasa , Gases , Aprendizaje Automático , Modelos Teóricos , Redes Neurales de la Computación , Física , Gases/químicaRESUMEN
Chemical looping gasification (CLG) is a promising technology for syngas production with low pollutant emission. In this study, doped La-Fe-O perovskites including LaFeO3 (LF), LaFe0.5Ni0.5O3 (LN5F5) and La0.3Ba0.7FeO3 (L3B7F) were developed for microalgae CLG. The as-prepared perovskites exhibited an outstanding performance in syngas production with accumulative syngas yield > 33 mol/kg. For gas-N evolution, perovskites were beneficial to the formation of NH3 and HCN, while the iron ore may convert precursors to NO. Below 400 °C, NOx can be stored on the perovskite surface in the form of nitrite/nitrate species. When the temperature was above 700 °C, NOx can be selectively reduced by reducing components in tar or syngas under the catalysis of L3B7F, resulting in the final reduction of NOx emission. Thus, CLG over L3B7F may be a promising way for efficient utilization of microalgae to overcome the intractable nitrogen-related obstacles in the commercial application of biomass gasification technologies.
Asunto(s)
Microalgas , Oxígeno , Gases , Óxidos , BiomasaRESUMEN
In this work, a novel biomass gasifier combined energy system was offered for potable water, heating load, and power generation. The system included a gasifier, an S-CO2 cycle, a combustor, a domestic water heater, and thermal desalination unit. The plant was evaluated from various aspects, i.e., energetic, energetic, exergo-economic, sustainability, and environmental. To this aim, modeling of the suggested system was conducted by EES software; then, a parametric inquiry was carried out to detect the critical performance parameters, considering an environmental impact indicator. The results showed that the freshwater rate, Levelized CO2 emissions, total cost, and sustainability index of 21.19 kg s-1, 0.563 t.MWh-1, 13.13 $.GJ-1, and 1.53 were acquired, each. Moreover, the combustion chamber is a major fount in the irreversibility of the system. Besides, the energetic and exergetic efficiencies were computed at 89.51% and 40.87%. Overall, the offered water and energy-based waste system showed great functionality in terms of thermodynamic, economic, sustainability, and environmental standpoints by enhancing the gasifier temperature.
Asunto(s)
Ambiente , Agua , Temperatura , TermodinámicaRESUMEN
In recent years, low-temperature plasma-assisted processes, featuring high reaction efficiency and wide application scope, have emerged as a promising alternative to conventional methods for biomass valorization. It is well established that charged species, chemically energetic molecules and radicals, and highly active photons playing key roles during processing. This review presents the major applications of low-temperature plasma for biomass conversion in terms of (i) pretreatment of biomass, (ii) chemo fractionation of biomass into value-added chemicals, and (iii) synthesis of heterogeneous catalyst for further chemo-catalytic conversion. The pretreatment of biomass is the first and foremost step for biomass upgrading to facilitate raw biomass transformation, which reduces the crystallinity, purification, and delignification. The chemo-catalytic conversion of biomass involves primary reactions to various kinds of target products, such as hydrolysis, hydrogenation, retro-aldol condensation and so on. Finally, recent researches on plasma-assisted chemo-catalysis as well as heterogeneous catalysts fabricated via low-temperature plasma at relatively mild condition were introduced. These catalysts were reported with comparable performance for biomass conversion to other state-of-the-art catalysts prepared using conventional methods.