Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 4.347
Filtrar
Más filtros

Publication year range
1.
Cell ; 174(3): 636-648.e18, 2018 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-30017246

RESUMEN

The ex vivo generation of platelets from human-induced pluripotent cells (hiPSCs) is expected to compensate donor-dependent transfusion systems. However, manufacturing the clinically required number of platelets remains unachieved due to the low platelet release from hiPSC-derived megakaryocytes (hiPSC-MKs). Here, we report turbulence as a physical regulator in thrombopoiesis in vivo and its application to turbulence-controllable bioreactors. The identification of turbulent energy as a determinant parameter allowed scale-up to 8 L for the generation of 100 billion-order platelets from hiPSC-MKs, which satisfies clinical requirements. Turbulent flow promoted the release from megakaryocytes of IGFBP2, MIF, and Nardilysin to facilitate platelet shedding. hiPSC-platelets showed properties of bona fide human platelets, including circulation and hemostasis capacities upon transfusion in two animal models. This study provides a concept in which a coordinated physico-chemical mechanism promotes platelet biogenesis and an innovative strategy for ex vivo platelet manufacturing.


Asunto(s)
Plaquetas/metabolismo , Técnicas de Cultivo de Célula/métodos , Trombopoyesis/fisiología , Reactores Biológicos , Técnicas de Cultivo de Célula/instrumentación , Humanos , Hidrodinámica , Células Madre Pluripotentes Inducidas/metabolismo , Megacariocitos/metabolismo , Megacariocitos/fisiología
2.
Proc Natl Acad Sci U S A ; 120(33): e2306322120, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37549256

RESUMEN

Plants produce various pigments that not only appear as attractive colors but also provide valuable resources in applications in daily life and scientific research. Biosynthesis pathways for these natural plant pigments are well studied, and most have multiple enzymes that vary among plant species. However, adapting these pathways to animals remains a challenge. Here, we describe successful biosynthesis of betalains, water-soluble pigments found only in a single plant order, Caryophyllales, in transgenic silkworms by coexpressing three betalain synthesis genes, cytochrome P450 enzyme CYP76AD1, DOPA 4,5-dioxygenase, and betanidin 5-O-glucosyltransferase. Betalains can be synthesized in various tissues under the control of the ubiquitous IE1 promoter but accumulate mainly in the hemolymph with yields as high as 274 µg/ml. Additionally, transformed larvae and pupae show a strong red color easily distinguishable from wild-type animals. In experiments in which expression is controlled by the promoter of silk gland-specific gene, fibroin heavy-chain, betalains are found predominantly in the silk glands and can be secreted into cocoons through spinning. Betalains in transformed cocoons are easily recovered from cocoon shells in water with average yields reaching 14.4 µg/mg. These data provide evidence that insects can synthesize natural plant pigments through a complex, multiple enzyme-mediated synthesis pathway. Such pigments also can serve as dominant visible markers in insect transgenesis applications. This study provides an approach to producing valuable plant-derived compounds by using genetically engineered silkworms as a bioreactor.


Asunto(s)
Bombyx , Ingeniería Genética , Animales Modificados Genéticamente , Animales , Pigmentos Biológicos/biosíntesis , Betalaínas/biosíntesis , Betalaínas/química , Expresión Génica , Regulación Enzimológica de la Expresión Génica , Color
3.
Curr Issues Mol Biol ; 46(9): 10112-10129, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39329955

RESUMEN

p-Coumaric acid (p-CA) is a valuable compound with applications in food additives, cosmetics, and pharmaceuticals. However, traditional production methods are often inefficient and unsustainable. This study focuses on enhancing p-CA production efficiency through the heterologous expression of tyrosine ammonia-lyase (TAL) from Rhodobacter sphaeroides in Pseudomonas putida KT2440. TAL catalyzes the conversion of L-tyrosine into p-CA and ammonia. We engineered P. putida KT2440 to express TAL in a fed-batch fermentation system. Our results demonstrate the following: (i) successful integration of the TAL gene into P. putida KT2440 and (ii) efficient bioconversion of L-tyrosine into p-CA (1381 mg/L) by implementing a pH shift from 7.0 to 8.5 during fed-batch fermentation. This approach highlights the viability of P. putida KT2440 as a host for TAL expression and the successful coupling of fermentation with the pH-shift-mediated bioconversion of L-tyrosine. Our findings underscore the potential of genetically modified P. putida for sustainable p-CA production and encourage further research to optimize bioconversion steps and fermentation conditions.

4.
Small ; 20(22): e2306564, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38105580

RESUMEN

3D-printed engineered living materials (ELM) are promising bioproduction platforms for agriculture, biotechnology, sustainable energy, and green technology applications. However, the design of these platforms faces several challenges, such as the processability of these materials into complex form factors and control over their mechanical properties. Herein, ELM are presented as 3D-printed bioreactors with arbitrary shape geometries and tunable mechanical properties (moduli and toughness). Poly(ethylene glycol) diacrylate (PEGDA) is used as the precursor to create polymer networks that encapsulate the microorganisms during the vat photopolymerization process. A major limitation of PEGDA networks is their propensity to swell and fracture when submerged in water. The authors overcame this issue by adding glycerol to the resin formulation to 3D print mechanically tough ELM hydrogels. While polymer concentration affects the modulus and reduces bioproduction, ELM bioreactors still maintain their metabolic activity regardless of polymer concentration. These ELM bioreactors have the potential to be used in different applications for sustainable architecture, food production, and biomedical devices that require different mechanical properties from soft to stiff.


Asunto(s)
Reactores Biológicos , Polietilenglicoles , Polimerizacion , Impresión Tridimensional , Polietilenglicoles/química , Hidrogeles/química , Polímeros/química
5.
Small ; 20(15): e2308390, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38037673

RESUMEN

Compartments are a fundamental feature of life, based variously on lipid membranes, protein shells, or biopolymer phase separation. Here, this combines self-assembling bacterial microcompartment (BMC) shell proteins and liquid-liquid phase separation (LLPS) to develop new forms of compartmentalization. It is found that BMC shell proteins assemble at the liquid-liquid interfaces between either 1) the dextran-rich droplets and PEG-rich continuous phase of a poly(ethyleneglycol)(PEG)/dextran aqueous two-phase system, or 2) the polypeptide-rich coacervate droplets and continuous dilute phase of a polylysine/polyaspartate complex coacervate system. Interfacial protein assemblies in the coacervate system are sensitive to the ratio of cationic to anionic polypeptides, consistent with electrostatically-driven assembly. In both systems, interfacial protein assembly competes with aggregation, with protein concentration and polycation availability impacting coating. These two LLPS systems are then combined to form a three-phase system wherein coacervate droplets are contained within dextran-rich phase droplets. Interfacial localization of BMC hexameric shell proteins is tunable in a three-phase system by changing the polyelectrolyte charge ratio. The tens-of-micron scale BMC shell protein-coated droplets introduced here can accommodate bioactive cargo such as enzymes or RNA and represent a new synthetic cell strategy for organizing biomimetic functionality.


Asunto(s)
Proteínas Bacterianas , Dextranos , Proteínas Bacterianas/metabolismo
6.
Plant Biotechnol J ; 22(8): 2248-2266, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38516995

RESUMEN

The need for therapeutics to treat a plethora of medical conditions and diseases is on the rise and the demand for alternative approaches to mammalian-based production systems is increasing. Plant-based strategies provide a safe and effective alternative to produce biological drugs but have yet to enter mainstream manufacturing at a competitive level. Limitations associated with batch consistency and target protein production levels are present; however, strategies to overcome these challenges are underway. In this study, we apply state-of-the-art mass spectrometry-based proteomics to define proteome remodelling of the plant following agroinfiltration with bacteria grown under shake flask or bioreactor conditions. We observed distinct signatures of bacterial protein production corresponding to the different growth conditions that directly influence the plant defence responses and target protein production on a temporal axis. Our integration of proteomic profiling with small molecule detection and quantification reveals the fluctuation of secondary metabolite production over time to provide new insight into the complexities of dual system modulation in molecular pharming. Our findings suggest that bioreactor bacterial growth may promote evasion of early plant defence responses towards Agrobacterium tumefaciens (updated nomenclature to Rhizobium radiobacter). Furthermore, we uncover and explore specific targets for genetic manipulation to suppress host defences and increase recombinant protein production in molecular pharming.


Asunto(s)
Agrobacterium tumefaciens , Reactores Biológicos , Nicotiana , Proteómica , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/microbiología , Nicotiana/crecimiento & desarrollo , Reactores Biológicos/microbiología , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , Agricultura Molecular/métodos , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteoma/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
7.
Cell Immunol ; 395-396: 104795, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38101075

RESUMEN

At present, recipients of allogeneic hematopoietic stem-cells are still suffering from recurrent infections after transplantation. Infusion of virus-specific T cells (VST) post-transplant reportedly fights several viruses without increasing the risk of de novo graft-versus-host disease. This study targeted cytomegalovirus (CMV) for the development of an innovative approach for generating a very specific VST product following Good Manufacturing Practices (GMP) guidelines. We used a sterile disposable compartment named the Leukoreduction System Chamber (LRS-chamber) from the apheresis platelet donation kit as the starting material, which has demonstrated high levels of T cells. Using a combination of IL-2 and IL-7 we could improve expansion of CMV-specific T cells. Moreover, by developing and establishing a new product protocol, we were able to stimulate VST proliferation and favors T cell effector memory profile. The expanded VST were enriched in a closed automated system, creating a highly pure anti-CMV product, which was pre-clinically tested for specificity in vitro and for persistence, biodistribution, and toxicity in vivo using NOD scid mice. Our results demonstrated very specific VST, able to secrete high amounts of interferon only in the presence of cells infected by the human CMV strain (AD169), and innocuous to cells partially HLA compatible without viral infection.


Asunto(s)
Antineoplásicos , Infecciones por Citomegalovirus , Trasplante de Células Madre Hematopoyéticas , Animales , Ratones , Humanos , Linfocitos T Citotóxicos , Trasplante de Células Madre Hematopoyéticas/métodos , Distribución Tisular , Citomegalovirus , Infecciones por Citomegalovirus/terapia , Inmunoterapia Adoptiva/métodos
8.
Appl Environ Microbiol ; 90(3): e0106223, 2024 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-38315006

RESUMEN

Listeria monocytogenes is a pathogenic foodborne bacterium that is a significant cause of mortality associated with foodborne illness and causes many food recalls attributed to a bacteriological cause. Their ability to form biofilms contributes to the persistence of Listeria spp. in food processing environments. When growing as biofilms, L. monocytogenes are more resistant to sanitizers used in the food industry, such as benzalkonium chloride (BAC), as well as to physical stresses like desiccation and starvation. Lytic phages of Listeria are antagonistic to a broad range of Listeria spp. and may, therefore, have utility in reducing the occurrence of Listeria-associated food recalls by preventing food contamination. We screened nine closely related Listeria phages, including the commercially available Listex P100, for host range and ability to degrade microtiter plate biofilms of L. monocytogenes ATCC 19111 (serovar 1/2a). One phage, CKA15, was selected and shown to rapidly adsorb to its host under conditions relevant to applying the phage in dairy processing environments. Under simulated dairy processing conditions (SDPC), CKA15 caused a 2-log reduction in Lm19111 biofilm bacteria. This work supports the biosanitation potential of phage CKA15 and provides a basis for further investigation of phage-bacteria interactions in biofilms grown under SDPC. IMPORTANCE: Listeria monocytogenes is a pathogenic bacterium that is especially dangerous for children, the elderly, pregnant women, and immune-compromised people. Because of this, the food industry takes its presence in their plants seriously. Food recalls due to L. monocytogenes are common with a high associated economic cost. In food-processing plants, Listeria spp. typically reside in biofilms, which are structures produced by bacteria that shield them from environmental stressors and are often attached to surfaces. The significance of our work is that we show a bacteriophage-a virus-infecting bacteria-can reduce Listeria counts by two orders of magnitude when the bacterial biofilms were grown under simulated dairy processing conditions. This work provides insights into how phages may be tested and used to develop biosanitizers that are effective but are not harmful to the environment or human health.


Asunto(s)
Bacteriófagos , Listeria monocytogenes , Listeria , Embarazo , Niño , Femenino , Humanos , Anciano , Biopelículas , Contaminación de Alimentos/análisis , Manipulación de Alimentos , Microbiología de Alimentos
9.
BMC Microbiol ; 24(1): 313, 2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39182035

RESUMEN

BACKGROUND: At lower concentrations copper (Cu), zinc (Zn) and nickel (Ni) are trace metals essential for some bacterial enzymes. At higher concentrations they might alter and inhibit microbial functioning in a bioreactor treating wastewater. We investigated the effect of incremental concentrations of Cu, Zn and Ni on the bacterial community structure and their metabolic functions by shotgun metagenomics. Metal concentrations reported in previous studies to inhibit bacterial metabolism were investigated. RESULTS: At 31.5 µM Cu, 112.4 µM Ni and 122.3 µM Zn, the most abundant bacteria were Achromobacter and Agrobacterium. When the metal concentration increased 2 or fivefold their abundance decreased and members of Delftia, Stenotrophomonas and Sphingomonas dominated. Although the heterotrophic metabolic functions based on the gene profile was not affected when the metal concentration increased, changes in the sulfur biogeochemical cycle were detected. Despite the large variations in the bacterial community structure when concentrations of Cu, Zn and Ni increased in the bioreactor, functional changes in carbon metabolism were small. CONCLUSIONS: Community richness and diversity replacement indexes decreased significantly with increased metal concentration. Delftia antagonized Pseudomonas and members of Xanthomonadaceae. The relative abundance of most bacterial genes remained unchanged despite a five-fold increase in the metal concentration, but that of some EPS genes required for exopolysaccharide synthesis, and those related to the reduction of nitrite to nitrous oxide decreased which may alter the bioreactor functioning.


Asunto(s)
Bacterias , Biodiversidad , Reactores Biológicos , Cobre , Metagenómica , Níquel , Zinc , Reactores Biológicos/microbiología , Zinc/metabolismo , Níquel/metabolismo , Bacterias/genética , Bacterias/clasificación , Bacterias/metabolismo , Bacterias/aislamiento & purificación , Cobre/metabolismo , Aguas Residuales/microbiología , Aguas Residuales/química
10.
Osteoarthritis Cartilage ; 32(8): 896-908, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38679285

RESUMEN

OBJECTIVE: During physical activities, chondrocytes experience coupled stimulation of hydrostatic pressure (HP) and a transient increase in temperature (T), with the latter varying within a physiological range from 32.5 °C to 38.7 °C. Previous short-term in vitro studies have demonstrated that the combined hydrostatic pressure-thermal (HP-T) stimuli more significantly enhance chondroinduction and chondroprotection of chondrocytes than isolated applications. Interestingly, this combined benefit is associated with a corresponding increase in HSP70 levels when HP and T are combined. The current study therefore explored the indispensable role of HSP70 in mediating the combined effects of HP-T stimuli on chondrocytes. DESIGN: In this mid-long-term study of in vitro engineered cartilage constructs, we assessed chondrocyte responses to HP-T stimuli using customized bioreactor in standard and HSP70-inhibited cultures. RESULTS: Surprisingly, under HSP70-inhibited conditions, the usually beneficial HP-T stimuli, especially its thermal component, exerted detrimental effects on chondrocyte homeostasis, showing a distinct and unfavorable shift in gene and protein expression patterns compared to non-HSP70-inhibited settings. Such effects were corroborated through mechanical testing and confirmed using a secondary cell source. A proteomic-based mechanistic analysis revealed a disruption in the balance between biosynthesis and fundamental cellular structural components in HSP70-inhibited conditions under HP-T stimuli. CONCLUSIONS: Our results highlight the critical role of sufficient HSP70 induction in mediating the beneficial effects of coupled HP-T stimulation on chondrocytes. These findings help pave the way for new therapeutic approaches to enhance physiotherapy outcomes and potentially shed light on the elusive mechanisms underlying the onset of cartilage degeneration, a long-standing enigma in orthopedics.


Asunto(s)
Condrocitos , Proteínas HSP70 de Choque Térmico , Homeostasis , Presión Hidrostática , Condrocitos/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Homeostasis/fisiología , Animales , Cartílago Articular/fisiología , Cartílago Articular/metabolismo , Ingeniería de Tejidos/métodos , Células Cultivadas , Temperatura , Bovinos
11.
Artículo en Inglés | MEDLINE | ID: mdl-38494072

RESUMEN

OBJECTIVES: Optimizing rehabilitation strategies for osteoarthritis necessitates a comprehensive understanding of chondrocytes' mechanoresponse in both health and disease, especially in the context of the interplay between loading and key pathways involved in osteoarthritis (OA) development, like canonical Wnt signaling. This study aims to elucidate the role of Wnt signaling in the mechanoresponsiveness of healthy and osteoarthritic human cartilage. METHODS: We used an ex-vivo model involving short-term physiological mechanical loading of human cartilage explants. First, the loading protocol for subsequent experiments was determined. Next, loading was applied to non-OA-explants with or without Wnt activation with CHIR99021. Molecular read-outs of anabolic, pericellular matrix and matrix remodeling markers were used to assess the effect of Wnt on cartilage mechanoresponse. Finally, the same set-up was used to study the effect of loading in cartilage from patients with established OA. RESULTS: Our results confirm that physiological loading maintains expression of anabolic genes in non-OA cartilage, and indicate a deleterious effect of Wnt activation in the chondrocyte mechanoresponsiveness. This suggests that loading-induced regulation of chondrocyte markers occurs downstream of canonical Wnt signaling. Interestingly, our study highlighted contrasting mechanoresponsiveness in the model of Wnt activation and the established OA samples, with established OA cartilage maintaining its mechanoresponsiveness, and mechanical loading rescuing the chondrogenic phenotype. CONCLUSION: This study provides insights into the mechanoresponsiveness of human cartilage in both non-OA and OA conditions. These findings hold the potential to contribute to the development of strategies that optimize the effect of dynamic compression by correcting OA pathological cell signaling.

12.
NMR Biomed ; 37(5): e5107, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38279190

RESUMEN

Hyperpolarized carbon-13 labeled compounds are increasingly being used in medical MR imaging (MRI) and MR imaging (MRI) and spectroscopy (MRS) research, due to its ability to monitor tissue and cell metabolism in real-time. Although radiological biomarkers are increasingly being considered as clinical indicators, biopsies are still considered the gold standard for a large variety of indications. Bioreactor systems can play an important role in biopsy examinations because of their ability to provide a physiochemical environment that is conducive for therapeutic response monitoring ex vivo. We demonstrate here a proof-of-concept bioreactor and microcoil receive array setup that allows for ex vivo preservation and metabolic NMR spectroscopy on up to three biopsy samples simultaneously, creating an easy-to-use and robust way to simultaneously run multisample carbon-13 hyperpolarization experiments. Experiments using hyperpolarized [1-13C]pyruvate on ML-1 leukemic cells in the bioreactor setup were performed and the kinetic pyruvate-to-lactate rate constants ( k PL ) extracted. The coefficient of variation of the experimentally found k PL s for five repeated experiments was C V = 35 % . With this statistical power, treatment effects of 30%-40% change in lactate production could be easily differentiable with only a few hyperpolarization dissolutions on this setup. Furthermore, longitudinal experiments showed preservation of ML-1 cells in the bioreactor setup for at least 6 h. Rat brain tissue slices were also seen to be preserved within the bioreactor for at least 1 h. This validation serves as the basis for further optimization and upscaling of the setup, which undoubtedly has huge potential in high-throughput studies with various biomarkers and tissue types.


Asunto(s)
Análisis de Flujos Metabólicos , Ácido Pirúvico , Ratas , Animales , Isótopos de Carbono , Ácido Pirúvico/metabolismo , Ácido Láctico/metabolismo , Reactores Biológicos , Biomarcadores
13.
Cytotherapy ; 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39269402

RESUMEN

We have exploited the unique physics available in microfluidic devices to engineer a platform capable of integrating all critical elements of cell therapy into a microfluidic device. The platform can be used to isolate, count, identify and culture cells on a device in a closed Current Good Manufacturing Practice-compatible system. We have used the culture and isolation of human mature dendritic cells (DCs) as our model system, demonstrating each critical element in manufacturing a therapeutic product. We used the system to immunomagnetically isolate CD14+ cells from peripheral blood mononuclear cells, perform on-chip enumeration and surface marker characterization to confirm purity of isolation (mean, 98.6 ± 1.6%) and culture cells in the presence of cytokines to drive differentiation to CD83+ mature DCs. Successful DC maturation was confirmed using on-chip surface marker characterization (positive CD83 expression) with process yields comparable to conventional DC production. The technology presented is the first demonstration of a chip bioreactor capable of recapitulation of all critical elements of cell therapy manufacturing. Its closed nature, scalability and integration of both manufacturing and release testing show the potential for a new approach to industrialization and rapid distribution of cell therapies.

14.
Cytotherapy ; 26(4): 372-382, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38363250

RESUMEN

BACKGROUND AIMS: Human mesenchymal stromal cells (hMSCs) and their secreted products show great promise for treatment of musculoskeletal injury and inflammatory or immune diseases. However, the path to clinical utilization is hampered by donor-tissue variation and the inability to manufacture clinically relevant yields of cells or their products in a cost-effective manner. Previously we described a method to produce chemically and mechanically customizable gelatin methacryloyl (GelMA) microcarriers for culture of hMSCs. Herein, we demonstrate scalable GelMA microcarrier-mediated expansion of induced pluripotent stem cell (iPSC)-derived hMSCs (ihMSCs) in 500 mL and 3L vertical wheel bioreactors, offering several advantages over conventional microcarrier and monolayer-based expansion strategies. METHODS: Human mesenchymal stromal cells derived from induced pluripotent cells were cultured on custom-made spherical gelatin methacryloyl microcarriers in single-use vertical wheel bioreactors (PBS Biotech). Cell-laden microcarriers were visualized using confocal microscopy and elastic light scattering methodologies. Cells were assayed for viability and differentiation potential in vitro by standard methods. Osteogenic cell matrix derived from cells was tested in vitro for osteogenic healing using a rodent calvarial defect assay. Immune modulation was assayed with an in vivo peritonitis model using Zymozan A. RESULTS: The optical properties of GelMA microcarriers permit noninvasive visualization of cells with elastic light scattering modalities, and harvest of product is streamlined by microcarrier digestion. At volumes above 500 mL, the process is significantly more cost-effective than monolayer culture. Osteogenic cell matrix derived from ihMSCs expanded on GelMA microcarriers exhibited enhanced in vivo bone regenerative capacity when compared to bone morphogenic protein 2, and the ihMSCs exhibited superior immunosuppressive properties in vivo when compared to monolayer-generated ihMSCs. CONCLUSIONS: These results indicate that the cell expansion strategy described here represents a superior approach for efficient generation, monitoring and harvest of therapeutic MSCs and their products.


Asunto(s)
Técnicas de Cultivo de Célula , Células Madre Mesenquimatosas , Humanos , Técnicas de Cultivo de Célula/métodos , Reactores Biológicos , Osteogénesis , Regeneración Ósea , Proliferación Celular , Diferenciación Celular , Células Cultivadas
15.
Chemistry ; : e202401893, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39115035

RESUMEN

The electrochemical regeneration of reduced nicotinamide adenine dinucleotide (NADH) using [Rh(Cp*)(bpy)Cl]+ holds significant promise for the industrial synthesis of chiral chemicals. However, challenges persist due to the high consumption of NADH and the limited efficiency of its cyclic regeneration, which currently hinder widespread application. To address these obstacles, based on in-situ growth of 3D ordered metal-organic framework (NU-1000) on the surface of graphite felt, [Rh(Cp*)(bpy)Cl]+ were immobilized on the Zr6 nodes of NU-1000 by solvent-assisted ligand incorporation (SALI), and applied in a flow bioreactor. Moreover, we employ a gas diffusion electrode (GDE) to oxidize H2, providing a clean proton source for the electrochemical regeneration of NADH. Consequently, highly efficient enzymatic electrocatalytic synthesis of L-lactate was achieved when coupled with L-lactate dehydrogenases (LDH) as a model reaction, and the total turnover number (TTN) reached 19600 and 1750 for [Rh(Cp*)(bpy)Cl]+ and NAD+ after 48 h, corresponding to a high turnover frequency (TOF) of 2350 h-1 and 210 h-1 for [Rh(Cp*)(bpy)Cl]+ and NAD+, respectively. This work provides new insights for the construction of efficient enzymatic electrosynthesis systems in industrial production.

16.
Chemistry ; 30(31): e202400195, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38563653

RESUMEN

Framework and polymeric nanoreactors (NRs) have distinct advantages in improving chemical reaction efficiency in the tumor microenvironment (TME). Nanoreactor-loaded oxidoreductase enzyme is activated by tumor acidity to produce H2O2 by increasing tumor oxidative stress. High levels of H2O2 induce self-destruction of the vesicles by releasing quinone methide to deplete glutathione and suppress the antioxidant potential of cancer cells. Therefore, the synergistic effect of the enzyme-loaded nanoreactors results in efficient tumor ablation via suppressing cancer-cell metabolism. The main driving force would be to take advantage of the distinct metabolic properties of cancer cells along with the high peroxidase-like activity of metalloenzyme/metalloprotein. A cascade strategy of dual enzymes such as glucose oxidase (GOx) and nitroreductase (NTR) wherein the former acts as an O2-consuming agent such as overexpression of NTR and further amplified NTR-catalyzed release for antitumor therapy. The design of cascade bioreductive hypoxia-responsive drug delivery via GOx regulates NTR upregulation and NTR-responsive nanoparticles. Herein, we discuss tumor hypoxia, reactive oxygen species (ROS) formation, and the effectiveness of these therapies. Nanoclusters in cascaded enzymes along with chemo-radiotherapy with synergistic therapy are illustrated. Finally, we outline the role of the nanoreactor strategy of cascading enzymes along with self-synergistic tumor therapy.


Asunto(s)
Glucosa Oxidasa , Neoplasias , Microambiente Tumoral , Humanos , Glucosa Oxidasa/metabolismo , Glucosa Oxidasa/química , Neoplasias/metabolismo , Neoplasias/tratamiento farmacológico , Nitrorreductasas/metabolismo , Peróxido de Hidrógeno/metabolismo , Peróxido de Hidrógeno/química , Especies Reactivas de Oxígeno/metabolismo , Nanopartículas/química , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Estrés Oxidativo/efectos de los fármacos
17.
Transgenic Res ; 33(4): 211-218, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38858256

RESUMEN

Monellin is a sweet protein that may be used as a safe and healthy sweetener. However, due to its low stability, the application of monellin is currently very limited. Here, we describe a wild-type, a double-sites mutant (E2N/E23A) and a triple-sites mutant (N14A/E23Q/S76Y) of single-chain monellin (MNEI) expressed in transgenic mice milk. Based on enzyme-linked immunoassay (ELISA), Western blot, and sweetness intensity testing, their sweetness and stability were compared. After boiling for 2 min at different pH conditions (2.5, 5.1, 6.8, and 8.2), N14A/E23Q/S76Y-MNEI showed significantly higher sweetness and stability than the wild-type and E2N/E23A-MNEI. These results suggest that N14A/E23Q/S76Y-MNEI shows remarkable potential as a sweetener in the future.


Asunto(s)
Ratones Transgénicos , Leche , Proteínas de Plantas , Edulcorantes , Animales , Ratones Transgénicos/genética , Leche/metabolismo , Leche/química , Ratones , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Mutación , Concentración de Iones de Hidrógeno
18.
Biotechnol Bioeng ; 121(1): 192-205, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37772415

RESUMEN

Equine mesenchymal stromal cells (MSCs) have been found to be beneficial for the treatment of many ailments, including orthopedic injuries, due to their superior differentiation potential and immunomodulating properties. Cell therapies require large cell numbers, which are not efficiently generated using conventional static expansion methods. Expansion of equine cord blood-derived MSCs (eCB-MSCs) in bioreactors, using microcarriers as an attachment surface, has the potential to generate large numbers of cells with increased reproducibility and homogeneity compared with static T-flask expansion. This study investigated the development of an expansion process using Vertical-Wheel (VW) bioreactors, a single-use bioreactor technology that incorporates a wheel instead of an impeller. Initially, microcarriers were screened at small scale to assess eCB-MSC attachment and growth and then in bioreactors to assess cell expansion and harvesting. The effect of different donors, serial passaging, and batch versus fed batch were all examined in 0.1 L VW bioreactors. The use of VW bioreactors with an appropriate microcarrier was shown to be able to produce cell densities of up to 1E6 cells/mL, while maintaining cell phenotype and functionality, thus demonstrating great potential for the use of these bioreactors to produce large cell numbers for cell therapies.


Asunto(s)
Técnicas de Cultivo de Célula , Células Madre Mesenquimatosas , Animales , Caballos , Técnicas de Cultivo de Célula/métodos , Sangre Fetal , Reproducibilidad de los Resultados , Reactores Biológicos , Diferenciación Celular , Proliferación Celular
19.
Biotechnol Bioeng ; 121(1): 53-70, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37691172

RESUMEN

Recombinant adeno-associated virus (rAAV) is rapidly emerging as the preferred delivery vehicle for gene therapies, with promising advantages in safety and efficacy. Key challenges in systemic in-vivo rAAV gene therapy applications are the gap in production capabilities versus potential market demand and complex production process. This review summarizes current available information on rAAV upstream manufacturing processes and proposed optimizations for production. The advancements in rAAV production media were reviewed with proposals to speed up the cell culture process development. Furthermore, major methods for genetic element delivery to host cells were summarized with their advantages, limitations, and future directions for optimization. In addition, culture vessel selection criteria were listed based on production cell system, scale, and development stage. Process control at the production step was also outlined with an in-depth understanding of production kinetics and quality control.


Asunto(s)
Dependovirus , Vectores Genéticos , Vectores Genéticos/genética , Dependovirus/genética , Técnicas de Cultivo de Célula , Terapia Genética
20.
Biotechnol Bioeng ; 2024 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-39369338

RESUMEN

Skeletal muscle (SKM) is the largest organ in mammalian body and it can repair damages by using the residential myogenic stem cells (MuSC), but this repairing capacity reduces with age and in some genetic muscular dystrophy. Under these circumstances, artificial amplification of autologous MuSC in vitro might be necessary to repair the damaged SKM. The amplification of MuSC is highly dependent on myogenic signals, such as sonic hedgehog (Shh), Wnt3a, and fibroblast growth factors, so formulating an optimum myogenic kit composed of specific myogenic signals might increase the proliferation and differentiation of MuSC efficiently. In this study, various myogenic signals have been tested on C2C12 myoblasts and primary MuSC, and a myogenic kit consists of insulin, lithium chloride, T3, and retinoic acid has been formulated, and we found it significantly increased the fusion index and MHC expression level of both C2C12 and MuSC myotubes. A novel bioreactor providing cyclic stretching (CS) and electrical stimulation (ES) has been fabricated to enhance the myogenic differentiation of both C2C12 and MuSC. We further found that coating the bioreactor substratum with collagen gave the best effect on proliferation and differentiation of MuSC. Furthermore, combining the collagen coating and physical stimuli (CS + ES) in the bioreactor can generate more proliferative primary MuSC cells. Our results have demonstrated that the combination of myogenic kit and bioreactor can provide environment for efficient MuSC proliferation and differentiation. These MuSC and mature myotubes amplified in the bioreactor might be useful for clinical grafting into damaged SKM in the future.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda