Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Mol Pharm ; 21(8): 3824-3837, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38958668

RESUMEN

In vivo studies of formulation performance with in vitro and/or in silico simulations are often limited by significant gaps in our knowledge of the interaction between administered dosage forms and the human gastrointestinal tract. This work presents a novel approach for the investigation of gastric motility influence on dosage form performance, by combining biopredictive dissolution tests in an innovative PhysioCell apparatus with mechanistic physiology-based pharmacokinetic modeling. The methodology was based on the pharmacokinetic data from a large (n = 118) cohort of healthy volunteers who ingested a capsule containing a highly soluble and rapidly absorbed drug under fasted conditions. The developed dissolution tests included biorelevant media, varied fluid flows, and mechanical stress events of physiological timing and intensity. The dissolution results were used as inputs for pharmacokinetic modeling that led to the deduction of five patterns of gastric motility and their prevalence in the studied population. As these patterns significantly influenced the observed pharmacokinetic profiles, the proposed methodology is potentially useful to other in vitro-in vivo predictions involving immediate-release oral dosage forms.


Asunto(s)
Motilidad Gastrointestinal , Solubilidad , Humanos , Motilidad Gastrointestinal/fisiología , Adulto , Masculino , Femenino , Modelos Biológicos , Administración Oral , Adulto Joven , Voluntarios Sanos , Simulación por Computador , Liberación de Fármacos/fisiología , Persona de Mediana Edad , Ayuno/fisiología , Tracto Gastrointestinal/metabolismo , Tracto Gastrointestinal/fisiología
2.
Mol Pharm ; 21(8): 3697-3731, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38946085

RESUMEN

This Article shares the proceedings from the August 29th, 2023 (day 1) workshop "Physiologically Based Biopharmaceutics Modeling (PBBM) Best Practices for Drug Product Quality: Regulatory and Industry Perspectives". The focus of the day was on model parametrization; regulatory authorities from Canada, the USA, Sweden, Belgium, and Norway presented their views on PBBM case studies submitted by industry members of the IQ consortium. The presentations shared key questions raised by regulators during the mock exercise, regarding the PBBM input parameters and their justification. These presentations also shed light on the regulatory assessment processes, content, and format requirements for future PBBM regulatory submissions. In addition, the day 1 breakout presentations and discussions gave the opportunity to share best practices around key questions faced by scientists when parametrizing PBBMs. Key questions included measurement and integration of drug substance solubility for crystalline vs amorphous drugs; impact of excipients on apparent drug solubility/supersaturation; modeling of acid-base reactions at the surface of the dissolving drug; choice of dissolution methods according to the formulation and drug properties with a view to predict the in vivo performance; mechanistic modeling of in vitro product dissolution data to predict in vivo dissolution for various patient populations/species; best practices for characterization of drug precipitation from simple or complex formulations and integration of the data in PBBM; incorporation of drug permeability into PBBM for various routes of uptake and prediction of permeability along the GI tract.


Asunto(s)
Biofarmacia , Modelos Biológicos , Biofarmacia/métodos , Humanos , Solubilidad , Preparaciones Farmacéuticas/química , Excipientes/química , Química Farmacéutica/métodos
3.
Mol Pharm ; 21(5): 2456-2472, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38568423

RESUMEN

Variability of the gastrointestinal tract is rarely reflected in in vitro test protocols but often turns out to be crucial for the oral dosage form performance. In this study, we present a generation method of dissolution profiles accounting for the variability of fasted gastric conditions. The workflow featured 20 biopredictive tests within the physiological variability. The experimental array was constructed with the use of the design of experiments, based on three parameters: gastric pH and timings of the intragastric stress event and gastric emptying. Then, the resulting dissolution profiles served as a training data set for the dissolution process modeling with the machine learning algorithms. This allowed us to generate individual dissolution profiles under a customizable gastric pH and motility patterns. For the first time ever, we used the method to successfully elucidate dissolution properties of two dosage forms: pellet-filled capsules and bare pellets of the marketed dabigatran etexilate product Pradaxa. We showed that the dissolution of capsules was triggered by mechanical stresses and thus was characterized by higher variability and a longer dissolution onset than observed for pellets. Hence, we proved the applicability of the method for the in vitro and in silico characterization of immediate-release dosage forms and, potentially, for the improvement of in vitro-in vivo extrapolation.


Asunto(s)
Cápsulas , Dabigatrán , Ayuno , Vaciamiento Gástrico , Dabigatrán/química , Dabigatrán/administración & dosificación , Dabigatrán/farmacología , Cápsulas/química , Vaciamiento Gástrico/fisiología , Vaciamiento Gástrico/efectos de los fármacos , Humanos , Concentración de Iones de Hidrógeno , Solubilidad , Liberación de Fármacos , Administración Oral , Simulación por Computador , Estómago/fisiología , Estómago/efectos de los fármacos
4.
Mol Pharm ; 21(5): 2065-2080, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38600804

RESUMEN

Physiologically based biopharmaceutics modeling (PBBM) is used to elevate drug product quality by providing a more accurate and holistic understanding of how drugs interact with the human body. These models are based on the integration of physiological, pharmacological, and pharmaceutical data to simulate and predict drug behavior in vivo. Effective utilization of PBBM requires a consistent approach to model development, verification, validation, and application. Currently, only one country has a draft guidance document for PBBM, whereas other major regulatory authorities have had limited experience with the review of PBBM. To address this gap, industry submitted confidential PBBM case studies to be reviewed by the regulatory agencies; software companies committed to training. PBBM cases were independently and collaboratively discussed by regulators, and academic colleagues participated in some of the discussions. Successful bioequivalence "safe space" industry case examples are also presented. Overall, six regulatory agencies were involved in the case study exercises, including ANVISA, FDA, Health Canada, MHRA, PMDA, and EMA (experts from Belgium, Germany, Norway, Portugal, Spain, and Sweden), and we believe this is the first time such a collaboration has taken place. The outcomes were presented at this workshop, together with a participant survey on the utility and experience with PBBM submissions, to discuss the best scientific practices for developing, validating, and applying PBBMs. The PBBM case studies enabled industry to receive constructive feedback from global regulators and highlighted clear direction for future PBBM submissions for regulatory consideration.


Asunto(s)
Biofarmacia , Industria Farmacéutica , Humanos , Biofarmacia/métodos , Industria Farmacéutica/métodos , Modelos Biológicos , Equivalencia Terapéutica , Preparaciones Farmacéuticas/química , Estados Unidos
5.
Pharm Res ; 40(2): 321-336, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36076007

RESUMEN

Physiologically based biopharmaceutics modeling (PBBM) emphasizes the integration of physicochemical properties of drug substance and formulation characteristics with system physiological parameters to predict the absorption and pharmacokinetics (PK) of a drug product. PBBM has been successfully utilized in drug development from discovery to postapproval stages and covers a variety of applications. The use of PBBM facilitates drug development and can reduce the number of preclinical and clinical studies. In this review, we summarized the major applications of PBBM, which are classified into six categories: formulation selection and development, biopredictive dissolution method development, biopharmaceutics risk assessment, clinically relevant specification settings, food effect evaluation and pH-dependent drug-drug-interaction risk assessment. The current state of PBBM applications is illustrated with examples from published studies for each category of application. Despite the variety of PBBM applications, there are still many hurdles limiting the use of PBBM in drug development, that are associated with the complexity of gastrointestinal and human physiology, the knowledge gap between the in vitro and the in vivo behavior of drug products, the limitations of model interfaces, and the lack of agreed model validation criteria, among other issues. The challenges and essential considerations related to the use of PBBM are discussed in a question-based format along with the scientific thinking on future research directions. We hope this review can foster open discussions between the pharmaceutical industry and regulatory agencies and encourage collaborative research to fill the gaps, with the ultimate goal to maximize the applications of PBBM in oral drug product development.


Asunto(s)
Biofarmacia , Desarrollo de Medicamentos , Humanos , Biofarmacia/métodos , Solubilidad , Desarrollo de Medicamentos/métodos , Industria Farmacéutica , Administración Oral , Modelos Biológicos
6.
Drug Dev Ind Pharm ; 48(3): 79-97, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35786119

RESUMEN

Development and optimization of orally administered drug products often require bio-predictive tools to help with informing formulation and manufacturing decisions. Reliable bio-predictive dissolution toolkits not only allow rational development of target formulations without having to conduct excessive in vivo studies but also help in detecting critical material attributes (CMAs), critical formulation variables (CFVs), or critical process parameters (CPPs) that could impact a drug's in vivo performance. To provide early insights for scientists on the development of a bio-predictive method for drug product development, this review summarizes current phase-appropriate bio-predictive dissolution approaches applicable to address typical concerns on solubility-limited absorption, food effect, achlorhydria, development of extended-release formulation, clinically relevant specification, and biowaiver. The selection of an in vitro method which can capture the key rate-limiting step(s) of the in vivo dissolution and/or absorption is considered to have a better chance to produce a meaningful in vitro-in vivo correlation (IVIVC) or in vitro-in vivo relationship (IVIVR).


Asunto(s)
Desarrollo de Medicamentos , Administración Oral , Preparaciones de Acción Retardada , Formas de Dosificación , Solubilidad
7.
Mol Pharm ; 13(6): 1927-36, 2016 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-27139040

RESUMEN

The aim of this work was to develop a phosphate buffer based dissolution method for enteric-coated formulations with improved biopredictivity for fasted conditions. Two commercially available enteric-coated aspirin products were used as model formulations (Aspirin Protect 300 mg, and Walgreens Aspirin 325 mg). The disintegration performance of these products in a physiological 8 mM pH 6.5 bicarbonate buffer (representing the conditions in the proximal small intestine) was used as a standard to optimize the employed phosphate buffer molarity. To account for the fact that a pH and buffer molarity gradient exists along the small intestine, the introduction of such a gradient was proposed for products with prolonged lag times (when it leads to a release lower than 75% in the first hour post acid stage) in the proposed buffer. This would allow the method also to predict the performance of later-disintegrating products. Dissolution performance using the accordingly developed method was compared to that observed when using two well-established dissolution methods: the United States Pharmacopeia (USP) method and blank fasted state simulated intestinal fluid (FaSSIF). The resulting dissolution profiles were convoluted using GastroPlus software to obtain predicted pharmacokinetic profiles. A pharmacokinetic study on healthy human volunteers was performed to evaluate the predictions made by the different dissolution setups. The novel method provided the best prediction, by a relatively wide margin, for the difference between the lag times of the two tested formulations, indicating its being able to predict the post gastric emptying onset of drug release with reasonable accuracy. Both the new and the blank FaSSIF methods showed potential for establishing in vitro-in vivo correlation (IVIVC) concerning the prediction of Cmax and AUC0-24 (prediction errors not more than 20%). However, these predictions are strongly affected by the highly variable first pass metabolism necessitating the evaluation of an absorption rate metric that is more independent of the first-pass effect. The Cmax/AUC0-24 ratio was selected for this purpose. Regarding this metric's predictions, the new method provided very good prediction of the two products' performances relative to each other (only 1.05% prediction error in this regard), while its predictions for the individual products' values in absolute terms were borderline, narrowly missing the regulatory 20% prediction error limits (21.51% for Aspirin Protect and 22.58% for Walgreens Aspirin). The blank FaSSIF-based method provided good Cmax/AUC0-24 ratio prediction, in absolute terms, for Aspirin Protect (9.05% prediction error), but its prediction for Walgreens Aspirin (33.97% prediction error) was overwhelmingly poor. Thus it gave practically the same average but much higher maximum prediction errors compared to the new method, and it was strongly overdiscriminating as for predicting their performances relative to one another. The USP method, despite not being overdiscriminating, provided poor predictions of the individual products' Cmax/AUC0-24 ratios. This indicates that, overall, the new method is of improved biopredictivity compared to established methods.


Asunto(s)
Aspirina/química , Aspirina/metabolismo , Materiales Biocompatibles Revestidos/química , Área Bajo la Curva , Bicarbonatos/química , Disponibilidad Biológica , Tampones (Química) , Química Farmacéutica/métodos , Formas de Dosificación , Liberación de Fármacos/fisiología , Vaciamiento Gástrico/fisiología , Humanos , Concentración de Iones de Hidrógeno , Intestino Delgado/metabolismo , Cinética , Solubilidad
8.
J Pharm Sci ; 113(2): 345-358, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38043684

RESUMEN

Over the past few decades, physiologically based biopharmaceutics modeling (PBBM) has demonstrated its utility in both new drug and generic product development. Applications of PBBM for fed bioequivalence study waivers is an upcoming area. Recently Innovation & Quality (IQ) consortium demonstrated utility of PBBM to avoid repeat food effect studies for new drugs. In the similar lines, the current manuscript aims to discuss role of PBBM in generic fed bioequivalence study waivers. Generic industry practices related to PBBM model development to predict fed bioequivalence was portrayed with special emphasis on fed bio-predictive media. Media that can simulate fed bioequivalence study outcome were discussed from practical perspective. In-depth analysis, collating the data from 36 products was performed to understand predictability of PBBM for fed bioequivalence. Cases where PBBM was successful to predict fed bioequivalence was correlated with BCS class, formulation category and type of food effect. Further, two case studies were presented wherein fed bioequivalence study waiver obtained with PBBM approach. Lastly, future direction in terms of fed bioequivalence study waivers, regulatory perspectives and best practices for PBBM were portrayed. Overall, this article paves a way to utilize PBBM for generic fed bioequivalence study waivers.


Asunto(s)
Biofarmacia , Medicamentos Genéricos , Equivalencia Terapéutica , Solubilidad , Modelos Biológicos
9.
J Control Release ; 374: 61-75, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39089507

RESUMEN

Predictive performance assays are crucial for the development and approval of nanomedicines and their bioequivalent successors. At present, there are no established compendial methods that provide a reliable standard for comparing and selecting these formulation prototypes, and our understanding of the in vivo release remains still incomplete. Consequently, extensive animal studies, with enhanced analytical resolution for both, released and encapsulated drug, are necessary to assess bioequivalence. This significantly raises the cost and duration of nanomedicine development. This work presents the development of a discriminatory and biopredictive release test method for liposomal prednisolone phosphate. Using model-informed deconvolution, we identified an in vivo target release. The experimental design employed a discrete L-optimal configuration to refine the analytical method and determine the impact of in vitro parameters on the dosage form. A three-point specification evaluated the key phases of in vivo release: early (T-5%), intermediate (T-20%), and late release behavior (T-40%), compared to the in vivo release profile of the reference product, NanoCort®. Various levels of shear responses and the influence of clinically relevant release media compositions were tested. This enabled an assessment of the effect of shear on the release, an essential aspect of their in vivo deformation and release behavior. The type and concentration of proteins in the medium influence liposome release. Fetal bovine serum strongly impacted the discriminatory performance at intermediate shear conditions. The method provided deep insights into the release response of liposomes and offers an interesting workflow for in vitro bioequivalence evaluation.


Asunto(s)
Liberación de Fármacos , Liposomas , Prednisolona , Prednisolona/administración & dosificación , Prednisolona/farmacocinética , Prednisolona/química , Prednisolona/análogos & derivados , Animales
10.
Int J Pharm ; 654: 123942, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38403086

RESUMEN

In the century of precision medicine and predictive modeling, addressing quality-related issues in the medical supply chain is critical, with 62 % of the disruptions being attributable to quality challenges. This study centers on the development and safety of liposomal doxorubicin, where animal studies alone often do not adequately explain the complex interplay between critical quality attributes and in vivo performances. Anchored in our aim to elucidate this in vitro-in vivo nexus, we compared TLD-1, a novel liposomal doxorubicin delivery system, against the established formulations Doxil® and Lipodox®. Robust in vitro-in vivo correlations (IVIVCs) with excellent coefficients of determination (R2 > 0.98) were obtained in the presence of serum under dynamic high-shear conditions. They provided the foundation for an advanced characterization and benchmarking strategy. Despite the smaller vesicle size and reduced core crystallinity of TLD-1, its release behavior closely resembled that of Doxil®. Nevertheless, subtle differences between the dosage forms observed in the in vitro setting were reflected in the bioavailabilities observed in vivo. Data from a Phase-I clinical trial facilitated the development of patient-specific IVIVCs using the physiologically-based nanocarrier biopharmaceutics model, enabling a more accurate estimation of doxorubicin exposure. This advancement could impact clinical practice by allowing for more precise dose estimation and aiding in the assessment of the interchangeability of generic liposomal doxorubicin.


Asunto(s)
Doxorrubicina/análogos & derivados , Polietilenglicoles , Animales , Humanos , Disponibilidad Biológica , Medicamentos Genéricos
11.
Int J Pharm ; 649: 123626, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38000647

RESUMEN

A direct oral anticoagulant rivaroxaban fails to prevent stroke and systemic embolism in one-to-several percent of patients with nonvalvular atrial fibrillation (NVAF), but the reasons are unknown. The study used semi-mechanistic in vitro-in vivo prediction (IVIVP) modeling to explore the reasons for ineffective thrombosis prevention in NVAF patients. Steady-state drug concentrations in plasma were measured at 0 h (Ctrough), 3 h (C3h), and 12 h post-dosing in thirty-four patients treated with 20 mg rivaroxaban daily. The clinical data were compared against "virtual twins" generated with a novel IVIVP model that combined drug dissolution modeling, mechanistic description of gastric drug transit, and population pharmacokinetics defining the variability of drug disposition. The nonresponders had significantly lower C3h and Ctrough than the responders (p < 0.001) and the covariates included in the population pharmacokinetic submodel did not fully explain this difference. Simulations involving varied gastrointestinal parameters in the "virtual twins" revealed that lower small intestinal effective permeability (Peff), rather than a slower stomach emptying rate, could explain low rivaroxaban exposure in the nonresponders. IVIVP modeling was effectively used for exploring pharmacotherapy failure. Low Peff, found as a major determinant of ineffective rivaroxaban treatment, encourages further research to find (pato)physiological factors influencing suboptimal absorption.


Asunto(s)
Fibrilación Atrial , Accidente Cerebrovascular , Humanos , Rivaroxabán , Fibrilación Atrial/tratamiento farmacológico , Fibrilación Atrial/inducido químicamente , Fibrilación Atrial/epidemiología , Inhibidores del Factor Xa/uso terapéutico , Anticoagulantes , Accidente Cerebrovascular/prevención & control , Accidente Cerebrovascular/tratamiento farmacológico , Accidente Cerebrovascular/epidemiología
12.
Pharmaceutics ; 15(5)2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37242786

RESUMEN

This study aimed to develop a biopredictive dissolution method for desvenlafaxine ER tablets using design of experiments (DoE) and physiologically based biopharmaceutics modeling (PBBM) to address the challenge of developing generic drug products by reducing the risk of product failure in pivotal bioequivalence studies. For this purpose, a PBBM was developed in GastroPlus® and combined with a Taguchi L9 design, to evaluate the impact of different drug products (Reference, Generic #1 and Generic #2) and dissolution test conditions on desvenlafaxine release. The influence of the superficial area/volume ratio (SA/V) of the tablets was observed, mainly for Generic #1, which presented higher SA/V than the others, and a high amount of drug dissolved under similar test conditions. The dissolution test conditions of 900 mL of 0.9% NaCl and paddle at 50 rpm with sinker showed to be biopredictive, as it was possible to demonstrate virtual bioequivalence for all products, despite their release-pattern differences, including Generic #3 as an external validation. This approach led to a rational development of a biopredictive dissolution method for desvenlafaxine ER tablets, providing knowledge that may help the process of drug product and dissolution method development.

13.
AAPS J ; 25(3): 45, 2023 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-37085637

RESUMEN

Assessing in vivo performance to inform formulation selection and development decisions is an important aspect of drug development. Biopredictive dissolution methodologies for oral dosage forms have been developed to understand in vivo performance, assist in formulation development/optimization, and forecast the outcome of bioequivalence studies by combining them with simulation tools to predict plasma profiles in humans. However, unlike compendial dissolution methodologies, the various biopredictive methodologies have not yet been harmonized or standardized. This manuscript presents the initial phases of an effort to develop best practices and move toward standardization of the biopredictive methodologies through the Product Quality Research Institute (PQRI, https://pqri.org ) entitled "The standardization of in vitro predictive dissolution methodologies and in silico bioequivalence study Working Group." This Working Group (WG) is comprised of participants from 10 pharmaceutical companies and academic institutes. The project will be accomplished in a total of five phases including assessing the performance of dissolution protocols designed by the individual WG members, and then building "best practice" protocols based on the initial dissolution profiles. After refining the "best practice" protocols to produce equivalent dissolution profiles, those will be combined with physiologically based biopharmaceutics models (PBBM) to predict plasma profiles. In this manuscript, the first two of the five phases are reported, namely generating biopredictive dissolution profiles for ibuprofen and dipyridamole and using those dissolution profiles with PBBM to match the clinical plasma profiles. Key experimental parameters are identified, and this knowledge will be applied to build the "best practice" protocol in the next phase.


Asunto(s)
Dipiridamol , Ibuprofeno , Humanos , Solubilidad , Comprimidos , Academias e Institutos , Modelos Biológicos , Administración Oral
14.
Pharmaceutics ; 15(8)2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37631270

RESUMEN

Gastric mechanical stress often impacts drug dissolution from solid oral dosage forms, but in vitro experiments cannot recreate the substantial variability of gastric motility in a reasonable time. This study, for the first time, combines a novel dissolution apparatus with the design of experiments (DoE) and machine learning (ML) to overcome this obstacle. The workflow involves the testing of soft gelatin capsules in a set of fasted-state biorelevant dissolution experiments created with DoE. The dissolution results are used by an ML algorithm to build the classification model of the capsule's opening in response to intragastric stress (IS) within the physiological space of timing and magnitude. Next, a random forest algorithm is used to model the further drug dissolution. The predictive power of the two ML models is verified with independent dissolution tests, and they outperform a polynomial-based DoE model. Moreover, the developed tool reasonably simulates over 50 dissolution profiles under varying IS conditions. Hence, we prove that our method can be utilized for the simulation of dissolution profiles related to the multiplicity of individual gastric motility patterns. In perspective, the developed workflow can improve virtual bioequivalence trials and the patient-centric development of immediate-release oral dosage forms.

15.
J Pharm Sci ; 112(6): 1492-1508, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-34728176

RESUMEN

For decades, there has been a growing interest in injectable subcutaneous formulations to improve the absorption of drugs into the systemic circulation and to prolong their release over a longer period. However, fluctuations in the blood plasma levels together with bioavailability issues often limit their clinical success. This warrants a closer look at the performance of long-acting depots, for example, and their dependence on the complex interplay between the dosage form and the physiological microenvironment. For this, biopredictive performance testing is used for a thorough understanding of the biophysical processes affecting the absorption of compounds from the injection site in vivo and their simulation in vitro. In the present work, we discuss in vitro methodologies including methods and media developed for the subcutaneous route of administration on the background of the most relevant absorption mechanisms. Also, we highlight some important knowledge gaps and shortcomings of the existing methodologies to provide the reader with a better understanding of the scientific evidence underlying these models.


Asunto(s)
Solubilidad , Administración Oral , Preparaciones Farmacéuticas , Disponibilidad Biológica , Composición de Medicamentos
16.
Pharmaceutics ; 14(7)2022 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-35890408

RESUMEN

Physiologically based pharmacokinetic and absorption modeling are being used by industry and regulatory bodies to address various scientifically challenging questions. While there is high confidence in the prediction of exposure for the BCS class I drugs administered as immediate-release formulations, in the case of prolonged-release formulations, special attention should be given to the input dissolution data. Our goal was to develop and verify a PBPK model for a BCS class I compound, ropinirole, and check the biopredictiveness of the dissolution data for the prolonged-release formulation administered by Parkinson's patients. The model was built based on quality control dissolution data reported in the certificates of analysis and verified with the use of data derived from five clinical trial reports. The simulated pharmacokinetic parameters being within a two-fold range of the observed values confirmed acceptable model performance, in vivo relevance of the in vitro dissolution profiles, and indirectly indicated ropinirole stable release from the formulation in the patients' gastro-intestinal tract. Ropinirole PBPK model will be used for exploring potential clinical scenarios while developing a new formulation.

17.
Eur J Pharm Sci ; 176: 106260, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35842141

RESUMEN

The majority of new drug entities exhibits poor water solubility and therefore enabling formulations are often needed to ensure sufficient in vivo bioavailability upon oral administration. Several in vitro tools have been proposed for biopredictive screening of such drug formulations to facilitate formulation development. Among these, combined dissolution/permeation (D/P) assays have gained increasing interest in recent years, since they are presumed to better predict the absorption behavior as compared to single-compartment dissolution assays. Moreover, especially for supersaturating formulations, it has been demonstrated that the presence of an absorption sink better mimics the intraluminal supersaturation performance. The present study aimed to investigate the biopredictive abilities of two in vitro D/P setups to predict intestinal supersaturation and systemic absorption of supersaturable systems. Experiments were performed with a µFLUX™ and PermeaLoop™ apparatus, respectively, which differ primarily in their volume-to-area ratios between donor compartment and membrane as well as in the type of biomimetic barrier. A two-stage dissolution protocol was adopted to mimic the transit from acidic stomach to more neutral intestinal fluids using biomimetic media. Three formulations of the weakly basic compound Posaconazole (PCZ), namely an acidified and a neutral suspension and an amorphous solid dispersion (ASD) tablet, were tested. Under the present conditions, and for the specific set of formulations studied here, PermeaLoop™ showed a better biopredictive ability for intestinal supersaturation and systemic absorption for the three formulations than the µFLUX™ D/P setup. Interestingly, minor modifications of the two-stage D/P protocol in terms of medium transfer rates from simulated gastric fluid (SGF) to fasted state simulated intestinal fluid (FaSSIF) had a substantial impact particularly on the permeation of the crystalline PCZ suspension ("acidified suspension"). The ASD tablet was less sensitive to gradual medium changes than the crystalline PCZ suspensions. The current study confirms the usefulness of D/P assays for formulation ranking of weakly basic compounds and supersaturating formulations.


Asunto(s)
Triazoles , Administración Oral , Solubilidad , Comprimidos
18.
Pharmaceutics ; 14(2)2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-35214024

RESUMEN

Several locally acting colon-targeted products to treat colonic diseases have been recently developed and marketed, taking advantage of gastrointestinal physiology to target delivery. Main mechanisms involve pH-dependent, time-controlled and/or enzymatic-triggered release. With site of action located before systemic circulation and troublesome colonic sampling, there is room for the introduction of meaningful in vitro methods for development, quality control (QC) and regulatory applications of these formulations. A one-size-fits-all method seems unrealistic, as the selection of experimental conditions should resemble the physiological features exploited to trigger the release. This article reviews the state of the art for bio-predictive dissolution testing of colon-targeted products. Compendial methods overlook physiological aspects, such as buffer molarity and fluid composition. These are critical for pH-dependent products and time-controlled systems containing ionizable drugs. Moreover, meaningful methods for enzymatic-triggered products including either bacteria or enzymes are completely ignored by pharmacopeias. Bio-predictive testing may accelerate the development of successful products, although this may require complex methodologies. However, for high-throughput routine testing (e.g., QC), simplified methods can be used where balance is struck between simplicity, robustness and transferability on one side and bio-predictivity on the other. Ultimately, bio-predictive methods can occupy a special niche in terms of supplementing plasma concentration data for regulatory approval.

19.
Expert Opin Drug Deliv ; 19(6): 671-684, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35603724

RESUMEN

INTRODUCTION: Biopredictive release tests are commonly used in the evaluation of oral medicines. They support decision-making in formulation development and allow predictions of the expected in-vivo performances. So far, there is limited experience in the application of these methodologies to injectable drug products. AREAS COVERED: Parenteral drug products cover a variety of dosage forms and administration sites, including subcutaneous, intramuscular, and intravenous injections. In this area, developing biopredictive and biorelevant methodologies often confronts us with unique challenges and knowledge gaps. Here, we provide a formulation-centric approach and explain the key considerations and workflow when designing biopredictive assays. Also, we outline the key role of computational methods in achieving clinical relevance and put all considerations into context using liposomal nanomedicines as an example. EXPERT OPINION: Biopredictive tools are the need of the hour to exploit the tremendous opportunities of injectable drug products. A growing number of biopharmaceuticals such as peptides, proteins, and nucleic acids require different strategies and a better understanding of the influences on drug absorption. Here, our design strategy must maintain the balance between robustness and complexity required for effective formulation development.


Asunto(s)
Biofarmacia , Modelos Biológicos , Administración Oral , Biofarmacia/métodos , Liberación de Fármacos , Inyecciones , Preparaciones Farmacéuticas , Solubilidad
20.
Int J Pharm ; 605: 120857, 2021 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-34229072

RESUMEN

There are many hurdles in the development of generic formulations. In vitro biopredictive dissolution conditions together with alternative in vitro - in vivo relationship (IVIVR) approaches can be a powerful tool to support the development of such formulations. In this study, we hypothesized that the release profile of enteric coated (EC) formulations of pantoprazole in physiologically relevant bicarbonate buffer (BCB) would detect possible performance differences between test and reference formulations resulting in more accurate IVIVR results and predictability when compared to a pharmacopeial dissolution test. We correlated the in vitro performance of test and reference formulations (both in BCB and pharmacopeial phosphate buffer) with the in vivo data from a failed bioequivalence study. Test and reference formulations of EC pantoprazole tablets passed the USP dissolution criteria. However, they failed statistical similarity in vitro both in compendial and BCB. Bicarbonate buffer was additionally more discriminative while being more physiologically relevant. Having BCB as an additional test to evaluate EC products in vitro might improve the comparison of formulations. This can de-risk the development of generic EC formulations.


Asunto(s)
Química Farmacéutica , Tampones (Química) , Concentración de Iones de Hidrógeno , Pantoprazol , Solubilidad , Comprimidos , Comprimidos Recubiertos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda