Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Pharmacol Res ; 208: 107389, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39243913

RESUMEN

Mitochondria provide the energy to keep cells alive and functioning and they have the capacity to influence highly complex molecular events. Mitochondria are essential to maintain cellular energy homeostasis that determines the course of neurological disorders, including traumatic brain injury (TBI). Various aspects of mitochondria metabolism such as autophagy can have long-term consequences for brain function and plasticity. In turn, mitochondria bioenergetics can impinge on molecular events associated with epigenetic modifications of DNA, which can extend cellular memory for a long time. Mitochondrial dysfunction leads to pathological manifestations such as oxidative stress, inflammation, and calcium imbalance that threaten brain plasticity and function. Hence, targeting mitochondrial function may have great potential to lessen the outcomes of TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Encéfalo , Metabolismo Energético , Mitocondrias , Plasticidad Neuronal , Lesiones Traumáticas del Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/fisiopatología , Humanos , Animales , Mitocondrias/metabolismo , Encéfalo/metabolismo , Encéfalo/fisiopatología , Encéfalo/patología , Estrés Oxidativo
2.
Pharmacol Res ; 183: 106363, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35905892

RESUMEN

Aquaporin is a membrane channel protein widely expressed in body tissues, which can control the input and output of water in cells. AQPs are differentially expressed in different cardiovascular tissues and participate in water transmembrane transport, cell migration, metabolism, inflammatory response, etc. The aberrant expression of AQPs highly correlates with the onset of ischemic heart disease, myocardial ischemia-reperfusion injury, heart failure, etc. Despite much attention to the regulatory role of AQPs in the cardiovascular system, the translation of AQPs into clinical application still faces many challenges, including clarification of the localization of AQPs in the cardiovascular system and mechanisms mediating cardiovascular pathophysiology, as well as the development of cardiovascular-specific AQPs modulators.Therefore, in this study, we comprehensively reviewed the critical roles of AQP family proteins in maintaining cardiovascular homeostasis and described the underlying mechanisms by which AQPs mediated the outcomes of cardiovascular diseases. Meanwhile, AQPs serve as important therapeutic targets, which provide a wide range of opportunities to investigate the mechanisms of cardiovascular diseases and the treatment of those diseases.


Asunto(s)
Acuaporinas , Enfermedades Cardiovasculares , Acuaporinas/metabolismo , Transporte Biológico , Corazón , Humanos , Agua
3.
Eur J Pharmacol ; 770: 117-25, 2016 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-26673740

RESUMEN

Recently, it has been suggested that bumetanide, an inhibitor of the Na-K-2Cl co-transporter (NKCC1), may be useful in the treatment of central nervous system (CNS) disorders. However, from a physicochemical perspective, bumetanide may not cross the blood-brain barrier to the extent that is necessary for it to be an effective brain NKCC1 inhibitor in vivo. High plasma-protein binding, potentially high brain-tissue binding and putative efflux transporters including organic anion transporter 3 (OAT3) contribute to the poor pharmacokinetic profile of bumetanide. Bidirectional permeability assays are an in vitro method to determine the impact of plasma-protein/brain tissue binding, as well as efflux transport, on the permeability of a compound. We established and validated a cell line stably overexpressing human OAT3 using lentiviral cloning techniques for use in in vitro bidirectional permeability assays. Using efflux transport studies, we show that bumetanide is a transported substrate of human OAT3, exhibiting a transport ratio of ≥1.5, which is attenuated by OAT3 inhibitors. Bidirectional permeability assays were carried out in the presence and absence of either albumin or brain homogenate to elucidate the effect of plasma-protein/brain tissue binding. These tests confirmed the pharmacokinetic limitations for brain delivery of bumetanide. In this experiment, bumetanide is 53% bound to albumin, 77% bound to brain tissue and accumulates in brain cells. Moreover, we conclusively established that bumetanide is a transported substrate of OAT3. Taken together, these bidirectional permeability studies highlight the potential of efflux transporter inhibition as an augmentation strategy for enhanced delivery of bumetanide to the CNS.


Asunto(s)
Bumetanida/metabolismo , Bumetanida/farmacología , Miembro 2 de la Familia de Transportadores de Soluto 12/metabolismo , Barrera Hematoencefálica/metabolismo , Bumetanida/farmacocinética , Células HEK293 , Humanos , Transportadores de Anión Orgánico Sodio-Independiente/genética , Transportadores de Anión Orgánico Sodio-Independiente/metabolismo , Permeabilidad
4.
Eur J Pharmacol ; 774: 127-34, 2016 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-26851372

RESUMEN

Hepatic encephalopathy is a common complication in cases of liver damage; it results from several factors, including the accumulation of toxic substances in the brain, e.g. manganese, ammonia and glutamine. We have previously reported that manganese favors ammonia and glutamine accumulation in the brain of cirrhotic rats, and we suggested that such effect could be mediated by manganese-elicited activation of the NKCC1 (Na(+)/K(+)/2Cl(-) cotransporter 1). To test this hypothesis, we used bumetanide, an NKCC1 blocker prescribed to treat ascites in cirrhotic patients; we expected that if NKCC1 was responsible for manganese-mediated ammonia buildup and the subsequent glutamine accumulation, bumetanide could counteract such effect and improve motor coordination. In addition, we considered essential to test the effect of bumetanide on manganese brain levels. We used a model of liver damage in rats, consisting in bile-duct ligation. Animals were exposed to manganese in the drinking water (1 mg/ml) for two weeks and ammonia in the food (20% w/w of ammonia acetate) during the second week after surgery. Bumetanide was administered intraperitoneally in the course of the ammonia treatment. We measured glutamine and manganese in three brain regions: frontal cortex, striatum and cerebellum. Bumetanide produced no effect on glutamine accumulation; however, because of bumetanide treatment, manganese was increased in the brain, and also the activity of gamma-glutamyl transferase in plasma; thus, we consider that the influence of bumetanide and similar diuretics on liver function and manganese homeostasis should be further studied.


Asunto(s)
Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Bumetanida/farmacología , Cirrosis Hepática/metabolismo , Amoníaco/metabolismo , Animales , Glutamina/metabolismo , Cirrosis Hepática/fisiopatología , Masculino , Actividad Motora/efectos de los fármacos , Actividad Motora/fisiología , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda