Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Pestic Biochem Physiol ; 201: 105898, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38685256

RESUMEN

The dinoflagellate Karenia brevis is a causative agent of red tides in the Gulf of Mexico and generates a potent family of structurally related brevetoxins that act via the voltage-sensitive Na+ channel. This project was undertaken to better understand the neurotoxicology and kdr cross-resistance to brevetoxins in house flies by comparing the susceptible aabys strain to ALkdr (kdr) and JPskdr (super-kdr). When injected directly into the hemocoel, larvae exhibited rigid, non-convulsive paralysis consistent with prolongation of sodium channel currents, the known mechanism of action of brevetoxins. In neurophysiological studies, the firing frequency of susceptible larval house fly central nervous system preparations showed a > 200% increase 10 min after treatment with 1 nM brevetoxin-3. This neuroexcitation is consistent with the spastic paralytic response seen after hemocoel injections. Target site mutations in the voltage-sensitive sodium channel of house flies, known to confer knockdown resistance (kdr and super-kdr) against pyrethroids, attenuated the effect of brevetoxin-3 in baseline firing frequency and toxicity assays. The rank order of sensitivity to brevetoxin-3 in both assays was aabys > ALkdr > JPskdr. At the LD50 level, resistance ratios for the knockdown resistance strains were 6.9 for the double mutant (super-kdr) and 2.3 for the single mutant (kdr). The data suggest that knockdown resistance mutations may be one mechanism by which flies survive brevetoxin-3 exposure during red tide events.


Asunto(s)
Moscas Domésticas , Toxinas Marinas , Mutación , Oxocinas , Toxinas Poliéteres , Animales , Oxocinas/farmacología , Moscas Domésticas/genética , Moscas Domésticas/efectos de los fármacos , Larva/efectos de los fármacos , Larva/genética , Dinoflagelados/genética , Dinoflagelados/efectos de los fármacos
2.
Mar Drugs ; 21(12)2023 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-38132965

RESUMEN

Brevetoxins (BTXs) constitute a family of lipid-soluble toxic cyclic polyethers mainly produced by Karenia brevis, which is the main vector for a foodborne syndrome known as neurotoxic shellfish poisoning (NSP) in humans. To prevent health risks associated with the consumption of contaminated shellfish in France, the French Agency for Food, Environmental and Occupational Health & Safety (ANSES) recommended assessing the effects of BTXs via an acute oral toxicity study in rodents. Here, we investigated the effect of a single oral administration in both male and female mice with several doses of BTX-3 (100 to 1,500 µg kg-1 bw) during a 48 h observation period in order to provide toxicity data to be used as a starting point for establishing an acute oral reference dose (ARfD). We monitored biological parameters and observed symptomatology, revealing different effects of this toxin depending on the sex. Females were more sensitive than males to the impact of BTX-3 at the lowest doses on weight loss. For both males and females, BTX-3 induced a rapid, transient and dose-dependent decrease in body temperature, and a transient dose-dependent reduced muscle activity. Males were more sensitive to BTX-3 than females with more frequent observations of failures in the grip test, convulsive jaw movements, and tremors. BTX-3's impacts on symptomatology were rapid, appearing during the 2 h after administration, and were transient, disappearing 24 h after administration. The highest dose of BTX-3 administered in this study, 1,500 µg kg-1 bw, was more toxic to males, leading to the euthanasia of three out of five males only 4 h after administration. BTX-3 had no effect on water intake, and affected neither the plasma chemistry parameters nor the organs' weight. We identified potential points of departure that could be used to establish an ARfD (decrease in body weight, body temperature, and muscle activity).


Asunto(s)
Toxinas Marinas , Oxocinas , Humanos , Ratones , Femenino , Masculino , Animales , Toxinas Marinas/toxicidad , Toxinas Poliéteres , Oxocinas/toxicidad
3.
Environ Sci Technol ; 56(3): 1811-1819, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35050617

RESUMEN

Atmospheric processes can affect the longevity of harmful toxins in sea spray aerosols (SSA). This study characterized the degradation of brevetoxin (BTx) in SSA under different environmental conditions. The samples of seawater collected during a Karenia brevis bloom in Manasota, Florida, were nebulized into a large outdoor photochemical chamber to mimic the atmospheric oxidation of aerosolized toxins and then aged in the presence or absence of sunlight and/or O3. Aerosol samples were collected during the aging process using a Particle-Into-Liquid Sampler. Their BTx concentrations were measured using an enzyme-linked immuno-sorbent assay (ELISA) and high-performance liquid chromatography/tandem mass spectroscopy. The BTx ozonolysis rate constant measured by ELISA was 5.74 ± 0.21 × 103 M-1 s-1. The corresponding lifetime for decay of 87.5% BTx in the presence of 20 ppb of O3 was 7.08 ± 0.26 h, suggesting that aerosolized BTx can still travel long distances at night before SSA deposition. BTx concentrations in SSA decreased more rapidly in the presence of sunlight than in its absence due to oxidation with photochemically produced OH radicals.


Asunto(s)
Floraciones de Algas Nocivas , Oxocinas , Partículas y Gotitas de Aerosol , Toxinas Marinas , Oxocinas/análisis
4.
Mar Drugs ; 20(4)2022 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-35447906

RESUMEN

Brevetoxins are a suite of marine neurotoxins that activate voltage-gated sodium channels (VGSCs) in cell membranes, with toxicity occurring from persistent activation of the channel at high doses. Lower doses, in contrast, have been shown to elicit neuroregeneration. Brevetoxins have thus been proposed as a novel treatment for patients after stroke, when neuron regrowth and repair is critical to recovery. However, findings from environmental exposures indicate that brevetoxins may cause inflammation, thus, there is concern for brevetoxins as a stroke therapy given the potential for neuroinflammation. In this study, we examined the inflammatory properties of several brevetoxin analogs, including those that do and do not bind strongly to VGSCs, as binding has classically indicated toxicity. We found that several analogs are toxic to monocytes, while others are not, and the degree of toxicity is not directly related to VGSC binding. Rather, results indicate that brevetoxins containing aldehyde groups were more likely to cause immunotoxicity, regardless of binding affinity to the VGSC. Our results demonstrate that different brevetoxin family members can elicit a spectrum of apoptosis and necrosis by multiple possible mechanisms of action in monocytes. As such, care should be taken in treating "brevetoxins" as a uniform group, particularly in stroke therapy research.


Asunto(s)
Oxocinas , Accidente Cerebrovascular , Canales de Sodio Activados por Voltaje , Apoptosis , Humanos , Toxinas Marinas , Monocitos , Oxocinas/toxicidad , Elementos de Respuesta
5.
Mar Drugs ; 20(9)2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-36135748

RESUMEN

N-methyl-D-aspartate (NMDA) receptors play a critical role in activity-dependent dendritic arborization, spinogenesis, and synapse formation by stimulating calcium-dependent signaling pathways. Previously, we have shown that brevetoxin 2 (PbTx-2), a voltage-gated sodium channel (VGSC) activator, produces a concentration-dependent increase in intracellular sodium [Na+]I and increases NMDA receptor (NMDAR) open probabilities and NMDA-induced calcium (Ca2+) influxes. The objective of this study is to elucidate the downstream signaling mechanisms by which the sodium channel activator PbTx-2 influences neuronal morphology in murine cerebrocortical neurons. PbTx-2 and NMDA triggered distinct Ca2+-influx pathways, both of which involved the NMDA receptor 2B (GluN2B). PbTx-2-induced neurite outgrowth in day in vitro 1 (DIV-1) neurons required the small Rho GTPase Rac1 and was inhibited by both a PAK1 inhibitor and a PAK1 siRNA. PbTx-2 exposure increased the phosphorylation of PAK1 at Thr-212. At DIV-5, PbTx-2 induced increases in dendritic protrusion density, p-cofilin levels, and F-actin throughout the dendritic arbor and soma. Moreover, PbTx-2 increased miniature excitatory post-synaptic currents (mEPSCs). These data suggest that the stimulation of neurite outgrowth, spinogenesis, and synapse formation produced by PbTx-2 are mediated by GluN2B and PAK1 signaling.


Asunto(s)
Neuronas , Receptores de N-Metil-D-Aspartato , Quinasas p21 Activadas , Factores Despolimerizantes de la Actina/metabolismo , Actinas/metabolismo , Animales , Calcio/metabolismo , Toxinas Marinas , Ratones , N-Metilaspartato , Proyección Neuronal , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Oxocinas , ARN Interferente Pequeño/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sodio/metabolismo , Agonistas de los Canales de Sodio/metabolismo , Canales de Sodio Activados por Voltaje/metabolismo , Quinasas p21 Activadas/metabolismo , Proteínas de Unión al GTP rho/metabolismo
6.
Mar Drugs ; 19(3)2021 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-33801270

RESUMEN

The recently characterized single-domain voltage-gated ion channels from eukaryotic protists (EukCats) provide an array of novel channel proteins upon which to test the pharmacology of both clinically and environmentally relevant marine toxins. Here, we examined the effects of the hydrophilic µ-CTx PIIIA and the lipophilic brevetoxins PbTx-2 and PbTx-3 on heterologously expressed EukCat ion channels from a marine diatom and coccolithophore. Surprisingly, none of the toxins inhibited the peak currents evoked by the two EukCats tested. The lack of homology in the outer pore elements of the channel may disrupt the binding of µ-CTx PIIIA, while major structural differences between mammalian sodium channels and the C-terminal domains of the EukCats may diminish interactions with the brevetoxins. However, all three toxins produced significant negative shifts in the voltage dependence of activation and steady state inactivation, suggesting alternative and state-dependent binding conformations that potentially lead to changes in the excitability of the phytoplankton themselves.


Asunto(s)
Conotoxinas/farmacología , Toxinas Marinas/farmacología , Oxocinas/farmacología , Canales de Sodio Activados por Voltaje/efectos de los fármacos , Diatomeas/metabolismo , Haptophyta/metabolismo , Canales de Sodio Activados por Voltaje/metabolismo
7.
Mar Drugs ; 19(7)2021 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-34356812

RESUMEN

Ciguatera fish poisoning (CFP) and neurotoxic shellfish poisoning syndromes are induced by the consumption of seafood contaminated by ciguatoxins and brevetoxins. Both toxins cause sensory symptoms such as paresthesia, cold dysesthesia and painful disorders. An intense pruritus, which may become chronic, occurs also in CFP. No curative treatment is available and the pathophysiology is not fully elucidated. Here we conducted single-cell calcium video-imaging experiments in sensory neurons from newborn rats to study in vitro the ability of Pacific-ciguatoxin-2 (P-CTX-2) and brevetoxin-1 (PbTx-1) to sensitize receptors and ion channels, (i.e., to increase the percentage of responding cells and/or the response amplitude to their pharmacological agonists). In addition, we studied the neurotrophin release in sensory neurons co-cultured with keratinocytes after exposure to P-CTX-2. Our results show that P-CTX-2 induced the sensitization of TRPA1, TRPV4, PAR2, MrgprC, MrgprA and TTX-r NaV channels in sensory neurons. P-CTX-2 increased the release of nerve growth factor and brain-derived neurotrophic factor in the co-culture supernatant, suggesting that those neurotrophins could contribute to the sensitization of the aforementioned receptors and channels. Our results suggest the potential role of sensitization of sensory receptors/ion channels in the induction or persistence of sensory disturbances in CFP syndrome.


Asunto(s)
Intoxicación por Ciguatera , Ciguatoxinas/farmacología , Toxinas Marinas/farmacología , Oxocinas/farmacología , Células Receptoras Sensoriales/efectos de los fármacos , Animales , Animales Recién Nacidos , Organismos Acuáticos , Modelos Animales , Océano Pacífico , Dolor/metabolismo , Prurito/metabolismo , Ratas , Ratas Wistar
8.
Mar Drugs ; 18(7)2020 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-32708077

RESUMEN

Emerging literature suggests that after a stroke, the peri-infarct region exhibits dynamic changes in excitability. In rodent stroke models, treatments that enhance excitability in the peri-infarct cerebral cortex promote motor recovery. This increase in cortical excitability and plasticity is opposed by increases in tonic GABAergic inhibition in the peri-infarct zone beginning three days after a stroke in a mouse model. Maintenance of a favorable excitatory-inhibitory balance promoting cerebrocortical excitability could potentially improve recovery. Brevetoxin-2 (PbTx-2) is a voltage-gated sodium channel (VGSC) gating modifier that increases intracellular sodium ([Na+]i), upregulates N-methyl-D-aspartate receptor (NMDAR) channel activity and engages downstream calcium (Ca2+) signaling pathways. In immature cerebrocortical neurons, PbTx-2 promoted neuronal structural plasticity by increasing neurite outgrowth, dendritogenesis and synaptogenesis. We hypothesized that PbTx-2 may promote excitability and structural remodeling in the peri-infarct region, leading to improved functional outcomes following a stroke. We tested this hypothesis using epicortical application of PbTx-2 after a photothrombotic stroke in mice. We show that PbTx-2 enhanced the dendritic arborization and synapse density of cortical layer V pyramidal neurons in the peri-infarct cortex. PbTx-2 also produced a robust improvement of motor recovery. These results suggest a novel pharmacologic approach to mimic activity-dependent recovery from stroke.


Asunto(s)
Corteza Cerebral/efectos de los fármacos , Agonistas de Aminoácidos Excitadores/administración & dosificación , Toxinas Marinas/administración & dosificación , Actividad Motora/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Oxocinas/administración & dosificación , Accidente Cerebrovascular Trombótico/tratamiento farmacológico , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Corteza Cerebral/fisiopatología , Modelos Animales de Enfermedad , Inyecciones , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Ratones Transgénicos , Recuperación de la Función , Accidente Cerebrovascular Trombótico/metabolismo , Accidente Cerebrovascular Trombótico/patología , Accidente Cerebrovascular Trombótico/fisiopatología
9.
J Phycol ; 55(1): 47-59, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30239000

RESUMEN

Brevetoxin (PbTx) is a neurotoxic secondary metabolite of the dinoflagellate Karenia brevis. We used a novel, fluorescent BODIPY-labeled conjugate of brevetoxin congener PbTx-2 (B-PbTx) to track absorption of the metabolite into a variety of marine microbes. The labeled toxin was taken up and brightly fluoresced in lipid-rich regions of several marine microbes including diatoms and coccolithophores. The microzooplankton (20-200 µm) tintinnid ciliate Favella sp. and the rotifer Brachionus rotundiformis also took up B-PbTx. Uptake and intracellular fluorescence of B-PbTx was weak or undetectable in phytoplankton species representative of dinoflagellates, cryptophytes, and cyanobacteria over the same (4 h) time course. The cellular fate of two additional BODIPY-conjugated K. brevis associated secondary metabolites, brevenal (B-Bn) and brevisin (B-Bs), were examined in all the species tested. All taxa exhibited minimal or undetectable fluorescence when exposed to the former conjugate, while most brightly fluoresced when treated with the latter. This is the first study to observe the uptake of fluorescently-tagged brevetoxin conjugates in non-toxic phytoplankton and zooplankton taxa, demonstrating their potential in investigating whether marine microbes can serve as a significant biological sink for algal toxins. The highly variable uptake of B-PbTx observed among taxa suggests some may play a more significant role than others in vectoring lipophilic toxins in the marine environment.


Asunto(s)
Dinoflagelados , Oxocinas
10.
Dis Aquat Organ ; 132(2): 109-124, 2019 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-30628577

RESUMEN

Data on Karenia brevis red tides (≥105 cells l-1) and on dead or debilitated (i.e. stranded) Kemp's ridleys Lepidochelys kempii, loggerheads Caretta caretta, green turtles Chelonia mydas, hawksbills Eretmochelys imbricata, and leatherbacks Dermochelys coriacea documented in Florida during 1986-2013 were evaluated to assess red tides as a sea turtle mortality factor. Unusually large numbers of stranded sea turtles were found coincident with red tides primarily along Florida's Gulf coast but also along a portion of Florida's Atlantic coast. These strandings were mainly adult and large immature loggerheads and Kemp's ridleys, and small immature green turtles and hawksbills. Unusually large numbers of stranded leatherbacks never coincided with red tide. For the 3 most common species, results of stranding data modeling, and of investigations that included determining brevetoxin concentrations in samples collected from stranded turtles, all indicated that red tides were associated with greater and more frequent increases in the numbers of stranded loggerheads and Kemp's ridleys than in the number of stranded green turtles. The mean annual number of stranded sea turtles attributed to K. brevis red tide was 80 (SE = 21.6, range = 2-338). Considering typical stranding probabilities, the overall mortality was probably 5-10 times greater. Red tide accounted for a substantial portion of all stranded loggerheads (7.1%) and Kemp's ridleys (17.7%), and a smaller portion of all stranded green turtles (1.6%). Even though K. brevis red tides occur naturally, the mortality they cause needs to be considered when managing these threatened and endangered species.


Asunto(s)
Dinoflagelados , Tortugas , Animales , Florida , Floraciones de Algas Nocivas
11.
J Zoo Wildl Med ; 50(1): 33-44, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31120660

RESUMEN

Harmful algal blooms (HABs) occur when excess nutrients allow dinoflagellates to reproduce in large numbers. Marine animals are affected by blooms when algal toxins are ingested or inhaled. In the Gulf of Mexico, near annual blooms of Karenia brevis release a suite of compounds (brevetoxins) that cause sea turtle morbidity and mortality. The primary treatment at rehabilitation facilities for brevetoxin-exposed sea turtles is supportive care, and it has been difficult to design alternative treatment strategies without an understanding of the effects of brevetoxins in turtles in vivo. Previous studies using the freshwater turtle as a model species showed that brevetoxin-3 impacts the nervous and muscular systems, and is detoxified and eliminated primarily through the liver, bile, and feces. In this study, freshwater turtles (Trachemys scripta) were exposed to brevetoxin (PbTx-3) intratracheally at doses causing clear systemic effects, and treatment strategies aimed at reducing the postexposure neurological and muscular deficits were tested. Brevetoxin-exposed T. scripta displayed the same behaviors as animals admitted to rehabilitation centers for toxin exposure, ranging from muscle twitching and incoordination to paralysis and unresponsiveness. Two treatment regimes were tested: cholestyramine, a bile acid sequestrant; and an intravenous lipid emulsion treatment (Intralipidt) that provides an expanded circulating lipid volume. Cholestyramine was administered orally 1 hr and 6 hr post PbTx-3 exposure, but this regime failed to increase toxin clearance. Animals treated with Intralipid (100 mg/kg) 30 min after PbTx-3 exposure had greatly reduced symptoms of brevetoxicosis within the first 2 hr compared with animals that did not receive the treatment, and appeared fully recovered within 24 hr compared with toxin-exposed control animals that did not receive Intralipid. The results strongly suggest that Intralipid treatment for lipophilic toxins such as PbTx-3 has the potential to reduce morbidity and mortality in HAB-exposed sea turtles.


Asunto(s)
Emulsiones Grasas Intravenosas/uso terapéutico , Toxinas Marinas/toxicidad , Neurotoxinas/toxicidad , Oxocinas/toxicidad , Intoxicación/veterinaria , Sustancias Protectoras/uso terapéutico , Tortugas/fisiología , Animales , Resina de Colestiramina/uso terapéutico , Intoxicación/tratamiento farmacológico
12.
Toxicol Appl Pharmacol ; 329: 58-66, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28551108

RESUMEN

Karenia brevis, the Florida red tide dinoflagellate produces a suite of neurotoxins known as the brevetoxins. The most abundant of the brevetoxins PbTx-2, was found to inhibit the thioredoxin-thioredoxin reductase system, whereas the PbTx-3 has no effect on this system. On the other hand, PbTx-2 activates the reduction of small disulfides such as 5,5'-dithio-bis-(2-nitrobenzoic acid) by thioredoxin reductase. PbTx-2 has an α, ß-unsaturated aldehyde moiety which functions as an efficient electrophile and selenocysteine conjugates are readily formed. PbTx-2 blocks the inhibition of TrxR by the inhibitor curcumin, whereas curcumin blocks PbTx-2 activation of TrxR. It is proposed that the mechanism of inhibition of thioredoxin reduction is via the formation of a Michael adduct between selenocysteine and the α, ß-unsaturated aldehyde moiety of PbTx-2. PbTx-2 had no effect on the rates of reactions catalyzed by related enzymes such as glutathione reductase, glutathione peroxidase or glutaredoxin.


Asunto(s)
Inhibidores Enzimáticos/toxicidad , Toxinas Marinas/toxicidad , Oxocinas/toxicidad , Tiorredoxina Reductasa 1/antagonistas & inhibidores , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Curcumina/farmacología , Relación Dosis-Respuesta a Droga , Humanos , Peroxidación de Lípido/efectos de los fármacos , Oxidación-Reducción , Dominios Proteicos , Ratas , Selenocisteína , Tiorredoxina Reductasa 1/química , Tiorredoxina Reductasa 1/metabolismo , Factores de Tiempo
13.
Mar Drugs ; 15(7)2017 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-28726749

RESUMEN

Ciguatoxins (CTX) and brevetoxins (BTX) are polycyclic ethereal compounds biosynthesized by the worldwide distributed planktonic and epibenthic dinoflagellates of Gambierdiscus and Karenia genera, correspondingly. Ciguatera, evoked by CTXs, is a type of ichthyosarcotoxism, which involves a variety of gastrointestinal and neurological symptoms, while BTXs cause so-called neurotoxic shellfish poisoning. Both types of toxins are reviewed together because of similar mechanisms of their action. These are the only molecules known to activate voltage-sensitive Na⁺-channels in mammals through a specific interaction with site 5 of its α-subunit and may compete for it, which results in an increase in neuronal excitability, neurotransmitter release and impairment of synaptic vesicle recycling. Most marine ciguatoxins potentiate Nav channels, but a considerable number of them, such as gambierol and maitotoxin, have been shown to affect another ion channel. Although the extrinsic function of these toxins is probably associated with the function of a feeding deterrent, it was suggested that their intrinsic function is coupled with the regulation of photosynthesis via light-harvesting complex II and thioredoxin. Antagonistic effects of BTXs and brevenal may provide evidence of their participation as positive and negative regulators of this mechanism.


Asunto(s)
Intoxicación por Ciguatera/metabolismo , Toxinas Marinas/metabolismo , Oxocinas/metabolismo , Canales de Potasio con Entrada de Voltaje/metabolismo , Animales , Ciguatoxinas/metabolismo , Dinoflagelados/metabolismo , Humanos , Ligandos
14.
Chembiochem ; 16(7): 1060-7, 2015 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-25825240

RESUMEN

The brevetoxins are neurotoxins that are produced by the "Florida red tide" dinoflagellate Karenia brevis. They bind to and activate the voltage-gated sodium channels in higher organisms, specifically the Nav 1.4 and Nav 1.5 channel subtypes. However, the native physiological function that the brevetoxins perform for K. brevis is unknown. By using fluorescent and photoactivatable derivatives, brevetoxin was shown to localize to the chloroplast of K. brevis where it binds to the light-harvesting complex II (LHCII) and thioredoxin. The LHCII is essential to non-photochemical quenching (NPQ), whereas thioredoxins are critical to the maintenance of redox homeostasis within the chloroplast and contribute to the scavenging of reactive oxygen. A culture of K. brevis producing low levels of toxin was shown to be deficient in NPQ and produced reactive oxygen species at twice the rate of the toxic culture, implicating a role in NPQ for the brevetoxins.


Asunto(s)
Dinoflagelados/citología , Dinoflagelados/metabolismo , Complejos de Proteína Captadores de Luz/metabolismo , Toxinas Marinas/metabolismo , Neurotoxinas/metabolismo , Oxocinas/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Tilacoides/metabolismo , Transporte Biológico , Fotosíntesis , Unión Proteica , Especies Reactivas de Oxígeno/metabolismo
15.
Harmful Algae ; 134: 102609, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38705612

RESUMEN

Modified clay compounds are used globally as a method of controlling harmful algal blooms, and their use is currently under consideration to control Karenia brevis blooms in Florida, USA. In 1400 L mesocosm tanks, chemical dynamics and lethal and sublethal impacts of MC II, a polyaluminum chloride (PAC)-modified kaolinite clay, were evaluated over 72 h on a benthic community representative of Sarasota Bay, which included blue crab (Callinectes sapidus), sea urchin (Lytechinus variegatus), and hard clam (Mercenaria campechiensis). In this experiment, MC II was dosed at 0.2 g L-1 to treat bloom-level densities of K. brevis at 1 × 106 cells L-1. Cell removal in MC II-treated tanks was 57% after 8 h and 95% after 48 h. In the water column, brevetoxin analogs BTx-1 and BTx-2 were found to be significantly higher in untreated tanks at 24 and 48 h, while in MC II-treated tanks, BTx-3 was found to be higher at 48 h and BTx-B5 was found to be higher at 24 and 48 h. In MC II floc, we found no significant differences in BTx-1 or BTx-2 between treatments for any time point, while BTx-3 was found to be significantly higher in the MC II-treated tanks at 48 and 72 h, and BTx-B5 was higher in MC II-treated tanks at 24 and 72 h. Among various chemical dynamics observed, it was notable that dissolved phosphorus was consistently significantly lower in MC II tanks after 2 h, and that turbidity in MC II tanks returned to control levels 48 h after treatment. Dissolved inorganic carbon and total seawater alkalinity were significantly reduced in MC II tanks, and partial pressure of CO2 (pCO2) was significantly higher in the MC II-only treatment after 2 h. In MC II floc, particulate phosphorus was found to be significantly higher in MC II tanks after 24 h. In animals, lethal and sublethal responses to MC II-treated K. brevis did not differ from untreated K. brevis for either of our three species at any time point, suggesting MC II treatment at this dosage has negligible impacts to these species within 72 h of exposure. These results appear promising in terms of the environmental safety of MC II as a potential bloom control option, and we recommend scaling up MC II experiments to field trials in order to gain deeper understanding of MC II performance and dynamics in natural waters.


Asunto(s)
Hidróxido de Aluminio , Dinoflagelados , Floraciones de Algas Nocivas , Toxinas Marinas , Animales , Dinoflagelados/efectos de los fármacos , Dinoflagelados/fisiología , Dinoflagelados/química , Arcilla/química , Bivalvos/fisiología , Bivalvos/efectos de los fármacos , Erizos de Mar/fisiología , Erizos de Mar/efectos de los fármacos , Florida , Braquiuros/fisiología , Braquiuros/efectos de los fármacos , Mercenaria/efectos de los fármacos , Mercenaria/fisiología , Silicatos de Aluminio/farmacología , Silicatos de Aluminio/química
16.
J Chromatogr A ; 1720: 464795, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38490144

RESUMEN

An accurate and efficient method was developed for the determination of azaspiracid shellfish toxins (azaspiracids-1, -2, and -3), neurotoxic shellfish toxins (brevetoxins-2 and -3), diarrhetic shellfish toxins (okadaic acid and dinophysistoxins-1 and -2), and the amnesic shellfish toxin (domoic acid) in mussels (Mytilus galloprovincialis). Lipophilic marine biotoxins (azaspiracids, brevetoxins, and okadaic acid group) were extracted with 0.5 % acetic acid in methanol under heating at 60°C to improve the extraction efficiency of okadaic acid group toxins and then cleaned up with a C18 solid-phase extraction cartridge. Domoic acid was extracted with 50 % aqueous methanol and then cleaned up with a graphitized carbon solid-phase extraction cartridge. Lipophilic marine biotoxins and domoic acid were quantified by reversed-phase liquid chromatography coupled to electrospray ionization tandem mass spectrometry. The developed method had insignificant matrix effects for the nine analytes and good recoveries in the range of 79.0 % to 97.6 % at three spiking levels for all analytes except brevetoxin-2 (43.8-49.8 %). The developed method was further validated by analyzing mussel tissue certified reference materials, and good agreement was observed between certified and determined values.


Asunto(s)
Bivalvos , Ácido Kaínico/análogos & derivados , Oxocinas , Toxinas Poliéteres , Compuestos de Espiro , Espectrometría de Masas en Tándem , Animales , Ácido Ocadaico/análisis , Espectrometría de Masas en Tándem/métodos , Cromatografía de Fase Inversa , Metanol , Cromatografía Liquida/métodos , Mariscos/análisis , Toxinas Marinas/análisis , Bivalvos/química , Extracción en Fase Sólida
17.
Harmful Algae ; 133: 102596, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38485444

RESUMEN

OBJECTIVE: The study objective was to evaluate the association between Karenia brevis (K. brevis) exposure during pregnancy and the prevalence of biliary atresia (BA) in offspring. STUDY DESIGN: This was a hospital-based, case-control study in which cases were infants diagnosed with BA at Johns Hopkins All Children's Hospital from October 2001 to December 2019. Cases were matched 1:4 by age to controls who were randomly selected from a pool of healthy infants hospitalized during the study period for common pediatric diagnoses. Infants were excluded if they had congenital anomalies and/or were non-Florida residents. Gestational K. brevis exposure levels (cells/liter) were determined from Florida Fish and Wildlife Conservation Commission exposure data at 10- and 50 mile radii from the mother's zip code of residence. Multivariable conditional logistic regression determined odds of BA in offspring in relation to maternal gestational K. brevis exposure adjusted for infant sex, race/ethnicity, coastal residence, and seasonality. RESULTS: Of 38 cases and 152 controls, no significant inter-group differences were observed for infant race/ethnicity, season of birth, or coastal residence. Median gestational exposure at the 10 mile radius was 0 cells/liter in both groups. A greater proportion of cases had no gestational K. brevis exposure (63.2 %, n = 24) in comparison to controls (37.5 %, n = 57; p = .04) at a 10 mile radius. At a 50 mile radius, cases had a peak median exposure at 6 months of gestation compared to controls' peak at 9 months. After adjustment for sex, seasonality, race/ethnicity, and coastal residence, there was no significant association between BA and maximum K. brevis exposure per trimester of pregnancy observed at a 10- or 50 mile radius. CONCLUSION: In this matched case-control study, we observed no association between gestational K. brevis (cells/liter) exposure at a 10- or 50 mile radius from maternal zip code of residence and BA in offspring.


Asunto(s)
Atresia Biliar , Dinoflagelados , Animales , Humanos , Lactante , Atresia Biliar/epidemiología , Estudios de Casos y Controles , Florida , Floraciones de Algas Nocivas , Toxinas Marinas , Distribución Aleatoria
18.
Animals (Basel) ; 14(7)2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38612230

RESUMEN

This review summarizes the current understanding of how brevetoxins, produced by Karenia brevis during harmful algal blooms, impact sea turtle health. Sea turtles may be exposed to brevetoxins through ingestion, inhalation, maternal transfer, and potentially absorption through the skin. Brevetoxins bind to voltage-gated sodium channels in the central nervous system, disrupting cellular function and inducing neurological symptoms in affected sea turtles. Moreover, the current evidence suggests a broader and longer-term impact on sea turtle health beyond what is seen during stranding events. Diagnosis relies on the detection of brevetoxins in tissues and plasma from stranded turtles. The current treatment of choice, intravenous lipid emulsion therapy, may rapidly reduce symptoms and brevetoxin concentrations, improving survival rates. Monitoring, prevention, and control strategies for harmful algal blooms are discussed. However, as the frequency and severity of blooms are expected to increase due to climate change and increased environmental pollution, continued research is needed to better understand the sublethal effects of brevetoxins on sea turtles and the impact on hatchlings, as well as the pharmacokinetic mechanisms underlying brevetoxicosis. Moreover, research into the optimization of treatments may help to protect endangered sea turtle populations in the face of this growing threat.

19.
Harmful Algae ; 26: 12-19, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23789024

RESUMEN

Brevetoxins are a family of ladder-frame polyether toxins produced by the marine dinoflagellate Karenia brevis. During blooms of K. brevis, inhalation of brevetoxins aerosolized by wind and wave action can lead to asthma-like symptoms in persons at the beach. Consumption of either shellfish or finfish contaminated by K. brevis blooms can lead to the development of neurotoxic shellfish poisoning. The toxic effects of brevetoxins are due to binding at a defined site on, and subsequent activation of, voltage-sensitive sodium channels (VSSCs) in cell membranes (site 5). In addition to brevetoxins, K. brevis produces several other ladder-frame compounds. One of these compounds, brevenal, has been shown to antagonize the effects of brevetoxin. In an effort to further characterize to effects of brevenal, a radioactive analog ([3H]-brevenol) was produced by reducing the side-chain terminal aldehyde moiety of brevenal to an alcohol using tritiated sodium borohydride. A KD of 67 nM and Bmax of 7.1 pmol/mg protein were obtained for [3H]-brevenol in rat brain synaptosomes, suggesting a 1:1 matching with VSSCs. Brevenal and brevenol competed for [3H]-brevenol binding with Ki values of 75 nM and 56 nM, respectively. However, although both brevenal and brevenol can inhibit brevetoxin binding, brevetoxin was completely ineffective at competition for [3H]-brevenol binding. After examining other site-specific compounds, it was determined that [3H]-brevenol binds to a site that is distinct from the other known sites including the brevetoxin site (site 5) although some interaction with site 5 is apparent.

20.
Biomed Environ Sci ; 26(5): 346-64, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23611128

RESUMEN

OBJECTIVE: To develop an ICR (female) mouse bioassay (MBA) for toxicity confirmation and evaluation of neurotoxins (brevetoxins)-contaminated shellfish. METHODS: Brevetoxins (BTX-B) as a causative agent of neurotoxic shellfish poisoning (NSP) under different shellfish matrices were intraperitoneally injected at different doses into mice to study their toxic effects and to differentiate the range of lethal and sublethal dosages. Their sensitivity and specificity were analyzed with 2 competitive ELISA kits for quantitative determination of standard BTX-B and dihydroBTX-B under different shellfish matrix-diluent combinations. Detection rates of MBA and two antibody-based assays for BTX-B from field NSP-positive shellfish samples were compared. RESULTS: BTX-B could be detected in shellfish tissues at concentration of 50-400 µg/100 g under shellfish matrix-Tween-saline media, which were appropriate to identify toxic shellfish at or above the regulatory limit (80 µg/100 g shellfish tissues). The LD50 identified was 455 mg/kg for BTX-B under general shellfish matrices (excluding oyster matrices) dissolved in Tween-saline. The presence of shellfish matrices, of oyster matrices in particular, retarded the occurrence of death and toxicity presentation in mice. Two antibody-based assays, even in the presence of different shellfish matrix-diluent combinations, showed acceptable results in quantifying BTX-B and dihydroBTX-B well below the regulatory limit. CONCLUSION: The two ELISA analyses agree favorably (correlation coefficient, r³â‹0.96; Student's t-tests, P>0.05) with the developed bioassay.


Asunto(s)
Toxinas Marinas/toxicidad , Oxocinas/toxicidad , Mariscos/análisis , Animales , Bioensayo , Calibración , Femenino , Ratones , Ratones Endogámicos ICR
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda