Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Cell ; 167(1): 171-186.e15, 2016 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-27641501

RESUMEN

While acute myeloid leukemia (AML) comprises many disparate genetic subtypes, one shared hallmark is the arrest of leukemic myeloblasts at an immature and self-renewing stage of development. Therapies that overcome differentiation arrest represent a powerful treatment strategy. We leveraged the observation that the majority of AML, despite their genetically heterogeneity, share in the expression of HoxA9, a gene normally downregulated during myeloid differentiation. Using a conditional HoxA9 model system, we performed a high-throughput phenotypic screen and defined compounds that overcame differentiation blockade. Target identification led to the unanticipated discovery that inhibition of the enzyme dihydroorotate dehydrogenase (DHODH) enables myeloid differentiation in human and mouse AML models. In vivo, DHODH inhibitors reduced leukemic cell burden, decreased levels of leukemia-initiating cells, and improved survival. These data demonstrate the role of DHODH as a metabolic regulator of differentiation and point to its inhibition as a strategy for overcoming differentiation blockade in AML.


Asunto(s)
Antineoplásicos/uso terapéutico , Inhibidores Enzimáticos/uso terapéutico , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/patología , Terapia Molecular Dirigida , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/antagonistas & inhibidores , Animales , Antineoplásicos/química , Antineoplásicos/aislamiento & purificación , Diferenciación Celular , Dihidroorotato Deshidrogenasa , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/aislamiento & purificación , Ensayos Analíticos de Alto Rendimiento , Proteínas de Homeodominio/genética , Humanos , Leucemia Mieloide Aguda/genética , Ratones , Células Mieloides/patología , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Pirimidinas/metabolismo , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/aislamiento & purificación , Bibliotecas de Moléculas Pequeñas/uso terapéutico , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Am J Physiol Cell Physiol ; 327(5): C1202-C1218, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39279497

RESUMEN

Acute myeloid leukemia (AML) is a heterogeneous group of hematological malignancies characterized by differentiation arrest, high relapse rates, and poor survival. The bone marrow (BM) microenvironment is recognized as a critical mediator of drug resistance and a primary site responsible for AML relapse. Our previous study reported that 5-aminoimidazole-4-carboxamide ribonucleoside (AICAr) induces AML cell differentiation by inhibiting pyrimidine synthesis and activating Checkpoint kinase 1. Although the protective effect of BM stroma on leukemia cells in response to cytotoxic drugs is well-documented, its effect on AML differentiation remains less explored. In this study, we investigated the impact of stromal cell lines and primary mesenchymal stromal cells (MSCs) on AML cell line differentiation triggered by AICAr and brequinar, a known dihydroorotate dehydrogenase (DHODH) inhibitor. Our findings indicate that the mouse MS-5 stromal cell line, known for its cytoprotective effects, does not inhibit AML cell differentiation induced by pyrimidine synthesis inhibitors. Interestingly, AICAr caused morphological changes and growth arrest in MS-5 stromal cells via an AMP-activated protein kinase (AMPK)-dependent pathway. Human stromal cell lines HS-5 and HS-27, as well as primary MSCs isolated from patient bone marrow, were superior in promoting AML differentiation compared with mouse cells in response to AICAr and brequinar, with the inhibitors not significantly affecting the stromal cells themselves. In conclusion, our study highlights the supportive role of human BM MSCs in enhancing the differentiation effects of pyrimidine synthesis inhibitors on AML cells, suggesting that AML treatment strategies focusing on differentiation rather than cell killing may be successful in clinical settings.NEW & NOTEWORTHY This study is the first to demonstrate that human stromal cell lines and primary mesenchymal stromal cells from patients enhance the in vitro differentiation of acute myeloid leukemia (AML) cells induced by pyrimidine synthesis inhibitors, 5-aminoimidazole-4-carboxamide ribonucleoside (AICAr), and brequinar. Furthermore, this is the first report to show that AICAr affects mouse bone marrow stromal cells by activating AMP-activated protein kinase (AMPK) and that human stromal cells are superior to mouse cells for testing the effects of drugs on AML differentiation.


Asunto(s)
Aminoimidazol Carboxamida , Diferenciación Celular , Leucemia Mieloide Aguda , Células Madre Mesenquimatosas , Pirimidinas , Ribonucleótidos , Humanos , Leucemia Mieloide Aguda/patología , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/tratamiento farmacológico , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/patología , Animales , Diferenciación Celular/efectos de los fármacos , Ratones , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacología , Pirimidinas/farmacología , Ribonucleótidos/farmacología , Dihidroorotato Deshidrogenasa , Línea Celular Tumoral , Proteínas Quinasas Activadas por AMP/metabolismo , Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/patología , Compuestos de Bifenilo , Quinaldinas
3.
Virol J ; 20(1): 242, 2023 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-37875895

RESUMEN

BACKGROUND: African swine fever virus (ASFV) is one of the most fatal swine etiological agents and has a huge economic impact on the global pork industry. Given that no effective vaccines or anti-ASFV drugs are available, there remains a pressing need for novel anti-ASFV drugs. This study aimed to investigate the anti-African swine fever virus (ASFV) activity of brequinar, a DHODH inhibitor. METHODS: The anti-ASFV activity of brequinar was investigated using IFA, HAD, HAD50, qRT-PCR, and western blotting assays. The western blotting assay was used to investigate whether brequinar inhibits ASFV replication by killing ASFV particles directly or by acting on cell factors. The confocal microscopy and western blotting assays were used to investigate whether brequinar inhibits ASFV replication by activating ferroptosis. RESULTS: In this study, brequinar was found to effectively inhibit ASFV replication ex vivo in porcine alveolar macrophages (PAMs) in a dose-dependent manner. In kinetic studies, brequinar was found to maintain ASFV inhibition from 24 to 72 hpi. Mechanistically, the time-of-addition assay showed that brequinar exerted anti-ASFV activity in all treatment modes, including pre-, co-, and post-treatment rather than directly killing ASFV particles. Notably, FerroOrange, Mito-FerroGreen, and Liperfluo staining experiments showed that brequinar increased the accumulation of intracellular iron, mitochondrial iron, and lipid peroxides, respectively. Furthermore, we also found that ferroptosis agonist cisplatin treatment inhibited ASFV replication in a dose-dependent manner and the inhibitory effect of brequinar on ASFV was partially reversed by the ferroptosis inhibitor ferrostatin-1, suggesting that brequinar activates ferroptosis to inhibit ASFV replication. Interestingly, exogenous uridine supplementation attenuated the anti-ASFV activity of brequinar, indicating that brequinar inhibits ASFV replication by inhibiting DHODH activity and the depletion of intracellular pyrimidine pools; however, the induction of ferroptosis by brequinar treatment was not reversed by exogenous uridine supplementation, suggesting that brequinar activation of ferroptosis is not related to the metabolic function of pyrimidines. CONCLUSIONS: Our data confirm that brequinar displays potent antiviral activity against ASFV in vitro and reveal the mechanism by which brequinar inhibits ASFV replication by activating ferroptosis, independent of inhibiting pyrimidine synthesis, providing novel targets for the development of anti-ASFV drugs.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Ferroptosis , Porcinos , Animales , Replicación Viral , Dihidroorotato Deshidrogenasa , Cinética , Uridina/metabolismo , Hierro/metabolismo
4.
Stem Cells ; 39(1): 33-42, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33038285

RESUMEN

Pluripotent stem cells (PSCs), such as embryonic stem cells and induced pluripotent stem cells, give rise to all kinds of functional cells, making them promising for successful application in regenerative medicine. However, there is concern that a PSC-derived differentiated cell population may form teratomas when used for cell therapy if the population contains undifferentiated PSCs. Therefore, for the success of regenerative medicine, it is crucial to establish methods that induce complete PSC differentiation and eliminate the contamination of PSCs. Here, I show that the dihydroorotate dehydrogenase (DHODH) inhibitor brequinar (BRQ) induced cell cycle arrest, cell death, and stemness loss in mouse PSCs (mPSCs), whereas it was less toxic against normal tissue-specific stem cells and differentiating cells. I demonstrate that BRQ-pretreated mPSCs did not form teratomas after being transplanted into NOD/SCID mice. Moreover, BRQ administration to teratoma-bearing mice prevented tumor growth and decreased PSC marker levels in the tumor without any visible effects in the differentiated germ layer cells and the mice. Collectively, these data suggested that DHODH inhibitors such as BRQ can be indispensable in the fundamental methods of PSC-based therapy.


Asunto(s)
Compuestos de Bifenilo/farmacología , Dihidroorotato Deshidrogenasa/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Células Madre Embrionarias de Ratones/enzimología , Animales , Línea Celular , Dihidroorotato Deshidrogenasa/metabolismo , Ratones , Ratones Endogámicos NOD , Ratones SCID
5.
BMC Cancer ; 20(1): 1090, 2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-33176741

RESUMEN

BACKGROUND: All-trans retinoic acid (ATRA)-based treatment of acute promyelocytic leukemia (APL) is the most successful pharmacological treatment of acute myeloid leukemia (AML). Recent development of inhibitors of mutated isocitrate dehydrogenase and dihydroorotate dehydrogenase (DHODH) has revived interest in differentiation therapy of non-APL AML. Our previous studies demonstrated that 5-aminoimidazole-4-carboxamide ribonucleoside (AICAr) induced differentiation of monocytic cell lines by activating the ATR/Chk1 via pyrimidine depletion. In the present study, the effects of AICAr on the viability and differentiation of primary AML blasts isolated from bone marrow of patients with non-APL AML were tested and compared with the effects of DHODH inhibitor brequinar and ATRA. METHODS: Bone marrow samples were obtained from 35 patients and leukemia blasts were cultured ex vivo. The cell viability was assessed by MTT assay and AML cell differentiation was determined by flow cytometry and morphological analyses. RNA sequencing and partial data analysis were conducted using ClusterProfiler package. Statistical analysis was performed using GraphPad Prism 6.0. RESULTS: AICAr is capable of triggering differentiation in samples of bone marrow blasts cultured ex vivo that were resistant to ATRA. AICAr-induced differentiation correlates with proliferation and sensitivity to DHODH inhibition. RNA-seq data obtained in primary AML blasts confirmed that AICAr treatment induced downregulation of pyrimidine metabolism pathways together with an upregulation of gene set involved in hematopoietic cell lineage. CONCLUSION: AICAr induces differentiation in a subset of primary non-APL AML blasts, and these effects correlate with sensitivity to a well-known, potent DHODH inhibitor.


Asunto(s)
Aminoimidazol Carboxamida/análogos & derivados , Biomarcadores de Tumor/metabolismo , Crisis Blástica/tratamiento farmacológico , Médula Ósea/efectos de los fármacos , Diferenciación Celular , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Leucemia Mieloide Aguda/tratamiento farmacológico , Ribonucleósidos/farmacología , Aminoimidazol Carboxamida/farmacología , Biomarcadores de Tumor/genética , Crisis Blástica/genética , Crisis Blástica/metabolismo , Crisis Blástica/patología , Médula Ósea/metabolismo , Médula Ósea/patología , Estudios de Casos y Controles , Proliferación Celular , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , RNA-Seq , Células Tumorales Cultivadas
6.
Bioorg Med Chem Lett ; 30(22): 127589, 2020 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-33007394

RESUMEN

Dihydroorotate dehydrogenase (DHODH) enzymatic activity impacts many aspects critical to cell proliferation and survival. Recently, DHODH has been identified as a target for acute myeloid differentiation therapy. In preclinical models of AML, the DHODH inhibitor Brequinar (BRQ) demonstrated potent anti-leukemic activity. Herein we describe a carboxylic acid isostere study of Brequinar which revealed a more potent non-carboxylic acid derivative with improved cellular potency and good pharmacokinetic properties.


Asunto(s)
Antineoplásicos/farmacología , Compuestos de Bifenilo/farmacología , Ácidos Carboxílicos/farmacología , Inhibidores Enzimáticos/farmacología , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/antagonistas & inhibidores , Animales , Antineoplásicos/química , Compuestos de Bifenilo/química , Ácidos Carboxílicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Dihidroorotato Deshidrogenasa , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores Enzimáticos/química , Humanos , Ratones , Microsomas Hepáticos/química , Microsomas Hepáticos/metabolismo , Estructura Molecular , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Relación Estructura-Actividad
7.
Mol Pharm ; 16(6): 2795-2807, 2019 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-31067063

RESUMEN

Site-specific conjugation technology frequently relies on antibody engineering to incorporate rare or non-natural amino acids into the primary sequence of the protein. However, when the primary sequence is unknown or when antibody engineering is not feasible, there are very limited options for site-specific protein modification. We have developed a transglutaminase-mediated conjugation that incorporates a thiol at a "privileged" location on deglycosylated antibodies (Q295). Perhaps surprisingly, this conjugation employs a reported transglutaminase inhibitor, cystamine, as the key enzyme substrate. The chemical incorporation of a thiol at the Q295 site allows for the site-specific attachment of a plethora of commonly used and commercially available payloads via maleimide chemistry. Herein, we demonstrate the utility of this method by comparing the conjugatability, plasma stability, and in vitro potency of these site-specific antibody-drug conjugates (ADCs) with analogous endogenous cysteine conjugates. Cytotoxic ADCs prepared using this methodology are shown to exhibit comparable in vitro efficacy to stochastic cysteine conjugates while displaying dramatically improved plasma stability and conjugatability. In particular, we note that this technique appears to be useful for the incorporation of highly hydrophobic linker payloads without the addition of PEG modifiers. We postulate a possible mechanism for this feature by probing the local environment of the Q295 site with two fluorescent probes that are known to be sensitive to the local hydrophobic environment. In summary, we describe a highly practical method for the site-specific conjugation of genetically nonengineered antibodies, which results in plasma-stable ADCs with low intrinsic hydrophobicity. We believe that this technology will find broad utility in the ADC community.


Asunto(s)
Inmunoconjugados/química , Péptidos/química , Proteínas/química , Ingeniería Genética , Interacciones Hidrofóbicas e Hidrofílicas
8.
Chemistry ; 23(56): 13875-13878, 2017 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-28833638

RESUMEN

Brequinar, a potent dihydroorotate dehydrogenase (DHODH) inhibitor, has been evaluated in multiple clinical trials as a potential treatment for cancer. To further understand brequinar-based DHODH inhibition and DHODH's therapeutic relevance in cancer, we have developed novel brequinar-based probes. We disclose a 16-step convergent synthesis of the first brequinar-PROTAC and a four-step approach towards the first mitochondrial-directed brequinar probe. A PROTAC and mitochondria-directed probe of brequinar both possess cytotoxicity that is superior to brequinar in a colony formation assay.

9.
bioRxiv ; 2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-37066260

RESUMEN

Pyrimidine nucleotide biosynthesis is a druggable metabolic dependency of cancer cells, and chemotherapy agents targeting pyrimidine metabolism are the backbone of treatment for many cancers. Dihydroorotate dehydrogenase (DHODH) is an essential enzyme in the de novo pyrimidine biosynthesis pathway that can be targeted by clinically approved inhibitors. However, despite robust preclinical anticancer efficacy, DHODH inhibitors have shown limited single-agent activity in phase 1 and 2 clinical trials. Therefore, novel combination therapy strategies are necessary to realize the potential of these drugs. To search for therapeutic vulnerabilities induced by DHODH inhibition, we examined gene expression changes in cancer cells treated with the potent and selective DHODH inhibitor brequinar (BQ). This revealed that BQ treatment causes upregulation of antigen presentation pathway genes and cell surface MHC class I expression. Mechanistic studies showed that this effect is 1) strictly dependent on pyrimidine nucleotide depletion, 2) independent of canonical antigen presentation pathway transcriptional regulators, and 3) mediated by RNA polymerase II elongation control by positive transcription elongation factor B (P-TEFb). Furthermore, BQ showed impressive single-agent efficacy in the immunocompetent B16F10 melanoma model, and combination treatment with BQ and dual immune checkpoint blockade (anti-CTLA-4 plus anti-PD-1) significantly prolonged mouse survival compared to either therapy alone. Our results have important implications for the clinical development of DHODH inhibitors and provide a rationale for combination therapy with BQ and immune checkpoint blockade.

10.
Elife ; 122024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38973593

RESUMEN

Pyrimidine nucleotide biosynthesis is a druggable metabolic dependency of cancer cells, and chemotherapy agents targeting pyrimidine metabolism are the backbone of treatment for many cancers. Dihydroorotate dehydrogenase (DHODH) is an essential enzyme in the de novo pyrimidine biosynthesis pathway that can be targeted by clinically approved inhibitors. However, despite robust preclinical anticancer efficacy, DHODH inhibitors have shown limited single-agent activity in phase 1 and 2 clinical trials. Therefore, novel combination therapy strategies are necessary to realize the potential of these drugs. To search for therapeutic vulnerabilities induced by DHODH inhibition, we examined gene expression changes in cancer cells treated with the potent and selective DHODH inhibitor brequinar (BQ). This revealed that BQ treatment causes upregulation of antigen presentation pathway genes and cell surface MHC class I expression. Mechanistic studies showed that this effect is (1) strictly dependent on pyrimidine nucleotide depletion, (2) independent of canonical antigen presentation pathway transcriptional regulators, and (3) mediated by RNA polymerase II elongation control by positive transcription elongation factor B (P-TEFb). Furthermore, BQ showed impressive single-agent efficacy in the immunocompetent B16F10 melanoma model, and combination treatment with BQ and dual immune checkpoint blockade (anti-CTLA-4 plus anti-PD-1) significantly prolonged mouse survival compared to either therapy alone. Our results have important implications for the clinical development of DHODH inhibitors and provide a rationale for combination therapy with BQ and immune checkpoint blockade.


Asunto(s)
Presentación de Antígeno , Dihidroorotato Deshidrogenasa , Inhibidores de Puntos de Control Inmunológico , Animales , Ratones , Humanos , Presentación de Antígeno/efectos de los fármacos , Línea Celular Tumoral , Inhibidores de Puntos de Control Inmunológico/farmacología , Quinoxalinas/farmacología , Inhibidores Enzimáticos/farmacología , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/antagonistas & inhibidores , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Ratones Endogámicos C57BL , Melanoma Experimental/tratamiento farmacológico , Melanoma Experimental/inmunología , Compuestos de Bifenilo , Quinaldinas
11.
Cancers (Basel) ; 15(2)2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36672495

RESUMEN

Ferroptosis exhibits a potent antitumor effect and dihydroorotate dehydrogenase (DHODH) has recently been identified as a novel ferroptosis defender. However, the role of DHODH inhibition in cervical cancer cells is unclear, particularly in synergy with cisplatin via ferroptosis. Herein, shRNA and brequinar were used to knock down DHODH and directly inhibit DHODH, respectively. Immunohistochemistry and Western blotting assays were performed to measure the expression of proteins. CCK-8 and colony formation assays were employed to assess the cell viability and proliferation. Ferroptosis was monitored through flow cytometry, the malondialdehyde assay kit and JC-1 staining analyses. The nude mouse xenograft model was generated to examine the effect of combination of DHODH inhibition and cisplatin on tumor growth in vivo. The expression of DHODH was increased in cervical cancer tissues. DHODH inhibition inhibited the proliferation and promoted the ferroptosis in cervical cancer cells. A combination of DHODH inhibition and cisplatin synergistically induced both in vitro and in vivo ferroptosis and downregulated the ferroptosis defender mTOR pathway. Therefore, the combination of DHODH inhibition and cisplatin exhibits synergistic effects on ferroptosis induction via inhibiting the mTOR pathway could provide a promising way for cervical cancer therapy.

12.
J Control Release ; 363: 221-234, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37717657

RESUMEN

Checkpoint blockade immunotherapy (CBI) have exhibited remarkable benefits for cancer therapy. However, the low responsivity of CBI hinders its application in treatment of bladder cancer. Ferroptosis shows potential for increasing the responsivity of CBI by inducing immunogenic cell death (ICD) process. Herein, we developed a mitochondrial-targeted liposome loaded with brequinar (BQR) (BQR@MLipo) for enhancing the mitochondrial-related ferroptosis in bladder cancer in situ. It could be found that BQR@MLipo could selectively accumulate into mitochondria and inactivate dihydroorotate dehydrogenase (DHODH), which induced extensive mitochondrial lipid peroxidation and ROS, finally triggering ferroptosis of bladder cancer cells to boost the release of intracellular damage-associated molecular patterns (DAMPs) such as calreticulin (CRT), adenosine triphosphate (ATP), high mobility group box 1 (HMGB1). In addition, BQR@MLipo further promoted the release of mtDNA into the cytoplasm to activate the cGAS-STING pathway for the secretion of IFN-ß, which would increase the cross-presentation of antigens by dendritic cells and macrophage phagocytosis. Furthermore, the in vivo studies revealed that BQR@MLipo could remarkably accumulate into the bladder tumor and successfully initiate the infiltration of CD8+ T cells into tumor microenvironment for enabling efficient CBI to inhibit bladder tumor growth. Therefore, BQR@MLipo may represent a clinically promising modality for enhancing CBI in bladder tumor.


Asunto(s)
Ferroptosis , Neoplasias de la Vejiga Urinaria , Humanos , Linfocitos T CD8-positivos , Inhibidores de Puntos de Control Inmunológico , Liposomas , Inmunoterapia , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Mitocondrias , Línea Celular Tumoral , Microambiente Tumoral
13.
Front Cell Dev Biol ; 11: 1089945, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36814599

RESUMEN

The use of induced mesenchymal stem/stromal cells (iMSCs) derived from human induced pluripotent stem cells (hiPSCs) in regenerative medicine involves the risk of teratoma formation due to hiPSCs contamination in iMSCs. Therefore, eradicating the remaining undifferentiated hiPSCs is crucial for the effectiveness of the strategy. The present study demonstrates the Brequinar (BRQ)-induced inhibition of dihydroorotate dehydrogenase (DHODH), a key enzyme in de novo pyrimidine biosynthesis, selectively induces apoptosis, cell cycle arrest, and differentiation; furthermore, it promotes transcriptional changes and prevents the growth of 3-dimensional hiPSC aggregates. Contrastingly, BRQ-treated iMSCs showed no changes in survival, differentiation potential, or gene expression. The results suggest that BRQ is a potential agent for the effective purification of iMSCs from a mixed population of iMSCs and hiPSCs, which is a crucial step in successful iMSC-based therapy.

14.
Virus Res ; 317: 198826, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35618075

RESUMEN

African swine fever virus (ASFV) is a double-stranded DNA virus that causes an acute and hemorrhagic disease in domestic swine, resulting in significant economic losses to the global porcine industry. The lack of vaccines and antiviral drugs highlights the urgent need for antiviral studies against ASFV. Here, we report that brequinar (BQR), which is a specific inhibitor of dihydroorotate dehydrogenase, robustly inhibits ASFV replication in Vero cells, as well as in porcine macrophages. We demonstrate that BQR exerts its antiviral activity in a dose-dependent manner through the depletion of pyrimidine pool. Although BQR does not affect the synthesis of an early viral protein, pI215L, the synthesis of late viral proteins, p17 and p72, is suppressed in the presence of BQR. We also show that BQR is able to induce cellular antiviral response in ASFV-infected macrophages by enhancing the expression of interferon-stimulated genes. Taken together, our study reveals that targeting nucleotide biosynthesis represents a promising strategy for developing antiviral agents against ASFV.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Virus de la Fiebre Porcina Africana/fisiología , Animales , Antivirales/farmacología , Compuestos de Bifenilo , Chlorocebus aethiops , Quinaldinas , Porcinos , Células Vero , Proteínas Virales/farmacología , Replicación Viral
15.
Antiviral Res ; 206: 105403, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36041646

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019 (COVID-19) and the associated global pandemic resulting in >400 million infections worldwide and several million deaths. The continued evolution of SARS-CoV-2 to potentially evade vaccines and monoclonal antibody (mAb)-based therapies and the limited number of authorized small-molecule antivirals necessitates the need for development of new drug treatments. There remains an unmet medical need for effective and convenient treatment options for SARS-CoV-2 infection. SARS-CoV-2 is an RNA virus that depends on host intracellular ribonucleotide pools for its replication. Dihydroorotate dehydrogenase (DHODH) is a ubiquitous host enzyme that is required for de novo pyrimidine synthesis. The inhibition of DHODH leads to a depletion of intracellular pyrimidines, thereby impacting viral replication in vitro. Brequinar (BRQ) is an orally available, selective, and potent low nanomolar inhibitor of human DHODH that has been shown to exhibit broad spectrum inhibition of RNA virus replication. However, host cell nucleotide salvage pathways can maintain intracellular pyrimidine levels and compensate for BRQ-mediated DHODH inhibition. In this report, we show that the combination of BRQ and the salvage pathway inhibitor dipyridamole (DPY) exhibits strong synergistic antiviral activity in vitro against SARS-CoV-2 by enhanced depletion of the cellular pyrimidine nucleotide pool. The combination of BRQ and DPY showed antiviral activity against the prototype SARS-CoV-2 as well as the Beta (B.1.351) and Delta (B.1.617.2) variants. These data support the continued evaluation of the combination of BRQ and DPY as a broad-spectrum, host-acting antiviral strategy to treat SARS-CoV-2 and potentially other RNA virus infections.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Virus ARN , Antivirales/farmacología , Antivirales/uso terapéutico , Compuestos de Bifenilo , Dipiridamol/farmacología , Humanos , Quinaldinas , SARS-CoV-2 , Replicación Viral
16.
Am J Transl Res ; 12(12): 8247-8255, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33437396

RESUMEN

Infection of human enteroviruses could cause diverse diseases ranging from mild respiratory symptoms to neurological complications, and even death. Currently, no-FDA approved antiviral drug is available for clinical treatment of human enteroviruses infection. Brequinar is an immunosuppressive drug currently being used for the prevention of organ graft rejection. The drug repurposing studies show that Brequinar exhibits potent antiviral activity against diverse viruses, including flaviviruses, alphavirus, rhabdovirus, and influenza viruses. The antiviral effect of Brequinar on human enterovirus infection has not been investigated yet. Here, the in vitro study shows that Brequinar potently inhibited EV71, EV70, and CVB3 replication at 50% inhibitory concentration (IC50) of 82.40 nM, 29.26 nM, and 35.14 nM, respectively. The antiviral activity of Brequinar was reversed by supplement exogenous pyrimidines, indicating that the antiviral effect of Brequinar against enterovirus relies on the inhibition of dihydroorotate dehydrogenase (DHODH) activity, which is responsible for the de novo biosynthesis of pyrimidines. These data extend the antiviral spectrum of Brequinar and indicate that Brequinar could serve as a promising antiviral drug to treat EV71 and other enterovirus infections.

17.
Curr Comput Aided Drug Des ; 16(3): 340-350, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31132976

RESUMEN

INTRODUCTION: Rheumatoid Arthritis [RA] is an autoimmune disease that can cause chronic inflammation of the joints. Human DiHydroOrotate DeHydrogenase [DHODH] is a clinically validated drug target for the treatment of Rheumatoid Arthritis. DHODH inhibition results in beneficial immunosuppressant and anti-proliferative effects. MATERIALS AND METHODS: Leflunomide [LEF] and Brequinar Sodium [BREQ], drugs used in the treatment of RA, suppresses the immune cells responsible for inflammation but has several side-effects, most predominant being symptomatic liver damage and toxicity. An existing scaffold based on structural analogies with LEF and BREQ was used to screen out potent inhibitors of DHODH, in ZINC Database using 2D binary fingerprint. 10 structures similar to the scaffold were shortlisted due to their Tanimoto similarity coefficient. Selected structures were docked using the tools AutoDock, Ligand fit and iGEMDOCK with target human DHODH. High scoring compounds having similar interactions as that of scaffold were checked to evaluate their Drug-Likeliness. RESULTS: The five shortlisted compounds were then subjected to Molecular Dynamics Simulation studies for 50ns using GROMACS. Measures of structural similarity based on 2D Fingerprint Screening and Molecular Dynamics Simulation studies can suggest good leads for drug designing. The novelty of this study is that the workflow used here yields the same results that are at par with the experimental data. CONCLUSION: This suggests the use of the 2D fingerprint similarity search in various databases, followed by multiple docking algorithms and dynamics as a workflow that will lead to finding novel compounds that a structurally and functionally similar to LEF and BREQ.


Asunto(s)
Compuestos de Bifenilo/química , Diseño de Fármacos , Inhibidores Enzimáticos/química , Leflunamida/análogos & derivados , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/antagonistas & inhibidores , Compuestos de Bifenilo/farmacología , Simulación por Computador , Dihidroorotato Deshidrogenasa , Inhibidores Enzimáticos/farmacología , Humanos , Leflunamida/farmacología , Simulación de Dinámica Molecular , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Flujo de Trabajo
18.
Curr Pharm Biotechnol ; 21(15): 1654-1665, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32525770

RESUMEN

BACKGROUND: The re-emerging of targeting Dihydroorotate Dehydrogenase (DHODH) in cancer treatment particularly Acute Myelogenous Leukemia (AML) has corroborated the substantial role of DHODH in cancer and received the attention of many pharmaceutical industries. OBJECTIVE: The effects of Brequinar Sodium (BQR) and 4SC-101 on lymphoblastoid cell lines were investigated. METHODS: DHODH expression and cell proliferation inhibition of lymphoblastoid and lymphoma cell lines were analyzed using Western blot analysis and XTT assay, respectively. JC-1 probe and ATP biochemiluminescence kit were used to evaluate the mitochondrial membrane potential and ATP generation in these cell lines. Furthermore, we explored the cell cycle progression using Muse™ Cell Cycle Kit. RESULTS: Ramos, SUDHL-1 and RPMI-1788 cells are fast-growing cells with equal expression of DHODH enzyme and sensitivity to DHODH inhibitors that showed that the inhibition of DHODH was not cancer-specific. In ATP depletion assay, the non-cancerous RPMI-1788 cells showed only a minor ATP reduction compared to Ramos and SUDHL-1 (cancer) cells. In the mechanistic impact of DHODH inhibitors on non-cancerous vs cancerous cells, the mitochondrial membrane potential assay revealed that significant depolarization and cytochrome c release occurred with DHODH inhibitors treatment in Ramos but not in the RPMI-1788 cells, indicating a different mechanism of proliferation inhibition in normal cells. CONCLUSION: The findings of this study provide evidence that DHODH inhibitors perturb the proliferation of non-cancerous cells via a distinct mechanism compared to cancerous cells. These results may lead to strategies for overcoming the impact on non-cancerous cells during treatment with DHODH inhibitors, leading to a better therapeutic window in patients.


Asunto(s)
Compuestos de Bifenilo/farmacología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Ácidos Dicarboxílicos/farmacología , Metabolismo Energético/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/antagonistas & inhibidores , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Dihidroorotato Deshidrogenasa , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/metabolismo , Neoplasias/enzimología , Neoplasias/patología
19.
Biomed Pharmacother ; 110: 29-36, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30458345

RESUMEN

Malignant melanoma continues to be a fatal disease for which novel and long-term curative breakthroughs are desired. One such innovative idea would be to assess combination therapeutic treatments - by way of combining two potentially effective and very different therapy. Previously, we have shown that DHODH inhibitors, A771726 and Brequinar sodium (BQR) induced cell growth impairment in melanoma cells. Similar results were seen with DHODH RNA interference (shRNA). In the present study, we showed that combination of BQR with doxorubicin resulted in synergistic and additive cell growth inhibition in these cells. In addition, in vivo studies with this combination of drugs demonstrated an almost 90% tumor regression in nude mice bearing melanoma tumors. Cell cycle regulatory proteins, cyclin B1 and its binding partner pcdc-2 and p21 were significantly downregulated and upregulated respectively following the combined treatment. Given that we have observed synergistic effects with BQR and doxorubicin, both in vitro and in vivo, these drugs potentially represent a new combination in the targeted therapy of melanoma.


Asunto(s)
Antineoplásicos/administración & dosificación , Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Compuestos de Bifenilo/administración & dosificación , Doxorrubicina/administración & dosificación , Melanoma/tratamiento farmacológico , Ensayos Antitumor por Modelo de Xenoinjerto , Animales , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Sinergismo Farmacológico , Humanos , Melanoma/patología , Ratones , Ratones Desnudos , Carga Tumoral/efectos de los fármacos , Carga Tumoral/fisiología , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
20.
Biomed Pharmacother ; 116: 108982, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31146110

RESUMEN

Foot-and-mouth disease (FMD) is one of the most highly contagious animal disease that affects cloven-hoofed animals. However, the FMD vaccine does not provide effective protection until adaptive immune protection elicited by the vaccination occurs. Therefore, an alternative application of antiviral agents for inhibition of the FMD virus (FMDV) is needed. Here, we demonstrated that brequinar could exhibit antiviral activity in swine kidney cells (IBRS-2 cells) infected with two different FMDV serotypes. Subsequently, in vivo activity of brequinar was confirmed in a mouse model of infection. Specifically, brequinar at a concentration of 50 µg, provided 25% protection for 5 days following FMDV challenge. These results suggested that brequinar could be used as effective antiviral agent against FMD.


Asunto(s)
Antivirales/uso terapéutico , Compuestos de Bifenilo/uso terapéutico , Virus de la Fiebre Aftosa/fisiología , Fiebre Aftosa/tratamiento farmacológico , Fiebre Aftosa/virología , Animales , Antivirales/química , Antivirales/farmacología , Compuestos de Bifenilo/química , Compuestos de Bifenilo/farmacología , Muerte Celular/efectos de los fármacos , Línea Celular , Virus de la Fiebre Aftosa/efectos de los fármacos , Miocardio/patología , Porcinos , Uridina/farmacología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda