Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Tipo del documento
Publication year range
1.
Nanomedicine ; 13(4): 1519-1529, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28214607

RESUMEN

We describe the development of a joint in vivo/ex vivo protocol to monitor magnetic nanoparticles in animal models. Alternating current biosusceptometry (ACB) enables the assessment of magnetic nanoparticle accumulation, followed by quantitative analysis of concentrations in organs of interest. We present a study of real-time liver accumulation, followed by the assessment of sequential biodistribution using the same technique. For quantification, we validated our results by comparing all of the data with electron spin resonance (ESR). The ACB had viable temporal resolution and accuracy to differentiate temporal parameters of liver accumulation, caused by vasculature extravasation and macrophages action. The biodistribution experiment showed different uptake profiles for different doses and injection protocols. Comparisons with the ESR system indicated a correlation index of 0.993. We present the ACB system as an accessible and versatile tool to monitor magnetic nanoparticles, allowing in vivo and real-time evaluations of distribution and quantitative assessments of particle concentrations.


Asunto(s)
Hígado/metabolismo , Magnetismo/métodos , Nanopartículas de Magnetita/química , Animales , Espectroscopía de Resonancia por Spin del Electrón , Masculino , Ratas Wistar , Distribución Tisular
2.
Heliyon ; 10(8): e29818, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38681603

RESUMEN

Environmental consciousness motivates scientists to devise an alternative method for producing natural fiber composite materials in order to decrease the demand for synthetic fibers. This study explores the potential of a novel composite material derived from madar fiber-reinforced epoxy with porcelain filler particulates, designed specifically for biomedical instrumentation applications. The primary focus is to assess the material's structural, mechanical, and antibacterial properties. X-ray Diffraction analysis was employed to discern the crystalline nature of the composite, revealing enhanced crystallinity due to the inclusion of porcelain particulates. Fourier-Transform Infrared Spectroscopy confirmed the chemical interactions and bonding mechanisms between madar fiber, epoxy matrix, and porcelain filler. Mechanically, the composite exhibited superior properties when addition of porcelain fillers, maximum results obtain in tensile strength of 51.28 MPa, flexural strength of 54.21 MPa, and impact strength of 0.0155 kJ/m2, making it ideal for robust biomedical applications. Scanning Electron Microscopy provided detailed insights into the morphology and distribution of the reinforcing agents within the epoxy matrix, emphasizing the fibrillated structure of madar fiber and the uniform dispersion of porcelain particulates. Importantly, antibacterial assays demonstrated the composite's potential resistance against common pathogenic bacteria, which is crucial for biomedical instrumentation. Collectively, this research underscores the promising attributes of the madar fiber reinforced epoxy composite with porcelain particulates, suggesting its suitability for advanced biomedical applications.

3.
J Med Eng Technol ; 46(4): 335-340, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35362357

RESUMEN

Visually impaired people are often subjugated under extreme circumstances even in their day-to-day life. The daily requirements of a common man appear to be an impediment in their routine life. Simplest of tasks like walking, eating, bathing, conversing and even eating is of utmost difficulty to them. Moreover, with such difficulties their only way-out seems to be dependency on the privileged lot, which further diminishes their confidence in themselves and gradually makes them even more dependent. The conventional devices that are used by visually impaired people include basic walking sticks which fail at the job in hand by not providing adequate stabilisation on rough surfaces and misguiding the users into unfavourable conditions. There is no way for the person to know what the object in front of them is without hitting it with the stick, which could also lead to accidents. To solve these problems, a smart walking stick is developed which not only recognises the object in front of it using Machine Learning (ML) models, but also gives a voice output to alert its user about the particular object thereby limiting the chance of any and all accidents. The concept is realised in hardware and integrated to the walking stick. This helps in stabilisation of phone and to produce better results in object identification. Further an application is developed to alert the user by converting the obtained image into a voice messages.


Asunto(s)
Bastones , Personas con Daño Visual , Humanos , Aprendizaje Automático , Masculino , Caminata
4.
Rev. bras. eng. biomed ; 29(3): 269-277, set. 2013. ilus, tab
Artículo en Inglés | LILACS | ID: lil-690215

RESUMEN

INTRODUCTION: Electromagnetic interference caused by electric power lines adversely affects the signals of electronic instruments, especially those with low amplitude levels. This type of interference is known as common-mode interference. There are many methods and architectures used to minimize the influence of this kind of interference on electronic instruments, the most common of which is the use of band-reject filters. This paper presents the analysis, development, prototype and test of a new reconfigurable filter architecture for biomedical instruments, aiming to reduce the common-mode interference and preserve the useful signal components in the same frequency range as that of the noise, using the technique of dynamic impedance balancing. METHODS: The circuit blocks were mathematically modeled and the overall closed-loop transfer function was derived. Then the project was described and simulated in the VHDL_AMS language and also in an electronics simulation software, using discrete component blocks, with and without feedback. After theoretical analysis and simulation results, a prototype circuit was built and tested using as input a signal obtained from ECG electrodes. RESULTS: The results from the experimental circuit matched those from simulation: a 97.6% noise reduction was obtained in simulations using a sinusoidal signal, and an 86.66% reduction was achieved using ECG electrodes in experimental tests. In both cases, the useful signal was preserved. CONCLUSION: The method and its architecture can be applied to attenuate interferences which occur in the same frequency band as that of the useful signal components, while preserving these signals.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda