Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Growth Factors ; 41(1): 20-31, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36454601

RESUMEN

Human epidermal growth factor (hEGF) is an important therapeutic compound with multiple applications particularly in pharmaceutical industry. Human EGF has already been expressed in different expression systems, however, the production of hEGF with bioactivity in chloroplasts has not been successful so far. In this study, we expressed a 6 × His-tagged hEGF in tobacco chloroplasts in its native conformation for the potential of large-scale production of hEGF for industrial applications. Several transplastomic plant lines were obtained, which were screened by PCR (polymerase chain reaction) using primers specific to selectable gene aadA, hEGF- and GFP-coding sequences that were included in the chloroplast expression vector. The selected lines were confirmed to be homoplasmic by PCR verification and Southern blot analysis. Immunoblotting assays of homoplasmic lines using antibodies raised against hEGF confirmed the accumulation of hEGF in transplastomic plants and the ELISA results demonstrated the expression levels of hEGF were between 0.124% and 0.165% of the total soluble proteins (TSP), namely, 23.16-25.77 ng/g of the fresh weight. In terms of activity, the data from cell proliferation and elongation assays showed that the tobacco-derived recombinant hEGF was as bioactive as its commercial counterpart. To our knowledge, this is the first report of recombinant production of hEGF with native bioactivity form in the chloroplast stroma. Overall, our results demonstrate the potential of higher plant chloroplasts for the production of a human therapeutic, hEGF, in an active conformation.


Asunto(s)
Factor de Crecimiento Epidérmico , Nicotiana , Humanos , Factor de Crecimiento Epidérmico/genética , Nicotiana/genética , Proliferación Celular , Anticuerpos , Cloroplastos/genética
2.
Transgenic Res ; 28(2): 213-224, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30888592

RESUMEN

The bone morphogenetic protein BMP2 plays a crucial role in the formation and regeneration of bone and cartilage, which is critical for maintaining skeletal integrity and bone fracture repair. Because of its important role in osteogenic properties it has been commercially produced for clinical use. Here we report attempts to express human BMP2 using two plant systems (lettuce chloroplast and soybean seeds). The rhBMP2 gene (coding for the 13 kDa active polypeptide) was introduced in two regions of the lettuce chloroplast genome. Two homoplasmic events were achieved and RT-PCR demonstrated that the BMP2 gene was transcribed. However, it was not possible to detect accumulation of rhBMP2 in leaves. Two soybean events were achieved to express a full-length hBMP2 gene (coding for the 45 kDa pro-BMP2) fused with the α-coixin signal peptide, under control of the ß-conglycinin promoter. Pro-BMP2 was expressed in the transgenic seeds at levels of up to 9.28% of the total soluble seed protein as determined by ELISA. It was demonstrated that this recombinant form was biologically active upon administration to C2C12 cell cultures, because it was able to induce an osteogenic cascade, as observed by the enhanced expression of SP7 (osterix) and ALPI (alkaline phosphatase) genes. Collectively, these results corroborated our previous observation that soybean seeds provide an effective strategy for achieving stable accumulation of functional therapeutic proteins, such as BMP2.


Asunto(s)
Proteína Morfogenética Ósea 2/metabolismo , Cotiledón/metabolismo , Glycine max/metabolismo , Lactuca/metabolismo , Proteínas Recombinantes/metabolismo , Semillas/metabolismo , Animales , Proteína Morfogenética Ósea 2/genética , Células Cultivadas , Cotiledón/genética , Humanos , Lactuca/genética , Ratones , Mioblastos/citología , Mioblastos/metabolismo , Plantas Modificadas Genéticamente , Proteínas Recombinantes/genética , Semillas/genética , Glycine max/genética
3.
Plant Biotechnol J ; 2018 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-29890031

RESUMEN

Plant molecular farming offers a cost-effective and scalable approach to the expression of recombinant proteins which has been proposed as an alternative to conventional production platforms for developing countries. In recent years, numerous proofs of concept have established that plants can produce biologically active recombinant proteins and immunologically relevant vaccine antigens that are comparable to those made in conventional expression systems. Driving many of these advances is the remarkable plasticity of the plant proteome which enables extensive engineering of the host cell, as well as the development of improved expression vectors facilitating higher levels of protein production. To date, the only plant-derived viral glycoprotein to be tested in humans is the influenza haemagglutinin which expresses at ~50 mg/kg. However, many other viral glycoproteins that have potential as vaccine immunogens only accumulate at low levels in planta. A critical consideration for the production of many of these proteins in heterologous expression systems is the complexity of post-translational modifications, such as control of folding, glycosylation and disulphide bridging, which is required to reproduce the native glycoprotein structure. In this review, we will address potential shortcomings of plant expression systems and discuss strategies to optimally exploit the technology for the production of immunologically relevant and structurally authentic glycoproteins for use as vaccine immunogens.

4.
Plant Biotechnol J ; 16(2): 442-450, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28650085

RESUMEN

African horse sickness (AHS) is a debilitating and often fatal viral disease affecting horses in much of Africa, caused by the dsRNA orbivirus African horse sickness virus (AHSV). Vaccination remains the single most effective weapon in combatting AHS, as there is no treatment for the disease apart from good animal husbandry. However, the only commercially available vaccine is a live-attenuated version of the virus (LAV). The threat of outbreaks of the disease outside its endemic region and the fact that the LAV is not licensed for use elsewhere in the world, have spurred attempts to develop an alternative safer, yet cost-effective recombinant vaccine. Here, we report the plant-based production of a virus-like particle (VLP) AHSV serotype five candidate vaccine by Agrobacterium tumefaciens-mediated transient expression of all four capsid proteins in Nicotiana benthamiana using the cowpea mosaic virus-based HyperTrans (CPMV-HT) and associated pEAQ plant expression vector system. The production process is fast and simple, scalable, economically viable, and most importantly, guinea pig antiserum raised against the vaccine was shown to neutralize live virus in cell-based assays. To our knowledge, this is the first report of AHSV VLPs produced in plants, which has important implications for the containment of, and fight against the spread of, this deadly disease.


Asunto(s)
Virus de la Enfermedad Equina Africana/inmunología , Agrobacterium tumefaciens/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Cobayas , Vacunas Virales/inmunología
5.
Plant Biotechnol J ; 16(2): 394-403, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28640945

RESUMEN

Human vitronectin (hVN) is a glycoprotein that functions as a cell adhesion molecule and a regulator of coagulation in blood plasma and the extracellular matrix. In vitro, hVN is added to serum-free media in order to promote the adhesion of animal cells to tissue culture surfaces and the proliferation of undifferentiated stem cells. Here, we report the production of hVN in Nicotiana benthamiana using the inducible In Plant ACTivation (INPACT) hyperexpression platform. N. benthamiana plants were transformed with an INPACT expression cassette encoding hVN, and both the Tobacco yellow dwarf virus Rep/RepA activator and Tomato bushy stunt virus p19 gene under the transcriptional control of the ethanol-inducible AlcR:alcA gene switch. hVN expression was maximal 4-5 days postactivation of the INPACT platform with a dilute ethanol solution, and crude yields of the recombinant protein reached a maximum of 643 ± 78 mg/kg fresh weight. A three-stage purification protocol was developed using heparin and polyhistidine tag affinity binding and size exclusion filtration, resulting in a plant-made hVN product of >90% purity. Storage conditions for plant-made hVN were identified that maximized the capacity of the recombinant protein to promote cell adhesion. Critically, plant-made hVN was shown to be functionally equivalent to commercial, plasma-derived hVN at promoting one-half maximal attachment of murine fibroblast cells (BALB-C/3T3) in serum-free medium at <0.1 µg/cm2 to tissue culture plasticware. The INPACT platform represents an attractive means of producing large quantities of functional, animal-free hVN for in vitro applications.


Asunto(s)
Nicotiana/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Vitronectina/metabolismo , Regulación de la Expresión Génica de las Plantas , Humanos , Plantas Modificadas Genéticamente/genética , Nicotiana/genética , Vitronectina/genética
6.
Rev Sci Tech ; 37(1): 83-96, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30209427

RESUMEN

The contribution of farm animals to human health and welfare cannot be properly addressed without reflecting on the impact that animal domestication has had upon human civilisation. About 14,000 years ago, the Neolithic revolution started with the domestication of animals and plants, resulting in the emergence of the main agricultural breeds of livestock and crops. In contrast, the breeding of new animal species for biomedical research, such as small rodents and other model species, is a relatively recent activity. The cellular and molecular mechanisms of inheritance have only been understood over the past few decades and translated into approaches to improve breeding success. In recent years, seminal discoveries in the fields of cellular reprogramming, genetic engineering, and whole-genome sequencing have accelerated this development. The first therapeutic proteins produced by biopharming in livestock have been approved to treat human patients. The suitability of pluripotent stem cells as a source for cell replacement therapies is currently being investigated, using farm animals as informative preclinical models. Disease modelling in farm animals allows systematic testing of effective treatments. Within the context of these developments, this concise review will focus on the contribution of farm animals to human health and welfare.


On ne peut traiter de la contribution des animaux d'élevage à la santé et au bienêtre de l'homme sans prendre en compte l'impact de la domestication des animaux sur la civilisation humaine. La révolution néolithique a commencé il y a environ 14 000 ans avec la domestication des animaux et des plantes, ce qui a donné naissance aux principales variétés cultivées et races d'élevage. En revanche, la sélection d'espèces animales nouvelles pour la recherche biomédicale, par exemple certaines espèces de petits rongeurs et d'autres modèles animaux, constitue une activité relativement récente. Ce n'est que depuis quelques dizaines d'années que les mécanismes cellulaires et moléculaires de l'hérédité sont bien compris et appliqués dans des approches permettant d'améliorer le potentiel génétique des élevages. Depuis quelques années, des découvertes fondamentales dans les domaines de la reprogrammation cellulaire, du génie génétique et du séquençage du génome entier ont accéléré cette évolution. Les premières protéines thérapeutiques produites par l'industrie biopharmaceutique chez des animaux d'élevage ont été approuvées pour traiter des patients humains. La recherche examine actuellement les possibilités de recourir à des cellules souches pluripotentes pour mettre en place des thérapies de remplacement, en utilisant des animaux d'élevage comme modèles précliniques. La modélisation des maladies en utilisant des animaux d'élevage permet d'effectuer des essais systématiques de l'efficacité des traitements. Les auteurs consacrent l'essentiel de leur synthèse à la contribution des animaux d'élevage à la santé et au bienêtre de l'homme, dans le cadre de ces évolutions.


No cabe examinar debidamente la contribución de los animales de granja a la salud y el bienestar del ser humano sin detenerse a reflexionar sobre la influencia que ha tenido en la civilización humana la domesticación de los animales. Hace unos 14 000 años, con la domesticación de animales y plantas, dio comienzo la revolución neolítica, que iba a deparar la aparición de las principales razas agrícolas de ganado y cultivos. En marcado contraste, la cría selectiva de nuevas especies animales con fines de investigación biomédica, como pequeños roedores y otras especies utilizadas como modelo, es una actividad relativamente reciente. Solo en los últimos decenios se han desentrañado los mecanismos celulares y moleculares de la herencia y se ha podido traducir este conocimiento en métodos para mejorar los niveles de éxito de la cría selectiva. En los últimos años, esta evolución se ha acelerado gracias a trascendentales descubrimientos en los ámbitos de la reprogramación celular, la ingeniería genética y la secuenciación de genomas completos. Ya están aprobadas las primeras proteínas terapéuticas para tratar a pacientes humanos obtenidas a partir de ganado mediante procedimientos biofarmacéuticos. Actualmente se investiga la idoneidad de las células troncales pluripotentes como fuente de terapias de sustitución celular, utilizando a animales de granja como modelos preclínicos informativos. La modelización de enfermedades en animales de granja permite ensayar tratamientos eficaces de forma sistemática. En el contexto de todos estos adelantos, los autores se centran en repasar concisamente la contribución de los animales de granja a la salud y el bienestar humanos.


Asunto(s)
Animales Domésticos/genética , Calidad de Vida , Animales , Animales Domésticos/fisiología , Abastecimiento de Alimentos , Ingeniería Genética , Humanos , Células Madre Pluripotentes
7.
Plant Biotechnol J ; 15(9): 1120-1129, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28160363

RESUMEN

Plant-produced glycoproteins contain N-linked glycans with plant-specific residues of ß(1,2)-xylose and core α(1,3)-fucose, which do not exist in mammalian-derived proteins. Although our experience with two enzymes that are used for enzyme replacement therapy does not indicate that the plant sugar residues have deleterious effects, we made a conscious decision to eliminate these moieties from plant-expressed proteins. We knocked out the ß(1,2)-xylosyltranferase (XylT) and the α(1,3)-fucosyltransferase (FucT) genes, using CRISPR/Cas9 genome editing, in Nicotiana tabacum L. cv Bright Yellow 2 (BY2) cell suspension. In total, we knocked out 14 loci. The knocked-out lines were stable, viable and exhibited a typical BY2 growing rate. Glycan analysis of the endogenous proteins of these lines exhibited N-linked glycans lacking ß(1,2)-xylose and/or α(1,3)-fucose. The knocked-out lines were further transformed successfully with recombinant DNaseI. The expression level and the activity of the recombinant protein were similar to that of the protein produced in the wild-type BY2 cells. The recombinant DNaseI was shown to be totally free from any xylose and/or fucose residues. The glyco-engineered BY2 lines provide a valuable platform for producing potent biopharmaceutical products. Furthermore, these results demonstrate the power of the CRISPR/Cas9 technology for multiplex gene editing in BY2 cells.


Asunto(s)
Terapia Biológica , Fucosa/metabolismo , Glicoproteínas/metabolismo , Nicotiana/genética , Xilosa/metabolismo , Línea Celular , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Fucosiltransferasas/genética , Fucosiltransferasas/metabolismo , Edición Génica , Vectores Genéticos , Glicoproteínas/genética , Pentosiltransferasa/genética , Pentosiltransferasa/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polisacáridos , Proteínas Recombinantes , Nicotiana/metabolismo , UDP Xilosa Proteína Xilosiltransferasa
8.
Transgenic Res ; 25(3): 329-43, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26820414

RESUMEN

The recombinant production of therapeutic proteins for human diseases is currently the largest source of innovation in the pharmaceutical industry. The market growth has been the driving force on efforts for the development of new therapeutic proteins, in which transgenesis emerges as key component. The use of the transgenic animal platform offers attractive possibilities, residing on the low production costs allied to high productivity and quality of the recombinant proteins. Although many strategies have evolved over the past decades for the generation of transgenic founders, transgenesis in livestock animals generally faces some challenges, mainly due to random transgene integration and control over transgene copy number. But new developments in gene editing with CRISPR/Cas system promises to revolutionize the field for its simplicity and high efficiency. In addition, for the final approval of any given recombinant protein for animal or human use, the production and characterization of bioreactor founders and expression patterns and functionality of the proteins are technical part of the process, which also requires regulatory and administrative decisions, with a large emphasis on biosafety. The approval of two mammary gland-derived recombinant proteins for commercial and clinical use has boosted the interest for more efficient, safer and economic ways to generate transgenic founders to meet the increasing demand for biomedical proteins worldwide.


Asunto(s)
Animales Modificados Genéticamente/genética , Biofarmacia/tendencias , Ganado/genética , Proteínas Recombinantes/genética , Animales , Reactores Biológicos , Técnicas de Transferencia de Gen/tendencias , Humanos , Proteínas Recombinantes/biosíntesis
9.
Heliyon ; 10(18): e37634, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39309966

RESUMEN

An excellent technique for producing pharmaceuticals called "molecular farming" enables the industrial mass production of useful recombinant proteins in genetically modified organisms. Protein-based pharmaceuticals are rising in significance because of a variety of factors, including their bioreactivity, precision, safety, and efficacy rate. Heterologous expression methods for the manufacturing of pharmaceutical products have been previously employed using yeast, bacteria, and animal cells. However, the high cost of mammalian cell system, and production, the chance for product complexity, and contamination, and the hurdles of scaling up to commercial production are the limitations of these traditional expression methods. Plants have been raised as a hopeful replacement system for the expression of biopharmaceutical products due to their potential benefits, which include low production costs, simplicity in scaling up to commercial manufacturing levels, and a lower threat of mammalian toxin contaminations and virus infections. Since plants are widely utilized as a source of therapeutic chemicals, molecular farming offers a unique way to produce molecular medicines such as recombinant antibodies, enzymes, growth factors, plasma proteins, and vaccines whose molecular basis for use in therapy is well established. Biopharming provides more economical and extensive pharmaceutical drug supplies, including vaccines for contagious diseases and pharmaceutical proteins for the treatment of conditions like heart disease and cancer. To assess its technical viability and the efficacy resulting from the adoption of molecular farming products, the following review explores the various methods and methodologies that are currently employed to create commercially valuable molecules in plant systems.

10.
Virology ; 580: 88-97, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36801669

RESUMEN

Human papillomaviruses (HPVs) are known to be the cause of anogenital and oropharyngeal cancers as well as genital and common warts. HPV pseudovirions (PsVs) are synthetic viral particles that are made up of the L1 major and L2 minor HPV capsid proteins and up to 8 Kb of encapsidated pseudogenome dsDNA. HPV PsVs are used to test novel neutralising antibodies elicited by vaccines, for studying the virus life cycle, and potentially for the delivery of therapeutic DNA vaccines. HPV PsVs are typically produced in mammalian cells, however, it has recently been shown that Papillomavirus PsVs can be produced in plants, a potentially safer, cheaper and more easily scalable means of production. We analysed the encapsidation frequencies of pseudogenomes expressing EGFP, ranging in size from 4.8 Kb to 7.8 Kb, by plant-made HPV-35 L1/L2 particles. The smaller pseudogenomes were found to be packaged more efficiently into PsVs as higher concentrations of encapsidated DNA and higher levels of EGFP expression were obtained with the 4.8 Kb pseudogenome, compared to the larger 5.8-7.8 Kb pseudogenomes. Thus, smaller pseudogenomes, of 4.8 Kb, should be used for efficient plant production of HPV-35 PsVs.


Asunto(s)
Proteínas Oncogénicas Virales , Infecciones por Papillomavirus , Vacunas contra Papillomavirus , Animales , Humanos , Virus del Papiloma Humano , Proteínas de la Cápside/metabolismo , Papillomaviridae/genética , ADN , Mamíferos
11.
Front Plant Sci ; 14: 1126470, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36923134

RESUMEN

Introduction: Broadly neutralising antibodies are promising candidates for preventing and treating Human Immunodeficiency Virus/Acquired Immunodeficiency Syndrome (HIV/AIDS), as an alternative to or in combination with antiretroviral therapy (ART). These mAbs bind to sites on the virus essential for virus attachment and entry, thereby inhibiting entry into the host cell. However, the cost and availability of monoclonal antibodies, especially combinations of antibodies, hampers implementation of anti-HIV bNAb therapies in low- to middle- income countries (LMICs) where HIV-1 prevalence is highest. Methods: We have produced three HIV broadly neutralizing antibodies (bNAbs), 10-1074, VRC01 and 3BNC117 in the Nicotiana benthamiana transient expression system. The impact of specific modifications to enhance potency and efficacy were assessed. To prolong half-life and increase bioavailability, a M252Y/S254T/T256E (YTE) or M428L/N434S (LS) mutation was introduced. To increase antibody dependent cellular cytotoxicity (ADCC), we expressed an afucosylated version of each antibody using a glycoengineered plant line. Results: The majority of bNAbs and their variants could be expressed at yields of up to 47 mg/kg. Neither the expression system nor the modifications impacted the neutralization potential of the bNAbs. Afucosylated bNAbs exhibit enhanced ability to bind to FcγRIIIa and trigger ADCC, regardless of the presence of Fc amino acid mutations. Lastly, we demonstrated that Fc-modified variants expressed in plants show enhanced binding to FcRn, which results in a favourable in vivo pharmacokinetic profile compared to their unmodified counterparts. Conclusion: Tobacco plants are suitable expression hosts for anti-HIV bNAbs with increased efficacy and an improved pharmacokinetic profile.

12.
Nucleus (Calcutta) ; 65(3): 399-411, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36276225

RESUMEN

Nature has abundant source of drugs that need to be identified/purified for use as essential biologics, either individually or in combination in the modern medical field. These drugs are divided into small bio-molecules, plant-made biologics, and a recently introduced third category known as phytopharmaceutical drugs. The development of phytopharmaceutical medicines is based on the ethnopharmacological approach, which relies on the traditional medicine system. The concept of 'one-disease one-target drug' is becoming less popular, and the use of plant extracts, fractions, and molecules is the new paradigm that holds promising scope to formulate appropriate drugs. This led to discovering a new concept known as polypharmacology, where natural products from varying sources can engage with multiple human physiology targets. This article summarizes different approaches for phytopharmaceutical drug development and discusses the progress in systems biology and computational tools for identifying drug targets. We review the existing drug delivery methods to facilitate the efficient delivery of drugs to the targets. In addition, we describe different analytical techniques for the authentication and fingerprinting of plant materials. Finally, we highlight the role of biopharming in developing plant-based biologics.

13.
Vaccines (Basel) ; 10(2)2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-35214597

RESUMEN

Coronavirus (CoV) diseases, including Middle East Respiratory Syndrome (MERS) and Severe Acute Respiratory Syndrome (SARS) have gained in importance worldwide, especially with the current COVID-19 pandemic caused by SARS-CoV-2. Due to the huge global demand, various types of vaccines have been developed, such as more traditional attenuated or inactivated viruses, subunit and VLP-based vaccines, as well as novel DNA and RNA vaccines. Nonetheless, emerging new COVID-19 variants are necessitating continuous research on vaccines, including these produced in plants, either via stable expression in transgenic or transplastomic plants or transient expression using viral vectors or agroinfection. Plant systems provide low cost, high scalability, safety and capacity to produce multimeric or glycosylated proteins. To date, from among CoVs antigens, spike and capsid proteins have been produced in plants, mostly using transient expression systems, at the additional advantage of rapid production. Immunogenicity of plant-produced CoVs proteins was positively evaluated after injection of purified antigens. However, this review indicates that plant-produced CoVs proteins or their carrier-fused immunodominant epitopes can be potentially applied also as mucosal vaccines, either after purification to be administered to particular membranes (nasal, bronchus mucosa) associated with the respiratory system, or as oral vaccines obtained from partly processed plant tissue.

14.
Vaccines (Basel) ; 10(1)2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-35062761

RESUMEN

Vaccines for human use have conventionally been developed by the production of (1) microbial pathogens in eggs or mammalian cells that are then inactivated, or (2) by the production of pathogen proteins in mammalian and insect cells that are purified for vaccine formulation, as well as, more recently, (3) by using RNA or DNA fragments from pathogens. Another approach for recombinant antigen production in the last three decades has been the use of plants as biofactories. Only have few plant-produced vaccines been evaluated in clinical trials to fight against diseases, of which COVID-19 vaccines are the most recent to be FDA approved. In silico tools have accelerated vaccine design, which, combined with transitory antigen expression in plants, has led to the testing of promising prototypes in pre-clinical and clinical trials. Therefore, this review deals with a description of immunoinformatic tools and plant genetic engineering technologies used for antigen design (virus-like particles (VLP), subunit vaccines, VLP chimeras) and the main strategies for high antigen production levels. These key topics for plant-made vaccine development are discussed and perspectives are provided.

15.
Front Cell Dev Biol ; 10: 883841, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35721490

RESUMEN

Mechanisms devoted to the secretion of proteins via extracellular vesicles (EVs) have been found in mammals, yeasts, and plants. Since they transport a number of leader-less proteins to the plasma membrane or the extracellular space, EVs are considered part of Unconventional protein secretion (UPS) routes. UPS involving EVs are a relatively new field in plants. Aside from their role in plant physiology and immunity, plant extracts containing EVs have also been shown to be beneficial for human health. Therefore, exploring the use of plant EVs in biomedicine and their potential as drug delivery tools is an exciting avenue. Here we give a summary of the state of knowledge on plant EVs, their crosstalk with mammalian systems and potential research routes that could lead to practical applications in therapeutic drug delivery.

16.
PeerJ ; 9: e10851, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33868796

RESUMEN

Immunization with thetumor-associated antigen GA733 glycoprotein, which is highly expressed in colorectal cancer, is considered to be a promising strategy for cancer prevention and treatment. We cloned a fusion gene of GA733 and immunoglobulin Fc fragment (GA733-Fc), and that of GA733-Fc and an endoplasmic reticulum retention motif (GA733-FcK) into the Cowpea mosaic virus (CPMV)-based transient plant expression vector, pEAQ-HT. Agrobacterium tumefaciens (LBA4404) transformed with the vectors pEAQ-HT-GA733-Fc and pEAQ-HT-GA733-FcK was infiltrated into the leaves of Nicotiana benthamiana plants. To optimize harvesting of leaf to express therapeutic glycoproteins both spatially and temporally, protein expression levels at various leaf positions (top, middle, and base) and days post-infiltration (dpi) were investigated. The GA733-Fc and GA733-FcK genes were detected in leaves at 1-10 dpi using PCR. As assessed by western blot, GA733-Fc and GA733-FcK were expressed at the highest levels in the top leaf position at 5 dpi, and GA733-FcK was expressed more than GA733-Fc. The proteins were successfully purified from infiltrated N. benthamiana leaves using protein A affinity chromatography. ELISA verified that an anti-GA733 antibody recognized both purified proteins. Thus, a functional GA733-Fc colorectal cancer vaccine protein can be transiently expressed using a CPMV virus-based vector, with an optimized expression time and leaf position post-infiltration.

17.
3 Biotech ; 11(5): 209, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33927997

RESUMEN

The production of recombinant proteins in transgenic plants is becoming an increasingly serious alternative to classical biopharming methods as knowledge about this process grows. Wolffia arrhiza, an aquatic plant unique in its anatomy, is a promising expression system that can grow in submerged culture in bioreactors. In our study 8550 explants were subjected to Agrobacterium-mediated transformation, and 41 independent hygromycin-resistant Wolffia lines were obtained, with the transformation efficiency of 0.48%. 40 of them contained the hirudin-1 gene (codon-optimized for expression in plants) and were independent lines of nuclear-transformed Wolffia, the transgenic insertion has been confirmed by PCR and Southern blot analysis. We have analyzed the accumulation of the target protein and its expression has been proven in three transgenic lines. The maximum accumulation of recombinant hirudin was 0.02% of the total soluble protein, which corresponds to 775.5 ± 111.9 ng g-1 of fresh weight of the plant. The results will be used in research on the development of an expression system based on Wolffia plants for the production of hirudin and other recombinant pharmaceutical proteins.

18.
Front Microbiol ; 12: 645419, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33897657

RESUMEN

Geminiviruses are plant DNA viruses that infect a wide range of plant species and cause significant losses to economically important food and fiber crops. The single-stranded geminiviral genome encodes a small number of proteins which act in an orchestrated manner to infect the host. The fewer proteins encoded by the virus are multifunctional, a mechanism uniquely evolved by the viruses to balance the genome-constraint. The host-mediated resistance against incoming virus includes post-transcriptional gene silencing, transcriptional gene silencing, and expression of defense responsive genes and other cellular regulatory genes. The pathogenicity property of a geminiviral protein is linked to its ability to suppress the host-mediated defense mechanism. This review discusses what is currently known about the targets and mechanism of the viral suppressor AC2/AL2/transcriptional activator protein (TrAP) and explore the biotechnological applications of AC2.

19.
Stem Cell Res Ther ; 12(1): 283, 2021 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-33980321

RESUMEN

BACKGROUND: The global health emergency of COVID-19 has necessitated the development of multiple therapeutic modalities including vaccinations, antivirals, anti-inflammatory, and cytoimmunotherapies, etc. COVID-19 patients suffer from damage to various organs and vascular structures, so they present multiple health crises. Mesenchymal stem cells (MSCs) are of interest to treat acute respiratory distress syndrome (ARDS) caused by SARS-CoV-2 infection. MAIN BODY: Stem cell-based therapies have been verified for prospective benefits in copious preclinical and clinical studies. MSCs confer potential benefits to develop various cell types and organoids for studying virus-human interaction, drug testing, regenerative medicine, and immunomodulatory effects in COVID-19 patients. Apart from paving the ways to augment stem cell research and therapies, somatic cell nuclear transfer (SCNT) holds unique ability for a wide range of health applications such as patient-specific or isogenic cells for regenerative medicine and breeding transgenic animals for biomedical applications. Being a potent cell genome-reprogramming tool, the SCNT has increased prominence of recombinant therapeutics and cellular medicine in the current era of COVID-19. As SCNT is used to generate patient-specific stem cells, it avoids dependence on embryos to obtain stem cells. CONCLUSIONS: The nuclear transfer cloning, being an ideal tool to generate cloned embryos, and the embryonic stem cells will boost drug testing and cellular medicine in COVID-19.


Asunto(s)
COVID-19 , Animales , Clonación Molecular , Clonación de Organismos , Células Madre Embrionarias , Humanos , Estudios Prospectivos , SARS-CoV-2
20.
Pathogens ; 9(12)2020 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-33260725

RESUMEN

Vaccine efficacy requires the production of neutralising antibodies which offer protection against the native virus. The current gold standard for determining the presence of neutralising antibodies is the pseudovirion-based neutralisation assay (PBNA). PBNAs utilise pseudovirions (PsVs), structures which mimic native virus capsids, but contain non-viral nucleic material. PsVs are currently produced in expensive cell culture systems, which limits their production, yet plant expression systems may offer cheaper, safer alternatives. Our aim was to determine whether plants could be used for the production of functional PsVs of bovine papillomavirus 1 (BPV1), an important causative agent of economically damaging bovine papillomas in cattle and equine sarcoids in horses and wild equids. BPV1 capsid proteins, L1 and L2, and a self-replicating reporter plasmid were transiently expressed in Nicotiana benthamiana to produce virus-like particles (VLPs) and PsVs. Strategies to enhance particle yields were investigated and optimised protocols were established. The PsVs' ability to infect mammalian cells and express their encapsidated reporter genes in vitro was confirmed, and their functionality as reagents in PBNAs was demonstrated through their neutralisation by several different antibodies. This is the first report of BPV PsVs expressed in plants and demonstrates the potential for the development of therapeutic veterinary vaccines in planta.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda