Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Mycorrhiza ; 34(4): 317-339, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38836935

RESUMEN

Broussonetia papyrifera is widely found in cadmium (Cd) contaminated areas, with an inherent enhanced flavonoids metabolism and inhibited lignin biosynthesis, colonized by lots of symbiotic fungi, such as arbuscular mycorrhizal fungi (AMF). However, the physiological and molecular mechanisms by which Rhizophagus irregularis, an AM fungus, regulates flavonoids and lignin in B. papyrifera under Cd stress remain unclear. Here, a pot experiment of B. papyrifera inoculated and non-inoculated with R. irregularis under Cd stress was carried out. We determined flavonoids and lignin concentrations in B. papyrifera roots by LC-MS and GC-MS, respectively, and measured the transcriptional levels of flavonoids- or lignin-related genes in B. papyrifera roots, aiming to ascertain the key components of flavonoids or lignin, and key genes regulated by R. irregularis in response to Cd stress. Without R. irregularis, the concentrations of eriodictyol, quercetin and myricetin were significantly increased under Cd stress. The concentrations of eriodictyol and genistein were significantly increased by R. irregularis, while the concentration of rutin was significantly decreased. Total lignin and lignin monomer had no alteration under Cd stress or with R. irregularis inoculation. As for flavonoids- or lignin-related genes, 26 genes were co-regulated by Cd stress and R. irregularis. Among these genes, BpC4H2, BpCHS8 and BpCHI5 were strongly positively associated with eriodictyol, indicating that these three genes participate in eriodictyol biosynthesis and were involved in R. irregularis assisting B. papyrifera to cope with Cd stress. This lays a foundation for further research revealing molecular mechanisms by which R. irregularis regulates flavonoids synthesis to enhance tolerance of B. papyrifera to Cd stress.


Asunto(s)
Cadmio , Flavonoides , Raíces de Plantas , Flavonoides/metabolismo , Cadmio/metabolismo , Raíces de Plantas/microbiología , Raíces de Plantas/metabolismo , Lignina/metabolismo , Morus/microbiología , Morus/metabolismo , Morus/genética , Estrés Fisiológico , Broussonetia/metabolismo , Broussonetia/microbiología , Broussonetia/genética , Micorrizas/fisiología , Glomeromycota/fisiología , Regulación de la Expresión Génica de las Plantas , Contaminantes del Suelo/metabolismo , Hongos
2.
J Sci Food Agric ; 104(6): 3543-3558, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38146051

RESUMEN

BACKGROUND: The high fibre content of whole plants of Broussonetia papyrifera limits its efficient utilization. Ferulic acid esterase (FAE), in combination with xylanase, can effectively cleave the lignin-carbohydrate complex, promoting the function of cellulase. However, little is known about the impact of these additives on silage. To effectively utilize natural woody plant resources, FAE-producing Lactiplantibacillus plantarum RO395, xylanase (XY) and cellulase (CE) were used to investigate the dynamic fermentation characteristics, fibre and nitrogen components and microbial community structure during B. papyrifera ensiling. RESULTS: Broussonetia papyrifera was either not treated (CK) or treated with FAE-producing lactic acid bacteria (LP), CE, XY, LP + CE, LP + XY or LP + CE + XY for 3, 7, 15, 30 or 60 days, respectively. In comparison with those in the CK treatment, the L. plantarum and enzyme treatments (LP + CE, LP + XY and LP + XY + CE), especially the LP + XY + CE treatment, significantly increased the lactic acid concentration and decreased the pH and the contents of acid detergent insoluble protein and NH3 -N (P < 0.05). Enzyme addition improved the degradation efficiency of lignocellulose, and a synergistic effect was observed after enzyme treatment in combination with LP; in addition, the lowest acid detergent fibre, neutral detergent fibre, hemicellulose and cellulose contents were detected after the LP + CE + XY treatment (P < 0.05). Moreover, CE, XY and LP additions significantly improved the microbial community structure, increased the relative abundance of Lactiplantibacillus and Firmicutes, and effectively inhibited undesirable bacterial (Enterobacter) growth during ensiling. CONCLUSION: FAE-producing L. plantarum and the two tested enzymes exhibited synergistic effects on improving the quality of silage, which indicates that this combination can serve as an efficient method for improved B. papyrifera silage utilization. © 2023 Society of Chemical Industry.


Asunto(s)
Broussonetia , Hidrolasas de Éster Carboxílico , Celulasa , Lactobacillales , Microbiota , Lactobacillales/metabolismo , Fermentación , Celulasa/metabolismo , Broussonetia/metabolismo , Nitrógeno , Detergentes , Carbohidratos , Ensilaje/análisis
3.
BMC Plant Biol ; 23(1): 574, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-37978431

RESUMEN

BACKGROUND: Broussonetia papyrifera (L.) L'Hér. ex Vent. has the characteristics of strong stress resistance, high crude protein content, and pruning tolerance. It is an ecological, economic, and medicinal plant. Polyploid plants usually perform better than their corresponding diploid plants in terms of nutrients, active substances, and stress resistance. RESULTS: In this study, the leaves, calli, and seeds of diploid B. papyrifera were used for tetraploid induction by colchicine. The induction effect of colchicine on B. papyrifera was summarized through the early morphology, chromosome count and flow cytometry. It was concluded that the best induction effect (18.6%) was obtained when the leaves of B. papyrifera were treated in liquid MS (Murashige and Skoog) medium containing 450 mg·L-1 colchicine for 3 d. The comparative analysis of the growth characteristics of diploid and tetraploid B. papyrifera showed that tetraploid B. papyrifera has larger ground diameter, larger stomata, thicker palisade tissue and thicker sponge tissue than diploid B. papyrifera. In addition, the measurement of photosynthetic features also showed that tetraploids had higher chlorophyll content and higher photosynthetic rates. CONCLUSION: This study showed that tetraploid B. papyrifera could be obtained by treating leaves, callus and seeds with liquid and solid colchicine, but the induction efficiency was different. Moreover, there were differences in stomata, leaf cell structure and photosynthetic features between tetraploid B. papyrifera and its corresponding diploid. The induced tetraploid B. papyrifera can provide a technical basis and breeding material for the creation of B. papyrifera germplasm resources in the future.


Asunto(s)
Broussonetia , Morus , Tetraploidía , Broussonetia/genética , Colchicina/farmacología , Fitomejoramiento
4.
Biotechnol Lett ; 45(1): 13-31, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36357714

RESUMEN

Most of the currently available disease resistance (R) genes have NBS (nucleotide-binding site) and LRR (leucine-rich-repeat) domain which belongs to the NBS-LRR gene family. The whole genome sequencing of Broussonetia papyrifera provides an important bioinformatics database for the study of the NBS-LRR gene family. In this study, 328 NBS-LRR family genes were identified and classified in B. papyrifera according to different classification schemes, where there are 92 N types, 47 CN type, 54 CNL type, 29 NL types, 55 TN type, and 51 TNL type. Subsequently, we conducted bioinformatics analysis of the NBS-LRR gene family. Classification, motif analysis of protein sequences, and phylogenetic tree studies of the NBS-LRR genes in B. papyrifera provide important basis for the functional study of NBS-LRR family genes. Additionally, we performed structural analysis of the chromosomal location, physicochemical properties, and sequences identified by genetic characterization. In addition, through the analysis of GO enrichment, it was found that NBS-LRR genes were involved in defense responses and were significantly enriched in biological stimulation, immune response, and abiotic stress. In addition, we found that Bp06g0955 was the most sensitive to low temperature and encoded the RPM1 protein by analyzing the low temperature transcriptome data of B. papyrifera. Quantitative results of gene expression after 48 h of Fusarium infection showed that Bp01g3293 increased 14 times after infection, which encodes RPM1 protein. The potential of NBS-LRR gene responsive to biotic and abiotic stresses can be exploited to improve the resistance of B. papyrifera.


Asunto(s)
Broussonetia , Filogenia , Proteínas/genética , Sitios de Unión/genética , Biología Computacional
5.
Lett Appl Microbiol ; 76(4)2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-36977573

RESUMEN

In this research, we evaluated the effect of exogenous lactic acid bacteria and Amomum villosum essential oil (AVEO) on the chemical composition, microbial community composition, microbial functional diversity, and fermentation quality of Broussonetia papyrifera (BP) and Pennisetum sinese (PS) mixed silages. The BP:PS mixing ratios were 100:0, 70:30, 50:50, 30:70, and 0:100. After 3 and 30 days of ensiling at 22°C-25°C, microbial diversity and function, and fermentation quality, were assessed. Increasing PS content resulted in decreased ammoniacal nitrogen and pH, increased water-soluble carbohydrate content, increased relative abundance of Lactococcus and Acinetobacter, and reduced relative abundance of Caproiciproducens and Pseudomonas. A 50:50 BP:PS ratio effectively improved the fermentation quality compared to anaerobic fermentation with BP or PS alone, while AVEO treatment further improved fermentation quality by increasing Lactococcus relative abundance. Moreover, as fermentation proceeded, ensiling enhanced the 'Human diseases', 'Environmental information processing', and 'Cellular processes' functions at the first level, as well as the 'Two-component system' and 'ABC transporters' functions at the third level. Different additives affected the fermentation of BP and PS mixed silage by regulating microbial community succession and metabolic pathways during ensiling.


Asunto(s)
Broussonetia , Lactobacillales , Pennisetum , Zingiberaceae , Humanos , Fermentación , Pennisetum/microbiología , Ensilaje/microbiología
6.
Int J Mol Sci ; 24(20)2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37894768

RESUMEN

Real-time quantitative PCR (RT-qPCR) has a high sensitivity and strong specificity, and is widely used in the analysis of gene expression. Selecting appropriate internal reference genes is the key to accurately analyzing the expression changes of target genes by RT-qPCR. To find out the most suitable internal reference genes for studying the gene expression in Broussonetia papyrifera under abiotic stresses (including drought, salt, and ZnSO4 treatments), seven different tissues of B. papyrifera, as well as the roots, stems, and leaves of B. papyrifera under the abiotic stresses were used as test materials, and 15 candidate internal reference genes were screened based on the transcriptome data via RT-qPCR. Then, the expression stability of the candidate genes was comprehensively evaluated through the software geNorm (v3.5), NormFinder (v0.953), BestKeeper (v1.0), and RefFinder. The best internal reference genes and their combinations were screened out according to the analysis results. rRNA and Actin were the best reference genes under drought stress. Under salt stress, DOUB, HSP, NADH, and rRNA were the most stable reference genes. Under heavy metal stress, HSP and NADH were the most suitable reference genes. EIF3 and Actin were the most suitable internal reference genes in the different tissues of B. papyrifera. In addition, HSP, rRNA, NADH, and UBC were the most suitable internal reference genes for the abiotic stresses and the different tissues of B. papyrifera. The expression patterns of DREB and POD were analyzed by using the selected stable and unstable reference genes. This further verified the reliability of the screened internal reference genes. This study lays the foundation for the functional analysis and regulatory mechanism research of genes in B. papyrifera.


Asunto(s)
Broussonetia , Broussonetia/genética , Cloruro de Sodio/farmacología , Genes de Plantas , Reproducibilidad de los Resultados , Actinas/genética , NAD/genética , Estrés Fisiológico/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Estándares de Referencia , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas
7.
J Environ Manage ; 347: 119096, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37774661

RESUMEN

Both manganese-slag and sewage sludge are typical solid wastes, but their utilization is limited. Based on the soil properties, the abovementioned pollutants were combined with Broussonetia papyrifera to treat soil cadmium (Cd) pollution. Three materials (sewage sludge-derived biochar (SSB), Mn-SSB, and Mn-slag (Slag)) were prepared using oxygen-limited pyrolysis technology with Slag and sewage sludge, and the effects of the three materials on the phytoremediation of Cd-polluted soil were investigated. All three materials had distinct morphological characteristics, good functional group structure, specific surface area, and porosity. The adsorption and leaching experiments in the solution indicated that the three materials could not only directly absorb Cd2+ but also release nutrients, such as nitrogen and phosphorus. The soil pH increased significantly (p < 0.05) with the addition of the above environmental remediation materials. Furthermore, the contents of soil organic carbon, available nitrogen, and available phosphorus in soil increased significantly, whereas the electrical conductivity of the soil decreased significantly (p < 0.05). During remediation of Cd-polluted soil by integrating the above materials with B. papyrifera, Slag significantly increased the B. papyrifera biomass, but the effects of SSB and Mn-SSB were not significant. SSB, Mn-SSB, and Slag significantly increased the protein content of B. papyrifera leaves, with Mn-SSB having the most significant effect (p < 0.05). The applications of SSB, Mn-SSB, and Slag reduced the malondialdehyde content and increased the activities of superoxide dismutase and peroxidase, reducing the damage to B. papyrifera. Mn-SSB significantly reduced the Cd content in the roots, stems, and leaves of B. papyrifera, and SSB and Slag promoted Cd enrichment in B. papyrifera. This study realized the comprehensive utilization of Mn-slag and sewage sludge and established a recycling system from solid waste to the treatment of waste soil.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Cadmio/química , Manganeso , Aguas del Alcantarillado/química , Carbono , Contaminantes del Suelo/análisis , Suelo/química , Biodegradación Ambiental , Nitrógeno , Fósforo , Metales Pesados/análisis
8.
Int J Syst Evol Microbiol ; 70(12): 6458-6467, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33174827

RESUMEN

Two novel actinobacteria, designated strains GY16T and T44T, were isolated from the leaves and rhizosphere soil of Broussonetia papyrifera, respectively. A polyphasic approach was used for determining their taxonomic position. Results of 16S rRNA gene sequence analysis indicated that strain GY16T exhibited highest similarities to Streptomyces cinereoruber subsp. fructofermentans CGMCC 4.1593T (98.82 %), Streptomyces deccanensis KCTC 19241T (98.76 %), Streptomyces scabiei NRRL B-16523T (98.69 %), Streptomyces europaeiscabiei KACC 20186T (98.69 %) and Streptomyces rishiriensis NBRC 13407T (98.69 %), and strain T44T showed 99.2, 99.1, 99.1 and <98.7 % sequence similarities to Streptomyces filipinensis CGMCC 4.1452T, Streptomyces achromogenes subsp. achromogenes DSM 40028T, Streptomyces durhamensis DSM 40539T and other Streptomyces species, respectively. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain GY16T formed an independent subclade, which indicated that strain GY16T should belong to a potential novel species; and strain T44T was closely related to S. filipinensis CGMCC 4.1452T, S. achromogenes subsp. achromogenes DSM 40028T, S. durhamensis DSM 40539T and S. yokosukanensis DSM 40224T. However, the multilocus sequence analysis evolutionary distance, average nucleotide identity and DNA-DNA hybridization values between closely related relatives were far from the species-level thresholds. In addition, phenotypic and chemotaxonomic characteristics further confirmed that strains GY16T and T44T belonged to two distinct species. Based on these results, it is concluded that the isolated strains represent novel species within the genus Streptomyces, for which the names Streptomyces phaeolivaceus sp. nov. (type strain GY16T=CICC 24807T=KCTC 49326T) and Streptomyces broussonetiae sp. nov. (type strain T44T=CICC 24819T=JCM 33918T) are proposed.


Asunto(s)
Broussonetia/microbiología , Filogenia , Microbiología del Suelo , Streptomyces/clasificación , Técnicas de Tipificación Bacteriana , Composición de Base , China , ADN Bacteriano/genética , Ácidos Grasos/química , Hibridación de Ácido Nucleico , Hojas de la Planta , ARN Ribosómico 16S/genética , Rizosfera , Análisis de Secuencia de ADN , Streptomyces/aislamiento & purificación
9.
Bioorg Chem ; 104: 104298, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33011537

RESUMEN

Extensive phytochemical analysis of the CHCl3-soluble part of an ethanolic extract of branches and twigs of Broussonetia papyrifera led to the isolation of fourteen compounds, including a novel 5,11-dioxabenzo[b]fluoren-10-one derivative named broussofluorenone C (12). The isolated compounds 1-14 were characterized based on their NMR and HRMS data, and examined for their anti-inflammatory activities in LPS-stimulated THP-1 cells as well as for their cellular antioxidant effects. Compounds 7-10 and 12 showed inhibitory effects on NF-κB/AP-1 activation and compounds 7-9 were subsequently confirmed to suppress the secretion of both IL-1ß and TNF-α in LPS-stimulated THP-1 cells more significantly than the prednisone used as a positive control. In the CAA assay, compound 10 exhibited the greatest antioxidant effect, greater than that of the quercetin used as a positive control. The results show possible beneficial effects and utilization of B. papyrifera wood in the treatment of inflammatory diseases as well as oxidative stress.


Asunto(s)
Antiinflamatorios/farmacología , Antioxidantes/farmacología , Broussonetia/química , Antiinflamatorios/química , Antiinflamatorios/aislamiento & purificación , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Humanos , Interleucina-1beta/antagonistas & inhibidores , Interleucina-1beta/biosíntesis , Lipopolisacáridos/antagonistas & inhibidores , Lipopolisacáridos/farmacología , Estructura Molecular , FN-kappa B/análisis , FN-kappa B/antagonistas & inhibidores , FN-kappa B/biosíntesis , Estrés Oxidativo/efectos de los fármacos , Relación Estructura-Actividad , Células THP-1 , Factor de Transcripción AP-1/análisis , Factor de Transcripción AP-1/antagonistas & inhibidores , Factor de Transcripción AP-1/biosíntesis , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Factor de Necrosis Tumoral alfa/biosíntesis
10.
Asian-Australas J Anim Sci ; 33(5): 732-741, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32054236

RESUMEN

OBJECTIVE: The study was conducted to investigate the effects of Broussonetia papyrifera L.(B. papyrifera) silage on growth performance, serum biochemical parameters, meat quality, and meat amino acids and fatty acids compositions in beef cattle. METHODS: Sixty-four male Angus beef cattle were assigned to 4 groups with 4 pens in each group and 4 beef cattle in each pen, and fed with the total mixed ration supplemented with 0%, 5%, 10%, or 15% B. papyrifera silage for 100 days (control group, 5% group, 10% group and 15% group) separately. RESULTS: Beef cattle had significantly higher final body weight (BW) in 15% group, higher average daily gain (ADG) and dry matter intake (DMI) in 5% group, 10% group and 15% group, and higher feed conversion ratio (FCR) in 10% group and 15% group. Significantly higher blood superoxide dismutase (SOD) concentration was noted in 15% group, higher blood total antioxidant capacity (TAC) in 10% group and 15% group, lower 8-hydroxydeoxyguanosine (8-OHdG) and malondialdehyde (MDA) in 15% group. Meat had lower pH in 15% group, higher Commission International DeI'Eclairage (CIE) L* in 5% group, 10% group, and 15% group, and lower drip loss in 15% group. Greater concentration of meat polyunsaturated fatty acids (PUFA) was observed in 10% group and 15% group, and docosahexaenoic acid (DHA) in 15% group. CONCLUSION: Diet with 15% B. papyrifera silage could improve performance and increase final BW, ADG, DMI, and FCR, enhance the antioxidant functions by decreasing blood 8-OHdG and MDA and increasing blood SOD and TAC, improve the meat quality by lowing pH and drip loss and increasing CIE L*, increase the meat PUFA and DHA concentration. Polyphenols and flavonoids might be the main components responsible for the antioxidant activity and anti-biohydrogenation in the B. papyrifera silage. And B. papyrifera silage could be used as a new feedstuff in beef cattle nutrition.

11.
Artículo en Inglés | MEDLINE | ID: mdl-33528351

RESUMEN

A novel endophytic actinomycete, designated strain Gen 01T, was isolated from the roots of Broussonetia papyrifera and characterized by using a polyphasic approach. The predominant cellular fatty acids were iso-C16 : 0, summed feature 3, iso H-C16 : 1, C16 : 0 and iso-C14 : 0. The polar lipid profile consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol mannosides, phospholipids of unknown structure containing glucosamine inositol, phosphatidylinositol and unidentified phospholipids. The major menaquinone was MK-8 (H4). The DNA G+C content of the genome sequence, consisting of 7 177 725 bp, was 74.5 mol%. Phylogenetic analysis of the full-length 16S rRNA gene sequences showed that strain Gen 01T belongs to the genus Pseudonocardia with the highest sequence similarity to Pseudonocardia petroleophila CGMCC 4.1532T (98.9 %) and lower than 98.7 % similarity to other species of the genus Pseudonocardia with validly published names. The average nucleotide identity and digital DNA-DNAhybridization values between strain Gen 01T and P. petroleophila CGMCC 4.1532T were 84.6 and 30.9 %, respectively. Furthermore, the morphological, physiological and biochemical characteristics were sufficient to categorize strain Gen 01T as being distinct from P. petroleophila CGMCC 4.1532T. Consequently, based on phenotypic and genotypic characteristics, strain Gen 01T represents a novel species of the genus Pseudonocardia, for which the name Pseudonocardia broussonetiae sp. nov. is proposed. The type strain is Gen 01T (=CICC 24820T=JCM 33840T).

12.
Bioorg Chem ; 92: 103233, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31518759

RESUMEN

Broussonetia papyrifera has been used as a diuretic, tonic and suppressor of edema. Bioactivity-guided fractionation and metabolite investigation of root bark extracts of this plant resulted in the isolation and identification of six 1,3-diphenylpropanes (1, 2, 8, 10, 17, 20), flavanone (3), two chalcones (4, 5), five flavans (6, 11, 14-16), dihydroflavonol (7) and five flavonols (9, 12, 13, 18, 19), including five new compounds (5, 7, 8, 19, 20) that inhibit NO production in LPS-induced RAW264.7 cells. The structures of compounds 1-20 were elucidated on the basis of spectroscopic data (1D and 2D NMR, MS, MS/MS, and HRMS). In particular, compounds 3, 5, 7, 12, and 20 exhibited significant inhibitory effects on the NO, iNOS, and pro-inflammatory cytokine (TNF-α and IL-6) production. Therefore, this study suggests that the flavonoid-rich products of B. papyrifera, including the new compounds, could be valuable candidates for the development of pharmaceuticals or functional foods in the prevention and treatment of anti-inflammatory disease.


Asunto(s)
Antiinflamatorios/farmacología , Broussonetia/química , Flavonoides/farmacología , Corteza de la Planta/química , Animales , Antiinflamatorios/aislamiento & purificación , Supervivencia Celular/efectos de los fármacos , Ciclooxigenasa 2/genética , Relación Dosis-Respuesta a Droga , Flavonoides/aislamiento & purificación , Expresión Génica/efectos de los fármacos , Interleucina-6/antagonistas & inhibidores , Lipopolisacáridos , Medicina Tradicional Coreana , Ratones , Estructura Molecular , Óxido Nítrico/antagonistas & inhibidores , Óxido Nítrico Sintasa de Tipo II/genética , Células RAW 264.7 , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores
13.
Appl Microbiol Biotechnol ; 103(9): 3899-3913, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30903216

RESUMEN

Few studies have investigated the effect of environment on the root-associated microbiome, especially for woody plants in their native environment. The roots and rhizosphere soils of a native woody species (Broussonetia papyrifera) sampled across four different climate types in China were used to elucidate the influence of environment on the root-associated microbiome. Our results showed that the B. papyrifera root-associated microbiome contained abundant Proteobacteria and Basidiomycota, especially Pseudomonas and Rhizobium. The root-associated microbiomes were found to be significantly different under different climate types except for the bacterial community in the rhizosphere, and the proportion of bacterial operational taxonomic units (OTUs) shared among different climate types was lower than that of fungi. More than 50% of the total variance between microbiomes could be explained by 15 environmental factors, six of which, especially soil concentration phosphate and nitrate, had a significant effect. This study provided a comprehensive understanding of the root-associated microbiome of B. papyrifera and further confirmed the effect of environment on the root-associated microbiome of B. papyrifera under different climate types, with some exceptions in the rhizobacterial community and fungal OTUs. Our findings advanced knowledge of the effect of environment through an exploration of environmental factors and found that the nitrogen and phosphorus content represented the key factors.


Asunto(s)
Bacterias/aislamiento & purificación , Broussonetia/microbiología , Hongos/aislamiento & purificación , Microbiota , Raíces de Plantas/microbiología , Microbiología del Suelo , Bacterias/clasificación , Bacterias/genética , China , Clima , Ecosistema , Hongos/clasificación , Hongos/genética , Filogenia , Rizosfera
14.
Ecotoxicol Environ Saf ; 181: 18-25, 2019 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-31154116

RESUMEN

Effective phytoremediation of Mn contaminated soil requires the selection of a species with good manganese tolerance. Broussonetia papyrifera is an important economic plant and pioneer species, it could be well adapted to drought and saline-alkali environment. In order to understand the effect of Mn stress on B. papyrifera, the effects of different concentrations of Mn (0-50 mmol/L) stress on the growth, morphology, Mn tolerance and physiological indexes of the plant were explored. The results showed that the biomass, surface area, length, root volume, tips, forks, and crossings of B. papyrifera reached the maximum at the Mn concentration of 1 mmol/L. Mn content in the tissue and TF in plants increased with the increase of concentration, while the BCF increased first and then decreased, and the maximum BCF was 0.154 at 10 mmol/L. The accumulation of Mn lead to cell membrane lipid peroxidation, which increased toxic substances in plants, resulting in the increase of MDA and PRO, and affected the synthesis of chlorophyll. However, B. papyrifera could effectively alleviate oxidative stress by increasing the activities of antioxidant enzymes (SOD, POD, CAT), protein and soluble sugar. The results suggested that B. papyrifera had a good oxidative stress mechanism to Mn stress and could be used as candidates for remediation of pollution in mining areas.


Asunto(s)
Broussonetia/efectos de los fármacos , Manganeso/metabolismo , Contaminantes del Suelo/metabolismo , Suelo/química , Estrés Fisiológico/efectos de los fármacos , Antioxidantes/metabolismo , Biodegradación Ambiental , Biomasa , Broussonetia/fisiología , Clorofila/metabolismo , Sequías , Manganeso/toxicidad , Contaminantes del Suelo/toxicidad
15.
Ecotoxicol Environ Saf ; 169: 306-315, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30458397

RESUMEN

Co-planting with multiple plant species has great value for the remediation of soil co-contaminated with metal(loid)s. A pot experiment has been conducted to study the growth, phytoextraction of metal(loid) and complementarity by co-planting Pteris vittata L. with three metal(loid)-tolerant species with large biomass (namely Arundo donax L., Morus alba L., and Broussonetia papyrifera L.) on soil co-contaminated with As, Cd, Pb, and Zn. The results showed that the co-planting can favor the growth and uptake of As in hyperaccumulator P. vittata L., and improve comprehensive extraction of metal(loid). The total biomass and content of As in the roots of P. vittata L. under the co-planting system were significantly (p < 0.05) improved by 117.5% and 122.0%, respectively, compared with that in monoculture, while the content of As, Cd, Pb and Zn in the tissues of A. donax L., M. alba L. and B. papyrifera L. was slightly increased. The comprehensive accumulation amounts for As, Cd, Pb, and Zn by the four plants co-planting in contaminated soil were higher than that in part of plant's monoculture. Moreover, availability of As, Cd, and Zn in the contaminated soil was decreased in the co-planting system, meanwhile soil urease and acid phosphatase activities in soil significantly (p < 0.05) promoted as compared to the monocultures. The results suggested that positive interaction between hyperaccumulator and three metal(loid)-tolerant species can effectively enhance the growth of P. vittata L., regulate the comprehensive metal(loid)s accumulation capacity, and improve the environmental quality of contaminated soil, which drives high phytoremediation potential for metal(loid)s-contaminated soil by the co-planting.


Asunto(s)
Metaloides/análisis , Metales Pesados/análisis , Pteris/crecimiento & desarrollo , Contaminantes del Suelo/análisis , Suelo/química , Biodegradación Ambiental , Biomasa
16.
Ecotoxicol Environ Saf ; 171: 301-312, 2019 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-30612018

RESUMEN

BACKGROUND: Heavy metal contamination is becoming a limitation to the utilization of soil and the distribution of vegetation. In particular, cadmium (Cd) pollution has had a serious impact on the food chain. Broussonetia papyrifera is a widely distributed pioneer tree species of heavy metal contaminated areas with important economic value. However, little is known about the genomic background of the Cd-tolerance mechanism in B. papyrifera. RESULTS: The CdCl2 responsive physiology was evaluated and proved to be involved in antioxidase activity and active oxygen species (ROS) accumulation. The leaf and root transcriptomes derived from B. papyrifera grown under normal and CdCl2 stress conditions were systematically investigated using the Illumina HiSeq method. A total of 180,678,660 bp (27.1 GB) clean reads were assembled into 589,487 high-quality unigenes, of which 256,025 (43.43% of the total) and 250,251 (42.45% of the total) were aligned in Gene Ontology (GO) and Protein family (Pfam), respectively. A total of 24,414 differentially expressed genes (DEGs) were GO-annotated into 53, 23, 55, and 60 terms from the transcriptomes of root and leaf tissues under Cd stress and control conditions. A total of 117,547 Kyoto Encyclopedia of Genes and Genomes (KEGG) Orthology (KO)-annotated DEGs were enriched in at least 47 KEGG pathway terms among the four comparisons. Many genes encoding important transcription factors (e.g., auxin/indole-3-acetic acid (AUX/IAA), basic helix-loop-helix (bHLH), DNA-binding one zinc finger (Dof), and MYB) and proteins involved in plant-pathogen interactions, phenylpropanoid biosynthesis, plant hormone signal transduction, oxidative phosphorylation, carbon fixation, peroxisomes, flavonoid biosynthesis, and glutathione metabolism, among others, were substantially upregulated under CdCl2 stress. CONCLUSIONS: These genes represent important candidates for studying Cd-response mechanisms and molecular biology of B. papyrifera and related species. Our findings provide a genomic sequence resource for functional genetic assignments in B. papyrifera, which will help elucidate the molecular mechanisms of its Cd-stress responses and facilitate the bioremediation of heavy metal contaminated areas via breeding of new stress-tolerant cultivars.


Asunto(s)
Broussonetia/genética , Cloruro de Cadmio/toxicidad , Hojas de la Planta/genética , Raíces de Plantas/genética , Estrés Fisiológico/genética , Broussonetia/efectos de los fármacos , Broussonetia/metabolismo , Ontología de Genes , Ácidos Indolacéticos/metabolismo , Reguladores del Crecimiento de las Plantas/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Transcriptoma
17.
Zhongguo Zhong Yao Za Zhi ; 44(1): 88-94, 2019 Jan.
Artículo en Zh | MEDLINE | ID: mdl-30868817

RESUMEN

Eleven flavonoids were isolated from the twigs of Broussonetia papyrifera by column chromatography over silica gel,ODS,MCI gel,and Sephadex LH-20,as well as RP-HPLC.Their structures were identified by spectroscopic methods including NMR,MS,UV,and IR as broupapyrin A(1),5,7,3',4'-tetrahydroxy-3-methoxy-8-geranylflavone(2),8-prenylquercetin-3-methyl ether(3),broussonol D(4),broussoflavonol B(5),uralenol(6),broussonol E(7),8-(1,1-dimethylallyl)-5'-(3-methylbut-2-enyl)-3',4',5,7-tetrahydroxyflanvonol(8),broussoflavonol E(9),4,2',4'-trihydroxychalcone(10),and butein(11).Compound 1 is a new isoprenylated flavonol.Compounds 3,6,10,and 11 were obtained from the genus Broussonetia for the first time,and 4 and 7 were firstly discovered in B.papyrifera.Compounds 1-5 and 7-9 showed significant inhibitory effects on PTP1 B with IC50 values ranging from(0.83±0.30) to(4.66±0.83) µmol·L-1.


Asunto(s)
Broussonetia/química , Flavonoides/farmacología , Proteína Tirosina Fosfatasa no Receptora Tipo 1/antagonistas & inhibidores , Cromatografía Líquida de Alta Presión , Flavonoides/aislamiento & purificación , Espectroscopía de Resonancia Magnética , Fitoquímicos/aislamiento & purificación , Fitoquímicos/farmacología
18.
Proc Natl Acad Sci U S A ; 112(44): 13537-42, 2015 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-26438853

RESUMEN

The peopling of Remote Oceanic islands by Austronesian speakers is a fascinating and yet contentious part of human prehistory. Linguistic, archaeological, and genetic studies have shown the complex nature of the process in which different components that helped to shape Lapita culture in Near Oceania each have their own unique history. Important evidence points to Taiwan as an Austronesian ancestral homeland with a more distant origin in South China, whereas alternative models favor South China to North Vietnam or a Southeast Asian origin. We test these propositions by studying phylogeography of paper mulberry, a common East Asian tree species introduced and clonally propagated since prehistoric times across the Pacific for making barkcloth, a practical and symbolic component of Austronesian cultures. Using the hypervariable chloroplast ndhF-rpl32 sequences of 604 samples collected from East Asia, Southeast Asia, and Oceanic islands (including 19 historical herbarium specimens from Near and Remote Oceania), 48 haplotypes are detected and haplotype cp-17 is predominant in both Near and Remote Oceania. Because cp-17 has an unambiguous Taiwanese origin and cp-17-carrying Oceanic paper mulberries are clonally propagated, our data concur with expectations of Taiwan as the Austronesian homeland, providing circumstantial support for the "out of Taiwan" hypothesis. Our data also provide insights into the dispersal of paper mulberry from South China "into North Taiwan," the "out of South China-Indochina" expansion to New Guinea, and the geographic origins of post-European introductions of paper mulberry into Oceania.


Asunto(s)
ADN de Cloroplastos/genética , Genes del Cloroplasto/genética , Migración Humana , Morus/genética , Asia Sudoriental , Pueblo Asiatico , ADN de Cloroplastos/química , ADN de Plantas/química , ADN de Plantas/genética , Variación Genética , Haplotipos , Humanos , Indonesia , Islas , Datos de Secuencia Molecular , Morus/clasificación , Nueva Guinea , Oceanía , Filogenia , Filogeografía , Análisis de Secuencia de ADN , Taiwán
19.
Asian-Australas J Anim Sci ; 31(8): 1259-1266, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29381894

RESUMEN

OBJECTIVE: This study was carried out to investigate the possible application of Broussonetia papyrifera (B. papyrifera) silage as a functional feeding stuff in dairy cattle. METHODS: Seventy-two Holstein cows were divided into four groups randomly and allocated to 6 pens with 3 individuals in each group and fed the original total mixed ratio (TMR) in the dairy farm or the new TMR with 5%, 10%, and 15% B. papyrifera silage, separately. Feed intake were recorded, milk and blood samples were collected, and milk composition, blood metabolites and milk fatty acids composition were measure at the end of the experiment. RESULTS: Dry matter intake of cows decreased when they fed on diet with B. papyrifera, but no differences were observed in body condition score, milk yield, milk protein and lactose, feed efficiency and serum metabolites between groups. Both 10% or 15% of B. papyrifera silage in the diet significantly increased the immunoglobulin A (IgA) and IgG in serum, 15% of B. papyrifera silage increased the content of serum catalase, superoxide dismutase, total antioxidant capacity, and decreased the content of 8-hydroxy-2'-deoxyguanosine. Furthermore, 10% or 15% of B. papyrifera silage resulted in a significant decrease in the milk somatic cell count, and increased the polyunsaturated fatty acids content in the milk. CONCLUSION: The diets with 10% to 15% of B. papyrifera silage might enhance the immune and antioxidant function of dairy cows and increase the polyunstaturated fatty acid concentration in the milk.

20.
Ann Bot ; 120(3): 387-404, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28633358

RESUMEN

Background and Aims: Paper mulberry or Broussonetia papyrifera (L.) L'Hér. ex Vent. (Moraceae) is a dioecious species native to continental South-east Asia and East Asia, including Taiwan, that was introduced to the Pacific by pre-historic voyagers and transported intentionally and propagated asexually across the full range of Austronesian expansion from Taiwan to East Polynesia. The aim of this study was to gain insight into the dispersal of paper mulberry into Oceania through the genetic analysis of herbaria samples which represent a more complete coverage of the historical geographical range of the species in the Pacific before later introductions and local extinctions occurred. Methods: DNA from 47 herbarium specimens of B. papyrifera collected from 1882 to 2006 from different islands of the Pacific was obtained under ancient DNA protocols. Genetic characterization was based on the ribosomal internal transcribed spacer ITS-1 sequence, a sex marker, the chloroplast ndhF-rpl32 intergenic spacer and a set of ten microsatellites developed for B. papyrifera. Key Results: Microsatellites allowed detection of 15 genotypes in Near and Remote Oceanian samples, in spite of the vegetative propagation of B. papyrifera in the Pacific. These genotypes are structured in two groups separating West and East Polynesia, and place Pitcairn in a pivotal position. We also detected the presence of male plants that carry the Polynesian chloroplast DNA (cpDNA) haplotype, in contrast to findings in contemporary B. papyrifera populations where only female plants bear the Polynesian cpDNA haplotype. Conclusions: For the first time, genetic diversity was detected among paper mulberry accessions from Remote Oceania. A clear separation between West and East Polynesia was found that may be indicative of pulses during its dispersal history. The pattern linking the genotypes within Remote Oceania reflects the importance of central Polynesia as a dispersal hub, in agreement with archaeological evidence.


Asunto(s)
Broussonetia/genética , Variación Genética , Genética de Población , ADN de Cloroplastos/genética , ADN Espaciador Ribosómico/genética , Genotipo , Haplotipos , Islas , Repeticiones de Microsatélite , Oceanía , Filogeografía , Polinesia , Reproducción Asexuada
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda