Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
1.
Small ; 20(38): e2401213, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38766921

RESUMEN

Bismuth vanadate (BiVO4) exhibits large absorption efficiency for hard X-rays, which endows it with a robust capacity to attenuate X-ray radiation across a broad energy range. The anisotropic properties of BiVO4 allow for the manipulation of their physical and chemical characteristics through crystallographic orientation and exposed facets. In this study, the issue of heavy recombination caused by sluggish electron transport in BiVO4 is successfully addressed by enhancing the abundance of the (040) crystal face ratio using a Co2+ crystal face exposure agent. The facet-dependent modifications exhibit excellent and balanced intrinsic charge transport properties, and finely optimize both the sensitivity and detection limit of BiVO4 X-ray detectors. As a result, ultra-stable BiVO4 metal oxide X-ray detectors demonstrate a high sensitivity of 3164 µC Gyair -1 cm-2 and a low detection limit of 20.76 nGyair s-1 under 110 kVp hard X-rays, establishing a new benchmark for X-ray detectors based on polycrystalline Bi-halides and metal oxides. These findings highlight the significance of crystal orientation in optimizing materials for X-ray detection, setting a new sensitivity record for X-ray detectors based on polycrystalline Bi-halides and metal oxides, which paves the way for the development of advanced, low-dose, and highly stable imaging systems specifically for hard X-rays.

2.
Small ; 20(40): e2400913, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38847569

RESUMEN

Electrochemical carbon dioxide reduction reaction (ECO2RR) is a promising approach to synthesize fuels and value-added chemical feedstocks while reducing atmospheric CO2 levels. Here, high surface area cerium and sulfur-doped hierarchical bismuth oxide nanosheets (Ce@S-Bi2O3) are develpoed by a solvothermal method. The resulting Ce@S-Bi2O3 electrocatalyst shows a maximum formate Faradaic efficiency (FE) of 92.5% and a current density of 42.09 mA cm-2 at -1.16 V versus RHE using a traditional H-cell system. Furthermore, using a three-chamber gas diffusion electrode (GDE) reactor, a maximum formate FE of 85% is achieved in a wide range of applied potentials (-0.86 to -1.36 V vs RHE) using Ce@S-Bi2O3. The density functional theory (DFT) results show that doping of Ce and S in Bi2O3 enhances formate production by weakening the OH* and H* species. Moreover, DFT calculations reveal that *OCHO is a dominant pathway on Ce@S-Bi2O3 that leads to efficient formate production. This study opens up new avenues for designing metal and element-doped electrocatalysts to improve the catalytic activity and selectivity for ECO2RR.

3.
Anal Bioanal Chem ; 415(18): 4445-4458, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36884077

RESUMEN

In this work, we investigated the morphological and electrochemical properties of gallium/bismuth mixed oxide. The bismuth concentration was varied from 0 to 100%. The correct ratio was determined with inductively coupled plasma-optical emission spectroscopy (ICP-OES), while surface characteristics were determined using scanning electron microscopy (SEM) and X-ray diffraction (XRD) measurement. Electrochemical characteristics were studied using electrochemical impedance spectroscopy (EIS) in the Fe2+/3+ couple. The obtained materials were tested for adrenaline detection. After square wave voltammetry (SWV) optimization, the best electrode showed a wide linear working range from 7 to 100 µM at pH 6 of the Britton-Robinson buffer solution (BRBS) supporting electrolyte. The limit of detection (LOD) for the proposed method was calculated as 1.9 µM, with a limit of quantification (LOQ) of 5.8 µM. The excellent selectivity of the proposed method, with good repeatability and reproducibility, strongly suggests the possible application of the procedure for the determination of adrenaline in artificially prepared real samples. The practical applicability with good recovery values indicates that the morphology of the materials is closely connected with other parameters, which further suggests that the developed approach can offer a low-cost, rapid, selective, and sensitive method for adrenaline monitoring.


Asunto(s)
Bismuto , Galio , Bismuto/química , Epinefrina , Reproducibilidad de los Resultados , Electrodos , Técnicas Electroquímicas/métodos
4.
Environ Res ; 233: 116478, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37348633

RESUMEN

This study deals with the fabrication of metal ion (M = Co+2, Ni+2, and Cu+2) doped- Bi2O3 photocatalysts by solution combustion method. All the synthesized materials were characterized and analysed with the help of XRD, FESEM, EDX, HRTEM, UVDRS, Zeta potential, PL, and LCMS techniques for the structural, morphological, surface charge, optical and degradation pathways characteristics. Synthesized compounds were used for the decontamination (adsorption and degradation) of two organic pollutants namely Rhodamine B and Triclopyr. Adsorption aspects of the pollutants were studied in terms of different isotherm, kinetic and thermodynamic models. Adsorption phenomenon was best fitted with the Freundlich (R2 = 0.992) and Langmuir isotherm (R2 = 0.999) models along with pseudo second order model of kinetics for RhB and TC, respectively. Moreover, the thermodynamic parameters indicated exothermic and endothermic adsorption (ΔH ° (-7.19 kJ/mol) for RhB) and (ΔH ° (52.335 kJ/mol) for TC), respectively. Evaluated negative values of ΔG ° indicated spontaneous adsorption with most favourable at 298 K and 318 K for both the pollutants (RhB and TC) respectively. Modification with metal ions significantly improved the removal efficiency of pure Bi2O3 photocatalyst and followed the trend Co+2/Bi2O3 > Ni+2/Bi2O3 > Cu+2/Bi2O3 > Bi2O3. DFT calculations demonstrate that amongst the doped materials, only Co+2/Bi2O3 is characterized by an indirect band gap; which exhibited efficacious photocatalytic activity. Besides, the highest degradation efficiency was obtained in the case of Co+2/Bi2O3 (2 mol %); being 99.80% for RhB in 30 min and 98.50% for TC in 60 min, respectively. The doped nanostructures lead to higher absorption of visible light and more separation of light-induced charged carriers. Effect of pH of the reaction medium and role of reactive oxygen species was also examined. Finally, a probable mechanism of charge transfer and degradation of the pollutants was also presented.


Asunto(s)
Contaminantes Químicos del Agua , Adsorción , Fotólisis , Termodinámica , Contaminantes Químicos del Agua/análisis
5.
Int J Mol Sci ; 24(17)2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37685981

RESUMEN

Bismuth oxides were synthesized from bismuth carbonate using the sol-gel method. Studies have described the formation of Bi2O3, as a precursor of HNO3 dissolution, and intermediate oxides, such as BixOy when using H2SO4 and H3PO4. The average size of the crystallite calculated from Scherrer's formula ranged from 9 to 19 nm, according to X-ray diffraction. The FTIR analysis showed the presence of specific Bi2O3 bands when using HNO3 and of crystalline phases of "bismuth oxide sulphate" when using H2SO4 and "bismuth phosphate" when using H3PO4. The TG curves showed major mass losses and specific thermal effects, delimited in four temperature zones for materials synthesized with HNO3 (with loss of mass between 24% and 50%) and H2SO4 (with loss of mass between 45% and 76%), and in three temperature zones for materials synthesized with H3PO4 (with loss of mass between 13% and 43%). Further, the thermal stability indicates that materials have been improved by the addition of a polymer or polymer and carbon. Confocal laser scanning microscopy showed decreased roughness in the series, [BixOy]N > [BixOy-6% PVA]N > [BixOy-C-6% PVA]N, and increased roughness for materials [BixOy]S, [BixOy-6% PVA]S, [BixOy-C-6% PVA]S, [BixOy]P, [BixOy-6% PVA]P and [BixOy-C-6% PVA]P. The morphological analysis (electronic scanning microscopy) of the synthesized materials showed a wide variety of forms: overlapping nanoplates ([BixOy]N or [BixOy]S), clusters of angular forms ([BixOy-6% PVA]N), pillars ([BixOy-6% PVA]S-Au), needle particles ([BixOy-Au], [BixOy-6% PVA]S-Au, [BixOy-C-6% PVA]S-Au), spherical particles ([BixOy-C-6% PVA]P-Pt), 2D plates ([BixOy]P-Pt) and 3D nanometric plates ([BixOy-C-6% PVA]S-Au). For materials obtained in the first synthesis stage, antimicrobial activity increased in the series [BixOy]N > [BixOy]S > [BixOy]P. For materials synthesized in the second synthesis stage, when polymer (polyvinyl alcohol, PVA) was added, maximum antimicrobial activity, regardless of the microbial species tested, was present in the material [BixOy-6% PVA]S. For the materials synthesized in the third stage, to which graphite and 6% PVA were added, the best antimicrobial activity was in the material [BixOy-C-6% PVA]P. Materials synthesized and doped with metal ions (gold or platinum) showed significant antimicrobial activity for the tested microbial species.


Asunto(s)
Bismuto , Nanoestructuras , Bismuto/farmacología , Oro , Platino (Metal) , Óxidos/farmacología , Polímeros
6.
Molecules ; 28(15)2023 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-37570869

RESUMEN

The purpose of this study was to enhance the antimicrobial activity of bagasse paper by coating the paper with bismuth oxide (Bi2O3) and using it to accelerate the process of wound healing. Paper sheets were prepared from sugarcane waste (bagasse). First, the paper sheets were coated with different Bi2O3 concentrations to improve the antimicrobial activity of the paper. After that, the paper sheets were allowed to dry in an oven at 50 °C for 3 h. Then, in vitro antimicrobial activity was evaluated against different microbial species, including Gram-negative bacteria (i.e., Klebsiella pneumonia, Escherichia coli) and Gram-positive bacteria (i.e., Staphylococcus aureus, Streptococcus pyogenes). The obtained results showed that the paper coated with 25% and 100% Bi2O3 had activity against all models of bacteria; however, the paper coated with 100% Bi2O3 composite had the strongest inhibitory effect. Then, bagasse paper was coated with 100% Bi2O3 and different antibiotics, to investigate their wound-healing potency in a wounded rat model for 14 days. Moreover, the paper coated with 100% Bi2O3 inhibited the cellular migration in vitro. Conclusively, coating paper with Bi2O3 enhances the wound-healing potential when applied to wounds. This impact could be ascribed to Bi2O3's broad antibacterial activity, which reduced infection and accelerated the healing process.


Asunto(s)
Antibacterianos , Bacterias , Animales , Ratas , Antibacterianos/farmacología , Bismuto/farmacología , Vendajes
7.
Molecules ; 28(8)2023 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-37110839

RESUMEN

Bismuth oxide nanoparticles with appropriate surface chemistry exhibit many interesting properties that can be utilized in a variety of applications. This paper describes a new route to the surface modification of bismuth oxide nanoparticles (Bi2O3 NPs) using functionalized beta-Cyclodextrin (ß-CD) as a biocompatible system. The synthesis of Bi2O3 NP was done using PVA (poly vinyl alcohol) as the reductant and the Steglich esterification procedure for the functionalization of ß-CD with biotin. Ultimately, the Bi2O3 NPs are modified using this functionalized ß-CD system. The particle size of the synthesized Bi2O3 NPs is found to be in the range of 12-16 nm. The modified biocompatible systems were characterized using different characterization techniques such as Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray powder diffraction (XRD) and Differential Scanning Calorimetric analysis (DSC). Additionally, the antibacterial and anticancerous effects of the surface-modified Bi2O3 NP system were also investigated.


Asunto(s)
Antiinfecciosos , Nanopartículas , beta-Ciclodextrinas , Nanopartículas/química , Bismuto/farmacología , beta-Ciclodextrinas/química , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X
8.
Angew Chem Int Ed Engl ; 62(43): e202307948, 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37635657

RESUMEN

CuBi2 O4 has recently emerged as a promising photocathode for photo-electrochemical (PEC) water splitting. However, its fast degradation under operation currently poses a limit to its application. Here, we report a novel method to study operando the semiconductor-electrolyte interface during PEC operation by surface-sensitive high-energy X-ray scattering. We find that a fast decrease in the generated photocurrents correlates directly with the formation of a metallic Bi phase. We further show that the slower formation of metallic Cu, as well as the dissolution of the electrode in contact with the electrolyte, further affect the CuBi2 O4 activity and morphology. Our study provides a comprehensive picture of the degradation mechanisms affecting CuBi2 O4 electrodes under operation and poses the methodological basis to investigate the photocorrosion processes affecting a wide range of PEC materials.

9.
Nanotechnology ; 34(1)2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36195011

RESUMEN

Heterostructure BiVO4/Bi2O3nanocomposites with enhanced visible light activity are effectively synthesized through an easiest and single step hydrothermal route, using bismuth subnitrate and ammonium meta-vanadate as main raw materials in existence of citric acid. The phase and surface structure, topography and optical properties of synthesized composites are characterized by XRD, SEM, EDX, FTIR, UV-Visible and PL spectroscopy. It was found that 5%BiVO4/Bi2O3(BOBV-5) nanocomposite exhibit excellent photocatalytic performance for rhodamine B dye degradation and tetracyclic under irradiation of visible light as compared to single component i.e. BiVO4. The increased photocatalytic activity should be ascribed for making p-n heterojunction among p-type Bi2O3and n-type BiVO4. This p-n heterojunction successfully reduce the recombination of photogenerated charge carriers. Furthermore, the BOBV-5 novel photocatalyst shows good stability in constructive five cycles and photocatalytic activity is best for conquering photo corrosion of a photocatalysts. To explain charge migration route, whole photocatalytic mechanism was described in terms of energy band structures. Furthermore, the present work is helpful effort for design of new visible light photocatalytic materials with heterojunction structures.

10.
Int J Mol Sci ; 23(20)2022 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-36293080

RESUMEN

The granulation of bismuth oxide (BO) by alginate (Alg) and the iodide adsorption efficacy of Alg-BO for different initial iodide concentrations and contact time values were examined. The optimal conditions for Alg-BO granulation were identified by controlling the weight ratio between Alg and BO. According to the batch iodide adsorption experiment, the Alg:BO weight ratio of 1:20 was appropriate, as it yielded a uniform spherical shape. According to iodide adsorption isotherm experiments and isotherm model fitting, the maximum sorption capacity (qm) was calculated to be 111.8 mg/g based on the Langmuir isotherm, and this value did not plateau even at an initial iodide concentration of 1000 mg/L. Furthermore, iodide adsorption by Alg-BO occurred as monolayer adsorption by the chemical interaction and precipitation between bismuth and iodide, followed by physical multilayer adsorption at a very high concentration of iodide in solution. The iodide adsorption over time was fitted using the intraparticle diffusion model. The results indicated that iodide adsorption was proceeded by boundary layer diffusion during 480 min and reached the plateau from 1440 min to 5760 min by intraparticle diffusion. According to the images obtained using cross-section scanning electron microscopy assisted by energy-dispersive spectroscopy, the adsorbed iodide interacted with the BO in Alg-BO through Bi-O-I complexation. This research shows that Alg-BO is a promising iodide adsorbent owing to its high adsorption capacity, stability, convenience, and ability to prevent secondary pollution.


Asunto(s)
Alginatos , Contaminantes Químicos del Agua , Alginatos/química , Bismuto , Agua , Yoduros , Contaminantes Químicos del Agua/química , Cinética , Adsorción , Concentración de Iones de Hidrógeno
11.
Molecules ; 27(23)2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36500330

RESUMEN

Constructing visible-light-active Z-scheme heterojunctions has proven fruitful in enhancing the photocatalytic activity of photocatalysts for superior water clean-up. Herein, we report the fabrication of a CoFe2O4@Bi2O3/NiO (CBN) Z-scheme nanoheterojunction. The obtained CBN heterojunction was used for visible-light-assisted degradation of ofloxacin (OFL) in water. The OFL degradation efficiency achieved by the CBN heterojunction was 95.2% in 90 min with a rate constant of kapp = 0.03316 min-1, which was about eight times that of NiO and thirty times that of CoFe2O4. The photocatalytic activity of a Bi2O3/NiO Z-scheme heterojunction was greatly enhanced by the visible activity and redox mediator effect of the cobalt ferrite co-catalyst. Higher charge-carrier separation, more visible-light capture, and the Z-scheme mechanism in the Z-scheme system were the important reasons for the high performance of CBN. The scavenging experiments suggested ●O2- as an active species for superior OFL degradation. The possible OFL degradation pathway was predicted based on LC-MS findings of degradation intermediate products. The magnetic nature of the CBN helped in the recovery of the catalyst after reuse for six cycles. This work provides new insights into designing oxide-based heterojunctions with high visible-light activity, magnetic character, and high redox capabilities for potential practical applications in environmental treatment.


Asunto(s)
Ofloxacino , Catálisis , Cromatografía Liquida , Frutas , Agua
12.
Molecules ; 27(8)2022 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-35458800

RESUMEN

The assessment of active pharmaceutical ingredient (API) particle size and morphology is of great importance for the pharmaceutical industry since it is expected to significantly affect physicochemical properties. However, very few methods are published for the determination of API morphology and particle size of film-coated (FC) tablets. In the current study we provide a methodology for the measurement of API particle size and morphology which could be applied in several final products. Bismuth Oxide 120 mg FC Tabs were used for our method development, which contain bismuth oxide (as tripotassium dicitratobismuthate (bismuth subcitrate)) as the active substance. The sample preparation consists of partial excipient dissolution in different solvents. Following this procedure, the API particles were successfully extracted from the granules. Particle size and morphology identification in Bismuth Oxide 120 mg FC Tabs was conducted using micro-Raman mapping spectroscopy and ImageJ software. The proposed methodology was repeated for the raw API material and against a reference listed drug (RLD) for comparative purposes. The API particle size was found to have decreased compared to the raw API, while the API morphology was also affected from the formulation manufacturing process. Comparison with the RLD product also revealed differences, mainly in the API particle size and secondarily in the crystal morphology.


Asunto(s)
Bismuto , Excipientes , Excipientes/química , Tamaño de la Partícula , Comprimidos/química
13.
J Therm Spray Technol ; 31(1-2): 297-306, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37520912

RESUMEN

Stabilized bismuth oxide material with fluorite structure (δ-Bi2O3) has been studied as a promising electrolyte material for intermediate temperature solid oxide fuel cells (IT-SOFCs) due to its high oxygen ion conductivity in mediate temperature. Especially, the ternary system Bi2O3-Er2O3-WO3 is widely concerned for its high ionic conductivity and thermal stability. In this study, regarding its low melting point, the possibility to deposit dense Bi2O3-Er2O3-WO3 ((Bi2O3)0.705 (Er2O3)0.245 (WO3)0.05, EWSB) electrolyte by plasma spraying was examined. It was confirmed that the sintered EWSB bulk presents a high ion conductivity of 0.34 S cm-1 at 750 °C and excellent stability that indicates no structure transformation and conductivity degradation after annealing at 600 °C for 1000 h. The phase structure and cross-sectional microstructure of plasma-sprayed EWSB were characterized by XRD and SEM. Results showed that the as-plasma-sprayed EWSB presents a dense microstructure with well bonded lamellae. The XRD showed the formation of EWSB with δ-phase and a trace of ß-phase, while the ß-phase disappeared after annealing at 750 °C for 10 h. The deposited EWSB electrolyte presented the excellent ionic conductivity of 0.26 S cm-1 at 750 °C which can be directly applied to SOFC at intermediate temperature.

14.
J Environ Sci (China) ; 104: 128-136, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33985716

RESUMEN

Access to safe drinking water free from microbial pollution is an issue of global concern. The use of photocatalytic thin films in water treatment has focused on titanium dioxide, which requires UV-activation, proving a potential barrier to upscaling and implementation in the real world. Visible-light-activated photocatalytic thin films, such as bismuth oxide, have recently been shown to have antimicrobial properties. However, more understanding of the photocatalytic effect on the microbial population in water is required. Glass beads coated with bismuth oxide were incubated with either Microcystis aeruginosa, Anabaena sp. or free-floating genomic DNA. The presence of bismuth oxide-coated glass beads was able to rapidly stop a population of cyanobacteria from increasing. The coated beads were also able to degrade genomic DNA. Leachate from the beads showed no increase in toxicity against human liver cells. This data demonstrates the efficacy of bismuth oxide-coated glass beads for controlling potentially dangerous cyanobacterial populations, whilst potentially reducing the amount of free-floating genomic DNA (an essential issue in the face of antimicrobial resistance) - all of which should be essential considerations in emerging water treatment technologies.


Asunto(s)
Bismuto , Cianobacterias , Catálisis , ADN , Genómica , Humanos , Luz
15.
Angew Chem Int Ed Engl ; 60(11): 6076-6085, 2021 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-33296135

RESUMEN

Fabricating proton exchange membranes (PEMs) with high ionic conductivity and ideal mechanical robustness through regulation of the membrane microstructures achieved by molecular-level hybridization remains essential but challenging for the further development of high-performance PEM fuel cells. In this work, by precisely hybridizing nano-scaled bismuth oxide clusters into Nafion, we have fabricated the high-performance hybrid membrane, Nafion-Bi12 -3 %, which showed a proton conductivity of 386 mS cm-1 at 80 °C in aqueous solution with low methanol permeability, and conserved the ideal mechanical and chemical stabilities as PEMs. Moreover, molecular dynamics (MD) simulation was employed to clarify the structural properties and the assembly mechanisms of the hybrid membrane on the molecular level. The maximum current density and power density of Nafion-Bi12 -3 % for direct methanol fuel cells reached to 432.7 mA cm-2 and 110.2 mW cm-2 , respectively. This work provides new insights into the design of versatile functional polymer electrolyte membranes through polyoxometalate hybridization.

16.
Rep Pract Oncol Radiother ; 26(5): 773-784, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34760312

RESUMEN

BACKGROUND: Nanotechnology application has successfully reached numerous scientific breakthroughs including in radiotherapy. However, the clinical application of nanoparticles requires more diligent research primarily on the crucial parameters such as nanoparticle sizes. This study is aimed to investigate the influence of bismuth oxide nanorod (Bi2O3-NR) sizes on radiosensitization effects on MCF-7 and HeLa cell lines for megavoltage photon and electron beam radiotherapy. MATERIALS AND METHODS: MCF-7 and HeLa cells were treated with and without 0.5 µMol/L of Bi2O3-NR of varying sizes (60, 70, 80, and 90 nm). The samples, including the control groups, were exposed to different radiation doses (0-10 Gy), using photon (6 MV and 10 MV), and electron beam (6 MeV and 12 MeV) radiotherapy. Clonogenic assay was performed, and sensitization enhancement ratio (SER) was determined from linear quadratic based cell survival curves. RESULTS: The results depicted that 60 nm Bi2O3-NR yields the most excellent SER followed by 70 nm Bi2O3-NR. Meanwhile, the 80 and 90 nm Bi2O3-NR showed an insignificant difference between treated and untreated cell groups. This study also found that MCF-7 was subjected to more cell death compared to HeLa. CONCLUSION: 60 nm Bi2O3-NR was the optimal Bi2O3-NR size to induce radiosensitization effects for megavoltage external beam radiotherapy. The SER in photon beam radiotherapy marked the highest compared to electron beam radiotherapy due to decreased primary radiation energy from multiple radiation interaction and higher Compton scattering.

17.
Chemistry ; 26(40): 8801-8809, 2020 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-32353197

RESUMEN

Global warming challenges are fueling the demand to develop an efficient catalytic system for the reduction of CO2 , which would contribute significantly to the control of climate change. Herein, as-synthesized bismuthoxide-decorated graphene oxide (Bi2 O3 @GO) was used as an electro/thermal catalyst for CO2 reduction. Bi2 O3 @GO is found to be distributed uniformly, as confirmed by scanning electron and transmission electron microscopic analysis. The X-ray diffraction (XRD) pattern shows that the Bi2 O3 has a ß-phase with 23.4 m2 g-1 BET surface area. Significantly, the D and G bands from Raman spectroscopic analysis and their intensity ratio (ID /IG ) reveal the increment in defective sites on GO after surface decoration. X-ray photoelectron spectroscopic (XPS) analysis shows clear signals for Bi, C, and O, along with their oxidation states. An ultra-low onset potential (-0.534 V vs. RHE) for the reduction of CO2 on Bi2 O3 @GO is achieved. Furthermore, potential-dependent (-0.534, -0.734, and -0.934 vs. RHE) bulk electrolysis of CO2 to formate provides Faradaic efficiencies (FE) of approximately 39.72, 61.48, and 83.00 %, respectively. Additionally, in time-dependent electrolysis at a potential of -0.934 versus RHE for 3 and 5 h, the observed FEs are around 84.20 % and 87.17 % respectively. This catalyst is also used for the thermal reduction of CO2 to formate. It is shown that the thermal reduction provides a path for industrial applications, as this catalyst converts a large amount of CO2 to formate (10 mm).

18.
Chemistry ; 26(18): 4013-4018, 2020 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-31482593

RESUMEN

Electroreduction of CO2 into formic acid (HCOOH) is of particular interest as a hydrogen carrier and chemical feedstock. However, its conversion is limited by a high overpotential and low stability due to undesirable catalysts and electrode design. Herein, an integrated 3D bismuth oxide ultrathin nanosheets/carbon foam electrode is designed by a sponge effect and N-atom anchor for energy-efficient and selective electrocatalytic conversion of CO2 to HCOOH for the first time. Benefitting from the unique 3D array foam architecture for highly efficient mass transfer, and optimized exposed active sites, as confirmed by density functional theory calculations, the integrated electrode achieves high electrocatalytic performance, including superior partial current density and faradaic efficiency (up to 94.1 %) at a moderate overpotential as well as a high energy conversion efficiency of 60.3 % and long-term durability.

19.
Int J Mol Sci ; 21(3)2020 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-32012889

RESUMEN

Composite lightweight materials for X-ray shielding applications were studied anddeveloped with the goal of replacing traditional screens made of lead and steel, with innovativematerials with similar shielding properties, but lighter, more easily formed and workable, with lowerimpact on the environment and reduced toxicity for human health. New epoxy-based compositesadditivated with barium sulfate and bismuth oxide were designed through simulations performedwith software based on Geant4. Then, they were prepared and characterized using differenttechniques starting from digital radiography in order to test the radiopacity of the composites,in comparison with traditional materials. The lower environmental impact and toxicity of theseinnovative screens were quantified by Life Cycle Assessment (LCA) calculation based on the ecoinventdatabase, within the openLCA framework. Optimized mixtures are (i) 20% epoxy/60% bismuthoxide/20% barite, which guarantees the best performance in X-ray shielding, largely overcomingsteel, but higher in costs and a weight reduction of circa 60%; (ii) 20% epoxy/40% bismuth oxide/40%barite which has slightly lower performances in shielding, but it is lighter and cheaper than thefirst one and (iii) the 20% epoxy/20% bismuth oxide/60% barite which is the cheapest material, stillmaintaining the X-ray shielding of steel. Depending on the cost/efficiency request of the specificapplication (industrial ra.


Asunto(s)
Sulfato de Bario/química , Bismuto/química , Resinas Epoxi/síntesis química , Resinas Epoxi/química , Dureza , Peso Molecular , Intensificación de Imagen Radiográfica , Programas Informáticos
20.
Int Endod J ; 51(6): 674-683, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29226342

RESUMEN

AIM: To evaluate the effects of 2.8% or 10% calcium chloride (CaCl2 ) in calcium aluminate cement (CAC) with either bismuth oxide (Bi2 O3 ) or zinc oxide (ZnO) as radiopacifiers on the progression of osteogenic cell cultures. METHODOLOGY: Rat calvaria-derived cells were grown on Thermanox® coverslips for 24 h and exposed to samples of (i) CACb: with 2.8% CaCl2 and 25% Bi2 O3 ; (ii) CACb+: with 10% CaCl2 and 25% Bi2 O3 ; (iii) CACz: with 2.8% CaCl2 and 25% ZnO; or (iv) CACz+: with 10% CaCl2 and 25% ZnO, placed on inserts. Nonexposed cultures served as the control. Calcium and phosphorus contents in culture media were quantified. The effects of the cements on cell apoptosis, cell viability and acquisition of the osteogenic cell phenotype were evaluated. Data were compared by Kruskal-Wallis test (α = 5%). RESULTS: CACb+ promoted the highest levels of calcium in the culture media; CACz+, the lowest levels of phosphorus (P < 0.05). CACz+ and CACb increased cell apoptosis (P < 0.05). CACb reduced cell viability (P < 0.05) and the expression of the osteoblastic phenotype. CACz+ and CACb+ promoted greater cell differentiation and matrix mineralization compared to CACz and CACb (P < 0.05). CONCLUSION: For CAC with the lower CaCl2 content, the use of Bi2 O3 was detrimental for osteoblastic cell survival and differentiation compared to ZnO, while CAC with the higher CaCl2 content supported the acquisition of the osteogenic cell phenotype in vitro regardless of the radiopacifier used. Thus, CAC with 10% CaCl2 would potentially promote bone repair in the context of endodontic therapies.


Asunto(s)
Compuestos de Aluminio/farmacología , Cloruro de Calcio/farmacología , Compuestos de Calcio/farmacología , Cementos Dentales/farmacología , Osteogénesis/efectos de los fármacos , Animales , Apoptosis , Bismuto/farmacología , Supervivencia Celular , Células Cultivadas , Cementos Dentales/química , Fenotipo , Ratas , Ratas Wistar , Cráneo/citología , Óxido de Zinc/farmacología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda