Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros

Banco de datos
País como asunto
Tipo del documento
Publication year range
1.
Microb Cell Fact ; 23(1): 102, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38575972

RESUMEN

BACKGROUND: Poultry feather waste has a potential for bioenergy production because of its high protein content. This research explored the use of chicken feather hydrolysate for methane and hydrogen production via anaerobic digestion and bioelectrochemical systems, respectively. Solid state fermentation of chicken waste was conducted using a recombinant strain of Bacillus subtilis DB100 (p5.2). RESULTS: In the anaerobic digestion, feather hydrolysate produced maximally 0.67 Nm3 CH4/kg feathers and 0.85 mmol H2/day.L concomitant to COD removal of 86% and 93%, respectively. The bioelectrochemical systems used were microbial fuel and electrolysis cells. In the first using a microbial fuel cell, feather hydrolysate produced electricity with a maximum cell potential of 375 mV and a current of 0.52 mA. In the microbial electrolysis cell, the hydrolysate enhanced the hydrogen production rate to 7.5 mmol/day.L, with a current density of 11.5 A/m2 and a power density of 9.26 W/m2. CONCLUSIONS: The data indicated that the sustainable utilization of keratin hydrolysate to produce electricity and biohydrogen via bioelectrical chemical systems is feasible. Keratin hydrolysate can produce electricity and biofuels through an integrated aerobic-anaerobic fermentation system.


Asunto(s)
Pollos , Plumas , Animales , Anaerobiosis , Pollos/metabolismo , Hidrógeno/metabolismo , Queratinas/metabolismo , Metano/metabolismo , Biocombustibles , Reactores Biológicos
2.
Environ Res ; 245: 118080, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38171469

RESUMEN

In the present work, the construction, and operation of a pilot-scale biogas upgrading system is presented, employing 2 commercial polyimide (PI) membranes. The Upgrading system treats biogas produced via anaerobic digestion of the sludge, produced from the treatment of municipal wastewater in the facilities of Thessaloniki's Wastewater Treatment Plant. The goal of the separation unit is the production of high purity biomethane (>95%) for potential reuse in terms of energy. The fabrication of the pilot scale system includes the scale up of a laboratory setup separating CO2 from binary CH4-CO2 gas mixture. After the stability tests of the process, for the operation of 5 months (February to June 2023) the purity and recovery of CH4 in the final gas product. The experimental results showed an average recovery of CH4 of 95.7% for an average 55% feed composition, whereas the average purity in the final product was equal to 82.4%. The purity results were lower because of the N2 presence in the product stream (average 17.5%). After normalization with the help of the lab-scale binary results, the expected results assuming N2 absence would be 99.8% CH4 purity and 67% CH4 recovery. Finally, 3 different membrane configurations are compared in terms of their energy production, concluding to the efficiency of 2-stage configuration with recycling stream for the optimal combination of theoretical stage cut fractions.


Asunto(s)
Biocombustibles , Dióxido de Carbono , Anaerobiosis , Reactores Biológicos , Metano
3.
Bioprocess Biosyst Eng ; 46(1): 129-146, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36472659

RESUMEN

This work proposes a dynamic modeling procedure applied to biomethane production from microalgae residual co-digestion. A two-stage anaerobic digestion representation is selected, considering acidogenesis and methanogenesis as main reaction pathways. Based on the experimental database generated in the University of Mons Laboratories, several candidate models, assuming the presence or absence of biomass dynamics, are suggested, and parametric structural and local identifiability studies are performed. An original parameter estimation procedure is applied to a data-set partition used for model direct validation. The remaining experiment data are dedicated to cross-validation. The results point out how these dynamic models may serve as advanced monitoring software tools such as digital twins, even in the presence of incomplete process data.


Asunto(s)
Microalgas , Anaerobiosis , Microalgas/metabolismo , Biocombustibles , Metano/metabolismo , Digestión
4.
J Environ Manage ; 315: 115192, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35550972

RESUMEN

High solids anaerobic digestion (AD) of chicken manure (CM) is often challenging due to ammonia-N inhibition and accumulation of volatile fatty acids (VFAs). This study evaluated the effect of adding biochars from different feedstock to ameliorate semi-dry AD of fresh CM during batch fermentation. Experiments were performed in 300 mL at two total solid (TS) levels (12% and 15%) under mesophilic (36 ±1ᵒC) conditions for 55 d, using activated sludge as inoculum. Treatments included: fresh CM (at 12% or 15% TS) mixed separately with rice husks char (RB), wood char (WB) and bamboo char (BB) at biochar dosages of 2.5%, 5% and 10% of TS in the CM, inoculum only and inoculum plus CM without addition of char as the control. Results indicated that addition of biochar reduced the lag phases to 4-5.4 d and AD performances were significantly improved with total volatile solids removal of 53-67% and 62-71%, and cumulative methane of 277-380 mL/gVS (CH4 content ≈ 51-63%) and 297-438 mL/gVS (CH4 content ≈ 49-67%) at 12% and 15% TS, respectively. Biochar buffered over acidification and stabilized pH in the range of 6.5-7.8 but mild ammonia inhibition still occurred in all biochar treatments due to the high residual total ammonia-N (4.3 g-5.6 g/L). For all the investigated parameters, WB amended digesters exhibited the best results owing to its high specific surface area, porosity, cationic exchange capacity, and elemental composition which were superior to those of RB and BB. At 10% dosage of all tested biochars, the AD process was more stable and methane content neared optimal of >65% CH4. Therefore, addition of biochar from lignocellulosic materials at a given threshold dosage could promote semi-dry and dry biogas production from chicken manure and thus add value to this waste which in most cases is improperly managed.


Asunto(s)
Pollos , Estiércol , Amoníaco , Anaerobiosis , Animales , Biocombustibles , Reactores Biológicos , Carbón Orgánico , Metano
5.
J Environ Manage ; 300: 113788, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34562817

RESUMEN

Profitability studies are needed to establish the potential pathways required for viable biomethane production in the Brandenburg region of Germany. This work study the profitability of a potential biomethane production plant in the eastern German region of Brandenburg, through a specific practical scenario with data collected from a regional biogas plant located in Alteno (Schradenbiogas GmbH & Co. KG). Several parameters with potential economic influence such as distance of the production point to the grid, waste utilization percentage, and investment, were analyzed. The results illustrate a negative overall net present value with the scenario of no governmental investment, even when considering trading the CO2 obtained throughout the process. Subsidies needed to reach profitability varied with distance from 13.5 €/MWh to 19.3 €/MWh. For a fixed distance of 15 kms, the importance of percentage of waste utilization was examined. Only 100% of waste utilization and 75% of waste utilization would reach profitability under a reasonable subsidies scheme (16.3 and 18.8 €/MWh respectively). Concerning the importance of investment, a subsidized investment of at least 70% is demanded for positive net present values. Besides, the sensitivity analysis remarks the energy consumption of the biogas upgrading stage, the electricity price, and the energy consumption of biogas production as major parameters to be tackled for the successful implementation of biogas upgrading plants. The results here obtained invite to ponder about potential strategies to further improve the economic viability of this kind of renewable projects. In this line, using the CO2 separated to produce added-value chemicals can be an interesting alternative.


Asunto(s)
Alimentos , Eliminación de Residuos , Biocombustibles , Electricidad , Alemania , Metano
6.
Waste Manag Res ; 37(7): 746-754, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31165675

RESUMEN

In this study a fractionation procedure was developed and applied to evaluate the potential of some organic wastes (two cattle manures and two catch crops, fresh and after ensiling) for anaerobic digestion. This procedure was based on water extraction of the raw sample, which enabled the evaluation of the contributions of water-soluble and particulate phases to the investigated properties. Biomethane potential (BMP) and chemical oxygen demand (COD) were determined and used to assess the anaerobic biodegradability of raw materials. Analysis of structural carbohydrates, total Kjeldahl nitrogen, water-soluble carbohydrates, volatile fatty acids and pH were also included to explain the main phenomena involved in methane production from the tested biomass. Results show that the origin and the preparation mode had a significant impact on BMP distribution. Based on a COD balance, the biodegradability of the various feedstocks ranged from 45% to 75%. Biodegradability of fresh materials was negatively correlated with the sum of structural carbohydrates and lignin content. Among the feedstock used, the water-soluble phase represented 8-69% of the total COD and 7-46% to the total BMP. Solubilization of organic matter during ensiling was due to the production and accumulation of organic acids from particulate carbohydrates and organic nitrogen. This procedure detects kinetic and biodegradability differences among biomass and thus it can be useful for the design of anaerobic digestion plants. Furthermore, it can be applied to evaluate the efficiency of biomass pretreatments.


Asunto(s)
Estiércol , Metano , Anaerobiosis , Animales , Reactores Biológicos , Bovinos , Ácidos Grasos Volátiles , Lignina
7.
J Environ Manage ; 223: 644-651, 2018 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-29975891

RESUMEN

A novel approach to explore the impact of calcium specific chelant - Ethylene glycol tetra acetic acid (EGTA) on deflocculation followed by biomass disintegration using microwave (MW) was investigated. In the first phase of the study, the EGTA dosage of 0.012 g/g suspended solids (SS) was found to be optimal for disassociating the biomass. Subsequent disintegration of biomass in microwave (EGTA-MW) yielded a biomass lysis and solids reduction of about 39.7% and 30.5%. EGTA-MW disintegration reduces the amount of specific energy required to disintegrate the biomass from 18,900 kJ/kg TS to 13,500 kJ/kg TS, when compared to control. The impact of EGTA-MW disintegration on anaerobic digestion was also evident from its methane yield (235.3 mL/g VS) which was 36.2% higher than control. An economic assessment of this study provides a net profit of 8.48 €/ton in EGTA-MW and highly endorsed for biomass disintegration.


Asunto(s)
Ácido Acético , Glicol de Etileno , Microondas , Purificación del Agua , Anaerobiosis , Biomasa , Metano , Aguas del Alcantarillado
8.
Int J Biol Macromol ; 274(Pt 2): 133443, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38942405

RESUMEN

Lignocellulose is an abundant renewable bio-macromolecular complex, which can be used to produce biomethane and other high-value products. The lignin, presents in lignocellulose is typically regarded as an inhibitor of anaerobic digestion. Therefore, it is crucial to develop a novel selective separation strategy to achieve efficient biomethane production and all-component utilization of biomass. Hence, a combination of two-step pretreatment and solid-state anaerobic digestion was employed to enhance the production of biomethane and to generate valuable chemicals from poplar waste. Optimal conditions (4 % acetic acid, 170 °C, and 40 min) resulted in 70.85 % xylan removal, yielding 50.28 % xylo-oligosaccharides. The effect of a strong acid 4-CSA-based novel three-constituent DES on delignification was investigated from 80 °C to 100 °C; the cellulose content of DES pretreated poplar increased from 64.11 % to 80.92 %, and the delignification rate increased from 49.0 % to 90.4 %. However, high delignification of the pretreated poplar (DES-100 and DES-110) led to a rapid accumulation of volatile organic acids during the hydrolysis and acidogenesis stages, resulting in methanogenesis inhibition. The highest biomethane yield of 208 L/kg VS was achieved with DES-80 (49.0 % delignification), representing a 148 % improvement compared over untreated poplar. This approach demonstrates the potential for comprehensive utilization of all components of biomass waste.


Asunto(s)
Lignina , Metano , Populus , Lignina/química , Populus/química , Populus/metabolismo , Metano/química , Metano/metabolismo , Anaerobiosis , Hidrólisis , Oligosacáridos/química , Biomasa , Glucuronatos/química , Residuos
9.
J Hazard Mater ; 465: 133143, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38056261

RESUMEN

Harnessing coastal biowaste for dual valorization in water treatment and biofuel production holds paramount importance for sustainability and resource challenges. This study investigated the potential of engineered composite (CABC) derived from coastal biowaste-based materials for tetracycline (TC) removal and biomethane production. High-yield calcium carbonate (CaCO3; 95.65%; bivalve shells) and biochar (GA-BC; 41.50%; green macroalgae) were produced and used as precursors for CABC. The characterization results revealed presence of ß-CaCO3 and ν2-CO3 aragonite in CaCO3, and composite homogeneity was achieved. The CABC exhibited a maximum TC sorption capacity of 342.26 mg/g via synergistic sorption mechanisms (i.e., surface/pore filling, electrostatic attraction, calcium ion exchange, and chelation). Supplementation of anaerobic digestion process with GA-BC, CaCO3, and CABC was investigated via three consecutive cycles. Biochemical methane potential of glucose as a sole substrate was increased from 157.50 to 217.00, 187.00, and 259.00 mL-CH4, while dual substrate (glucose+TC) treatment was increased from 94.5 to 146.5, 129.0, and 153.00 mL-CH4 for GA-BC, CaCO3, and CABC, respectively. Moreover, system stability and TC removal were increased with the addition of GA-BC (40.90%), CaCO3 (16.30%), and CABC (53.70%). Therefore, this study exemplifies the circular bioeconomy approach, demonstrating the sustainable use of biowaste-derived composite for water treatment and biofuel production.


Asunto(s)
Biocombustibles , Contaminantes Químicos del Agua , Anaerobiosis , Adsorción , Tetraciclina/química , Antibacterianos/química , Carbón Orgánico/química , Carbonato de Calcio , Glucosa , Contaminantes Químicos del Agua/química , Cinética
10.
Bioresour Technol ; 400: 130692, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38599348

RESUMEN

Synthesized allophane was employed in anaerobic digestion of chicken manure to improve the stability and methane production under ammonia inhibition. Adding 0.5 %, 1.0 % and 1.5 % (w/w) allophane increased the methane production by 261 âˆ¼ 350 % compared with the group without allophane addition. Further investigation indicated that the maximum adsorption capacity of allophane for NH4+-N achieved at 261.9 mg/g; it suggested that allophane adsorption potentially alleviated the ammonia inhibition, which also was reflected by the increase in the activity of the related enzyme, such as coenzyme F420. Moreover, allophane addition also intensified the direct interspecies electron transfer (DIET) in anaerobic digestion; it can be well supported by the increased relative abundance of Methanosaeta and Methanosarcina involved in the DIET. Overall, the improved anaerobic digestion via alleviating ammonia inhibition and intensifying DIET by allophane was elucidated comprehensively, which can contribute to the development of a functional additive for efficient anaerobic digestion in practical application.


Asunto(s)
Amoníaco , Pollos , Estiércol , Metano , Animales , Amoníaco/metabolismo , Anaerobiosis , Transporte de Electrón , Metano/metabolismo , Adsorción
11.
Bioresour Technol ; 394: 130317, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38218408

RESUMEN

In this review, the main properties of olive mill solid waste, the primary by-product of olive oil production, and its feasibility as a feedstock for anaerobic digesters operating at laboratory-, pilot- and industrial-scales are discussed in detail. Nutrient addition and thermal pretreatments were found to have the potential to address the challenges arising from the high carbon-to-nitrogen ratio, the low pH, and the high concentration of phenolic compounds. Furthermore, anaerobic co-digestion with different organic feedstocks has been identified as one of the most promising options to solve the aforementioned problems and the seasonality nature of olive waste, while improving the efficiency of anaerobic treatment plants that operate throughout the whole year. The insights generated from this study show co-digestion with wastes from animal farming to be the most environmentally and economically sustainable method for improving anaerobic digestion processes with olive mill solid waste.


Asunto(s)
Olea , Anaerobiosis , Residuos Sólidos , Residuos Industriales/análisis , Fenoles , Metano
12.
Materials (Basel) ; 16(15)2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37569949

RESUMEN

The process of anaerobic digestion used for methane production can be enhanced by dosing various additive materials. The effects of these materials are dependent on various factors, including the processed substrate, process conditions, and the type and amount of the additive material. As part of the study, three different materials-iron powder, lime, and milled porous ceramic-were added to the 30-day anaerobic digestion of the brewer's spent grain to improve its performance. Different doses ranging from 0.2 to 2.3 gTS × L-1 were tested, and methane production kinetics were determined using the first-order model. The results showed that the methane yield ranged from 281.4 ± 8.0 to 326.1 ± 9.3 mL × gVS-1, while substrate biodegradation ranged from 56.0 ± 1.6 to 68.1 ± 0.7%. The addition of lime reduced the methane yield at almost all doses by -6.7% to -3.3%, while the addition of iron powder increased the methane yield from 0.8% to 9.8%. The addition of ceramic powder resulted in a methane yield change ranging from -2.6% to 4.6%. These findings suggest that the use of additive materials should be approached with caution, as even slight changes in the amount used can impact methane production.

13.
Chemosphere ; 296: 133812, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35149012

RESUMEN

The global trend is shifting toward circular economy systems. It is a sustainable environmental approach that sustains economic growth from the use of resources while minimizing environmental impacts. The multiple industrial use of microalgal biomass has received great attention due to its high content of essential nutrients and elements. Nevertheless, low biomass productivity, unbalanced carbon to nitrogen (C/N) ratio, resistant cellular constituents, and the high cost of microalgal harvesting represent the major obstacles for valorization of algal biomass. In recent years, microalgae biomass has been a candidate as a potential feedstock for different bioenergy generation processes with simultaneous treating wastewater and CO2 capture. An overview of the appealing features and needed advancements is urgently essential for microalgae-derived bioenergy generation. The present review provides a timely outlook and evaluation of biomethane production from microalgal biomass and related challenges. Moreover, the biogas recovery potential from microalgal biomass through different pretreatments and synergistic anaerobic co-digestion (AcoD) with other biowastes are evaluated. In addition, the removal of micropollutants and heavy metals by microalgal cells via adsorption and bioaccumulation in their biomass is discussed. Herein, a comprehensive review is presented about a successive high-throughput for anaerobic digestion (AD) of the microalgal biomass in order to achieve for sustainable energy source. Lastly, the valorization of the digestate from AD of microalgae for agricultural reuse is highlighted.


Asunto(s)
Microalgas , Biocombustibles , Biomasa , Nitrógeno , Aguas Residuales
14.
Materials (Basel) ; 16(1)2022 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-36614698

RESUMEN

The increase in pig production is a key factor in the fight against climate change. The main problem is the amount of slurry which causes environmental problems, therefore optimal management is needed. This management consists of an anaerobic digestion process in which biogas is produced and a subsequent upgrading process produces biomethane. In this study, a comparison of different biomethane production systems is completed in order to determine the optimum for each pig farm, determining that conventional upgrading systems can be used on farms with more than 11,000 pigs and, for smaller numbers of pigs, the biological upgrading system. The implementation of these technologies contributes to reducing fossil energy demand and greenhouse gas emissions by using biogas and biomethane as heat, electricity or vehicle fuel.

15.
Waste Manag ; 137: 81-88, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34749180

RESUMEN

In this work, the use of biomethane produced from local biogas plants is proposed as renewable fuel for light marine transport. A profitability analysis is performed for three real biogas production plants located in Cornwall (United Kingdom), considering a total of 66 different scenarios where critical parameters such as distance from production point to gas grid, subsidies, etcetera, were evaluated. Even though the idea is promising to decarbonize the marine transport sector, under the current conditions, the approach is not profitable. The results show that profitability depends on the size of the biogas plant. The largest biogas plant studied can be profitable if feed-in tariffs subsidies between 36.6 and 45.7 €/MWh are reached, while for the smallest plant, subsidies should range between 65 and 82.7 €/MWh. The tax to be paid per ton of CO2 emitted by the shipping owner, was also examined given its impact in this green route profitability. Values seven times greater than current taxes are needed to reach profitability, revealing the lack of competitiveness of renewable fuels vs traditional fuels in this application. Subsidies to make up a percentage of the investment are also proposed, revealing that even at 100% of investment subsidized, this green approach is still not profitable. The results highlight the need for further ambitious political actions in the pursuit of sustainable societies.


Asunto(s)
Biocombustibles , Metano , Reino Unido
16.
Bioresour Technol ; 360: 127505, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35750119

RESUMEN

Date palm waste biomass is a readily accessible agricultural waste biomass that may be used to produce biogas. Because the complex structure of date palm waste biomass prevents the embedded holo-cellulosic sugars from biodegrading, pretreatment is required to increase methane (CH4) yield. The present investigation aimed to comparatively determine the impact of alkali and ionic liquid pretreatment on the biochemical methane potential (BMP) of different types of date palm waste biomass. The findings revealed that ionic liquid pretreated Palm and Fruit bunch showed the highest BMP (321.67 mL CH4/g-TS) and substrate conversion efficiency (68.01%), respectively, over other biomass samples. In alkali pretreatment, the highest BMP and substrate conversion efficiency were detected with Palm (309.76 mL CH4/g-TS) and Spathe (62.09%). The high BMP and substrate conversion efficiency of date palm waste biomass may be harnessed for bioenergy production when this ionic liquid pretreatment technology is used.


Asunto(s)
Líquidos Iónicos , Phoeniceae , Álcalis , Anaerobiosis , Biocombustibles , Biomasa , Líquidos Iónicos/farmacología , Metano
17.
Water Res ; 198: 117169, 2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-33962241

RESUMEN

Extracellular Polymeric Substances (EPS) existent in anaerobic sludge proves to be a barrier for sludge liquefaction and biomass lysis efficiency. Hence EPS deaggregation heightens the surface area for the subsequent pretreatment thereby uplifting the sludge disintegration and biomethanation rate. This review documents the role of EPS and its components which inhibits sludge hydrolysis and also the various phase separated pretreatment methods available with its disintegration mechanism to enhance the biomass lysis and methane production rate. It also illustrates the effects of phase separated pretreatment on the sludge disintegration rate which embodies two phases-floc disruption and cell lysis accompanied by their computation through biomethane potential assay and fermentation analysis comprehensively. Additionally, energy balance study and cost analysis requisite for successful implementation of a proposed phase separated pretreatment on a pilot scale level and their challenges are also reviewed. Overall this paper documents the potency of phase separated pretreatment for full scale approach.


Asunto(s)
Metano , Eliminación de Residuos Líquidos , Biosólidos , Análisis Costo-Beneficio , Aguas del Alcantarillado
18.
Bioresour Technol ; 342: 125895, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34536842

RESUMEN

In this study, anaerobic co-landfilling of municipal solid waste (MSW) and sugar mill pressmud (PM) was performed in four different proportions [PM:MSW] viz. 0:1 (control: BR1), 1:3 (BR2), 1:1 (BR3) and 3:1 (BR4). Efficacy assessment of Dry tomb - Bioreactor landfill (DTLF - BRLF) operation was carried out through leachate characterization and biomethane production. Leachate recirculation as a part of bioreactor operation after 194th day onwards showed promising degradation of co-wastes. Moreover, leachate decontamination and methane production were reliant on co-disposal proportions of PM and MSW. Maximum biomethane generation of 46.355L was obtained in landfill lysimeter BR3 followed by BR4 (34.680L), BR2 (24.275L) and BR1 (12.850L). Both logistic function and Gompertz growth models showed efficient fitting (R2 > 0.99) for observed methane production. This research could be a baseline study for selective operation of combined dry tomb and bioreactor landfilling at full scale in co-disposal scenarios.


Asunto(s)
Eliminación de Residuos , Contaminantes Químicos del Agua , Biodegradación Ambiental , Reactores Biológicos , Residuos Sólidos/análisis , Azúcares , Instalaciones de Eliminación de Residuos , Contaminantes Químicos del Agua/análisis
19.
Environ Sci Pollut Res Int ; 28(17): 21661-21673, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33410085

RESUMEN

Anaerobic digestion (AD) of walnut shells (WS) results in only a limited biomethane yield because of their high fibre content, which ultimately represents an essentially nonbiodegradable lignocellulosic biomass. In the present study, thermal (i.e. 50-250 °C), alkaline (i.e. 1-5% w/w NaOH) and combined alkaline-thermal (i.e. 4% w/w NaOH + 150 °C thermal) pretreatment methods have been applied to increase the anaerobic biodegradation of WS. The highest biomethane yields of 159.9 ± 6.8 mL CH4.g VS-1 and 169.8 ± 6.8 mL CH4.g VS-1 were achieved after pretreatment at both 250 °C and with 4% NaOH. After combined NaOH-thermal pretreatments, the AD process showed the largest total VFA concentration (i.e. 1280.1 mg Hac L-1) but a relatively high lag phase (i.e. 3.90 days) compared to thermal and NaOH pretreatments alone, from which the highest biomethane yield (i.e. 192.4 ± 8.2 mL CH4.g VS-1 ) was achieved at the end of the AD process. The highest biomethane yield from the combined NaOH-thermal pretreated WS was corroborated by the corresponding highest SCOD/TCOD ratio (i.e. 0.37 ± 0.02) and the highest lignocellulosic fibre removal (i.e. 41.1 ± 2.7% cellulose, 35.6 ± 1.8% hemicellulose, and 58.7 ± 3.2% lignin). The cumulative biomethane yields were further simulated via a modified Gompertz model. This study provides a promising strategy in the sense that the biomethane yield of WS containing large amounts of lignin can be significantly increased via thermal, NaOH, and combined NaOH-thermal pretreatment methods.


Asunto(s)
Biocombustibles , Juglans , Anaerobiosis , Lignina/metabolismo , Metano , Hidróxido de Sodio
20.
Bioresour Technol ; 319: 124144, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32979595

RESUMEN

Domestic wastewater (DWW) can be preconcentrated to facilitate energy recovery via anaerobic digestion (AD), following the concept of "carbon capture-anaerobic conversion-bioenergy utilization." Herein, real DWW and preconcentrated domestic wastewater (PDWW) were both subject to particle size fractionation (0.45-2000 µm). DWW is a type of low-strength wastewater (average COD of 440.26 mg/L), wherein 60% of the COD is attributed to the substances with particle size greater than 0.45 µm. Proteins, polysaccharides, and lipids are the major DWW components. PDWW with a high COD concentration of 2125.89 ± 273.71 mg/L was obtained by the dynamic membrane filtration (DMF) process. PDWW shows larger proportions of settleable and suspended fractions, and accounted for 63.4% and 33.8% of the particle size distribution, and 52.4% and 32.2% of the COD, respectively. The acceptable biomethane potential of 262.52 ± 11.86 mL CH4/g COD of PDWW indicates bioenergy recovery is feasible based on DWW preconcentration and AD.


Asunto(s)
Eliminación de Residuos Líquidos , Aguas Residuales , Anaerobiosis , Bioensayo , Reactores Biológicos , Fraccionamiento Químico , Tamaño de la Partícula
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda