RESUMEN
The "biological identity" of nanoparticles (NPs) is governed by a shell consisting of various biomolecules that is formed upon exposure to biological media, the so-called biomolecule corona. Consequently, supplementation of cell culture media with e.g. different sera is likely to affect interactions between cells and NPs ex-vivo, especially endocytosis. We aimed to investigate the differential impact of human and fetal-bovine serum on the endocytosis of poly (lactic-co-glycolic acid) NPs by human peripheral blood mononuclear cells via flow cytometry. Furthermore, we employed different methods to inhibit endocytosis, providing mechanistic insights. The resulting biomolecule corona was characterized via denaturing gel electrophoresis. We found profound differences between human and fetal bovine serum regarding the endocytosis of fluorescently labeled PLGA nanoparticles by different classes of human leukocytes. Uptake by B-lymphocytes was particularly sensitive. We further present evidence, that these effects are mediated by a biomolecule corona. We demonstrate to our knowledge for the first time that the complement is an important contributor to the endocytosis of non-surface-engineered PLGA-nanoparticles prepared via emulsion solvent evaporation by human immune cells. Our data demonstrates that results obtained with xenogeneic culture supplements such as fetal bovine serum may have to be interpreted with caution.
Asunto(s)
Nanopartículas , Ácido Poliglicólico , Humanos , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Albúmina Sérica Bovina , Ácido Láctico , Leucocitos Mononucleares , Opsonización , Endocitosis , Tamaño de la Partícula , Portadores de FármacosRESUMEN
Nanomaterials (NMs) are particles with at least one dimension between 1 and 100 nm and a large surface area to volume ratio, providing them with exceptional qualities that are exploited in a variety of industrial fields. Deposition of NMs into environmental waters during or after use leads to the adsorption of an ecological (eco-) corona, whereby a layer of natural biomolecules coats the NM changing its stability, identity and ultimately toxicity. The eco-corona is not currently incorporated into ecotoxicity tests, although it has been shown to alter the interactions of NMs with organisms such as Daphnia magna (D. magna). Here, the literature on environmental biomolecule interactions with NMs is synthesized and a framework for understanding the eco-corona composition and its role in modulating NMs ecotoxicity is presented, utilizing D. magna as a model. The importance of including biomolecules as part of the current international efforts to update the standard testing protocols for NMs, is highlighted. Facilitating the formation of an eco-corona prior to NMs ecotoxicity testing will ensure that signaling pathways perturbed by the NMs are real rather than being associated with the damage arising from reactive NM surfaces "acquiring" a corona by pulling biomolecules from the organism's surface.
Asunto(s)
Daphnia/efectos de los fármacos , Daphnia/metabolismo , Nanoestructuras/química , Nanoestructuras/toxicidad , Pruebas de Toxicidad/métodos , Adsorción , Animales , Feromonas/metabolismo , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/farmacocinética , Contaminantes Químicos del Agua/toxicidadRESUMEN
Pulmonary delivery of therapeutics (e.g., biologics, antibiotics, and chemotherapies) encapsulated in nanoparticles is desirable for the ability to provide a localised treatment, bypassing the harsh gastrointestinal environment. However, limited understanding of the biological fate of nanoparticles upon administration to the lungs hinders translation of pre-clinical investigations into viable therapies. A key knowledge gap is the impact of the pulmonary biomolecular corona on the functionality of nanoparticles. In this review, opportunities and challenges associated with pulmonary nanoparticle delivery are elucidated, highlighting the impact of the pulmonary biomolecular corona on immune recognition and nanoparticle internalisation in target cells. Recent investigations detailing the influence of proteins, lipids and mucin derived from pulmonary surfactants on nanoparticle behaviour are detailed. In addition, latest approaches in modulating plasma protein corona upon systemic delivery for biodistribution to the lungs are also discussed. Key examples of reengineering nanoparticle structure to mediate formation of biomolecule corona are provided. This review aims to provide a comprehensive understanding on biomolecular corona of nanoparticles for pulmonary delivery, while accentuating their significance for successful translation of newly investigated therapeutics.
Asunto(s)
Pulmón , Nanomedicina , Nanopartículas , Corona de Proteínas , Humanos , Pulmón/metabolismo , Pulmón/efectos de los fármacos , Nanomedicina/métodos , Nanopartículas/química , Animales , Distribución Tisular , Sistemas de Liberación de Medicamentos/métodos , Administración por InhalaciónRESUMEN
Whereas nanotoxicity is intensely studied in mammalian systems, our knowledge of desired or unwanted nano-based effects for microbes is still limited. Fungal infections are global socio-economic health and agricultural problems, and current chemical antifungals may induce adverse side-effects in humans and ecosystems. Thus, nanoparticles are discussed as potential novel and sustainable antifungals via the desired nanotoxicity but often fail in practical applications. In our study, we found that nanoparticles' toxicity strongly depends on their binding to fungal spores, including the clinically relevant pathogen Aspergillus fumigatus as well as common plant pests, such as Botrytis cinerea or Penicillum expansum. Employing a selection of the model and antimicrobial nanoparticles, we found that nanoparticle-spore complex formation is influenced by the NM's physicochemical properties, such as size, identified as a key determinant for our silica model particles. Biomolecule coronas acquired in pathophysiologically and ecologically relevant environments, protected fungi against nanoparticle-induced toxicity as shown by employing antimicrobial ZnO, Ag, or CuO nanoparticles as well as dissolution-resistant quantum dots. Mechanistically, dose-dependent corona-mediated resistance was conferred via reducing the physical adsorption of nanoparticles to fungi. The inhibitory effect of biomolecules on nano-based toxicity of Ag NPs was further verified in vivo, using the invertebrate Galleria mellonella as an alternative non-mammalian infection model. We provide the first evidence that biomolecule coronas are not only relevant in mammalian systems but also for nanomaterial designs as future antifungals for human health, biotechnology, and agriculture.
Asunto(s)
Antifúngicos/farmacología , Botrytis/efectos de los fármacos , Nanopartículas/química , Dióxido de Silicio/farmacología , Adsorción/efectos de los fármacos , Animales , Antifúngicos/química , Botrytis/química , Farmacorresistencia Fúngica/efectos de los fármacos , Ecosistema , Humanos , Viabilidad Microbiana/efectos de los fármacos , Modelos Biológicos , Dióxido de Silicio/química , Esporas Fúngicas/química , Esporas Fúngicas/efectos de los fármacos , Propiedades de SuperficieRESUMEN
The prominent discrepancy between the significant investment towards plasma biomarker discovery and the very low number of biomarkers currently in clinical use stresses the need for discovery technologies. The discovery of protein biomarkers present in human blood by proteomics is tremendously challenging, owing to the large dynamic concentration range of blood proteins. Here, we describe the use of blood-circulating lipid-based nanoparticles (NPs) as a scavenging tool to comprehensively analyse the blood proteome. We aimed to exploit the spontaneous interaction of NPs with plasma proteins once injected in the bloodstream, known as 'protein corona', in order to facilitate the capture of tumor-specific molecules. We employed two different tumor models, a subcutaneous melanoma model (B16-F10) and human lung carcinoma xenograft model (A549) and comprehensively compared by mass spectrometry the in vivo protein coronas formed onto clinically used liposomes, intravenously administered in healthy and tumor-bearing mice. The results obtained demonstrated that blood-circulating liposomes surface-capture and amplify a wide range of different proteins including low molecular weight (MW) and low abundant tumor specific proteins (intracellular products of tissue leakage) that could not be detected by plasma analysis, performed in comparison. Most strikingly, the NP (liposomal) corona formed in the xenograft model was found to consist of murine host response proteins, as well as human proteins released from the inoculated and growing human cancer cells. This study offers direct evidence that the in vivo NP protein corona could be deemed as a valuable tool to enrich the blood proteomic analysis and to allow the discovery of potential biomarkers in experimental disease models.
Asunto(s)
Biomarcadores de Tumor/sangre , Proteínas Sanguíneas/análisis , Liposomas/metabolismo , Neoplasias Pulmonares/sangre , Melanoma Experimental/sangre , Corona de Proteínas/análisis , Células A549 , Animales , Biomarcadores de Tumor/metabolismo , Proteínas Sanguíneas/metabolismo , Femenino , Humanos , Liposomas/sangre , Neoplasias Pulmonares/metabolismo , Melanoma Experimental/metabolismo , Ratones Endogámicos C57BL , Nanopartículas/metabolismo , Corona de Proteínas/metabolismoRESUMEN
The self-assembled layered adsorption of proteins onto nanoparticle (NP) surfaces, once in contact with biological fluids, is termed the "protein corona" and it is gradually seen as a determinant factor for the overall biological behavior of NPs. Here, the previously unreported in vivo protein corona formed in human systemic circulation is described. The human-derived protein corona formed onto PEGylated doxorubicin-encapsulated liposomes (Caelyx) is thoroughly characterized following the recovery of liposomes from the blood circulation of ovarian carcinoma patients. In agreement with previous investigations in mice, the in vivo corona is found to be molecularly richer in comparison to its counterpart ex vivo corona. The intravenously infused liposomes are able to scavenge the blood pool and surface-capture low-molecular-weight, low-abundance plasma proteins that cannot be detected by conventional plasma proteomic analysis. This study describes the previously elusive or postulated formation of protein corona around nanoparticles in vivo in humans and illustrates that it can potentially be used as a novel tool to analyze the blood circulation proteome.
Asunto(s)
Liposomas/química , Polietilenglicoles/química , Corona de Proteínas/química , Adsorción , Doxorrubicina/química , Humanos , Nanopartículas/químicaRESUMEN
Nanosized objects, such as nanoparticles and other drug carriers used in nanomedicine, once in contact with biological environments are modified by adsorption of biomolecules on their surface. The presence of this corona strongly affects the following interactions at cell and organism levels. It has been shown that corona proteins can be recognized by cell receptors. However, it is not known whether the composition of this acquired layer can also affect the mechanisms nanoparticles use to enter cells. This is of particular importance when considering that the same nanoparticles can form different coronas for instance in vitro when exposed to cells in different serum amounts or in vivo depending on the exposure or administration route. Thus, in this work, different coronas were formed on 50 nm silica by exposing them to different serum concentrations. The uptake efficiency in HeLa cells was compared, and the uptake mechanisms were characterized using transport inhibitors and RNA interference. The results showed that the nanoparticles were internalized by cells via different mechanisms when different coronas were formed, and only for one corona condition was uptake mediated by the LDL receptor. This suggested that coronas of different composition can be recognized differently by cell receptors, and this in turn leads to internalization via different mechanisms. Similar studies were performed using other cells, including A549 cells and primary HUVEC, and different nanoparticles, namely 100 nm liposomes and 200 nm silica. Overall, the results confirmed that the corona composition can affect the mechanisms of nanoparticle uptake by cells.
Asunto(s)
Portadores de Fármacos/farmacología , Nanomedicina , Nanopartículas/química , Corona de Proteínas/química , Adsorción/efectos de los fármacos , Vías de Administración de Medicamentos , Portadores de Fármacos/química , Células HeLa , Humanos , Liposomas/química , Liposomas/farmacología , Nanopartículas/uso terapéutico , Dióxido de Silicio/química , Propiedades de SuperficieRESUMEN
Fungal infections are a growing global health and agricultural threat, and current chemical antifungals may induce various side-effects. Thus, nanoparticles are investigated as potential novel antifungals. We report that nanoparticles' antifungal activity strongly depends on their binding to fungal spores, focusing on the clinically important fungal pathogen Aspergillus fumigatus as well as common plant pathogens, such as Botrytis cinerea. We show that nanoparticle-spore complex formation was enhanced by the small nanoparticle size rather than the material, shape or charge, and could not be prevented by steric surface modifications. Fungal resistance to metal-based nanoparticles, such as ZnO-, Ag-, or CuO-nanoparticles as well as dissolution-resistant quantum dots, was mediated by biomolecule coronas acquired in pathophysiological and ecological environments, including the lung surfactant, plasma or complex organic matters. Mechanistically, dose-dependent corona-mediated resistance occurred via reducing physical adsorption of nanoparticles to fungal spores. The inhibitory effect of biomolecules on the antifungal activity of Ag-nanoparticles was further verified in vivo, using the invertebrate Galleria mellonella as an A. fumigatus infection model. Our results explain why current nanoantifungals often show low activity in realistic application environments, and will guide nanomaterial designs that maximize functionality and safe translatability as potent antifungals for human health, biotechnology, and agriculture.
Asunto(s)
Antifúngicos , Aspergillus fumigatus/crecimiento & desarrollo , Farmacorresistencia Fúngica/efectos de los fármacos , Nanopartículas del Metal , Corona de Proteínas/química , Animales , Antifúngicos/química , Antifúngicos/farmacología , Botrytis , Modelos Animales de Enfermedad , Humanos , Nanopartículas del Metal/química , Nanopartículas del Metal/uso terapéutico , Ratones , Mariposas Nocturnas , Enfermedades de las Plantas , Aspergilosis Pulmonar/tratamiento farmacológico , Aspergilosis Pulmonar/metabolismo , Aspergilosis Pulmonar/patologíaRESUMEN
The interaction of nanocarriers with blood plasma components influences the biological response, and therefore, it needs to be controlled. Whereas protein adsorption to nanocarriers has been investigated to a large extent, the role of lipid interaction for drug delivery and its biological effect is not yet clear. However, lipids represent an important constituent of blood plasma and are usually bound in the form of lipoproteins. Because already for many nanocarrier systems an enrichment of apolipoproteins in their protein corona was reported, we examine the interaction of lipoproteins with nanocarriers. If interaction occurs in terms of lipoprotein adsorption, two scenarios are possible: adsorption of intact lipoprotein complexes or disintegration of the complexes with adsorption of the single components. To investigate the interaction and clarify which scenario occurs, polymeric model nanoparticles and different lipoprotein types have been studied by isothermal titration calorimetry, transmission electron microscopy, and other methods. Our data indicate that upon contact with polymeric nanoparticles, disintegration of lipoproteins and adsorption of lipids occurs. Further, the effect of lipoprotein adsorption on cell uptake has been examined, and a major effect of the lipoproteins has been found. STATEMENT OF SIGNIFICANCE: It is now well accepted that nanomaterials developed as diagnostic or therapeutic carrier systems need to be well characterized in terms of biological responses inside an organism. Many studies have already shown that proteins adsorb to the surface of a nanomaterial and create a new interface that define the identity of the material. However, the presence of other surface-active components of the blood plasma and how they interact with nanomaterials has been much less investigated. Thus, this study aims at providing a significant contribution to understanding the interaction mechanism between lipoproteins and nanomaterials. Since lipoproteins transport a high amount of lipids, which are surface-active molecules, the demonstrated interactions can go as far as complete lipoprotein disintegration.
Asunto(s)
Lipoproteínas/química , Nanopartículas/química , Corona de Proteínas/química , Animales , Humanos , Ratones , Células RAW 264.7RESUMEN
Bio-nano interactions can be defined as the study of interactions between nanoscale entities and biological systems such as, but not limited to, peptides, proteins, lipids, DNA and other biomolecules, cells and cellular receptors and organisms including humans. Studying bio-nano interactions is particularly useful for understanding engineered materials that have at least one dimension in the nanoscale. Such materials may consist of discrete particles or nanostructured surfaces. Much of biology functions at the nanoscale; therefore, our ability to manipulate materials such that they are taken up at the nanoscale, and engage biological machinery in a designed and purposeful manner, opens new vistas for more efficient diagnostics, therapeutics (treatments) and tissue regeneration, so-called nanomedicine. Additionally, this ability of nanomaterials to interact with and be taken up by cells allows nanomaterials to be used as probes and tools to advance our understanding of cellular functioning. Yet, as a new technology, assessment of the safety of nanomaterials, and the applicability of existing regulatory frameworks for nanomaterials must be investigated in parallel with development of novel applications. The Royal Society meeting 'Bio-nano interactions: new tools, insights and impacts' provided an important platform for open dialogue on the current state of knowledge on these issues, bringing together scientists, industry, regulatory and legal experts to concretize existing discourse in science law and policy. This paper summarizes these discussions and the insights that emerged.