Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Am J Hum Genet ; 111(1): 119-132, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-38141607

RESUMEN

Cyclin D2 (CCND2) stabilization underpins a range of macrocephaly-associated disorders through mutation of CCND2 or activating mutations in upstream genes encoding PI3K-AKT pathway components. Here, we describe three individuals with overlapping macrocephaly-associated phenotypes who carry the same recurrent de novo c.179G>A (p.Arg60Gln) variant in Myc-associated factor X (MAX). The mutation, located in the b-HLH-LZ domain, causes increased intracellular CCND2 through increased transcription but it does not cause stabilization of CCND2. We show that the purified b-HLH-LZ domain of MAXArg60Gln (Max∗Arg60Gln) binds its target E-box sequence with a lower apparent affinity. This leads to a more efficient heterodimerization with c-Myc resulting in an increase in transcriptional activity of c-Myc in individuals carrying this mutation. The recent development of Omomyc-CPP, a cell-penetrating b-HLH-LZ-domain c-Myc inhibitor, provides a possible therapeutic option for MAXArg60Gln individuals, and others carrying similar germline mutations resulting in dysregulated transcriptional c-Myc activity.


Asunto(s)
Megalencefalia , Proteínas Proto-Oncogénicas c-myc , Humanos , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Dimerización , Megalencefalia/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo
2.
Mod Pathol ; 37(2): 100405, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38104893

RESUMEN

Large or blastoid B-cell neoplasms that are SOX11+ are a diagnostic dilemma and raise a differential diagnosis of cyclin D1-negative blastoid/pleomorphic mantle cell lymphoma (MCL) versus diffuse large B-cell lymphoma (DLBCL) or blastoid high-grade B-cell lymphoma (HGBL) with aberrant SOX11 expression. Here we report a study cohort of 13 SOX11+ large/blastoid B-cell neoplasms. Fluorescence in situ hybridization analysis was negative for CCND1 rearrangement in all 13 cases; 1 of 8 (12.5%) cases tested showed CCND2 rearrangement and 2 (25%) cases had extracopies of CCND2. Gene expression profiling showed that the study group had a gene expression signature similar to cyclin D1+ blastoid/pleomorphic MCL but different from DLBCL. Principal component analysis revealed that the cohort cases overlapped with cyclin D1+ blastoid/pleomorphic MCL but had minimal overlap with DLBCL. All patients in the cohort had clinicopathologic features similar to those reported for patients with cyclin D1+ MCL. We also performed a survey of SOX11 expression in a group of 85 cases of DLBCL and 24 cases of blastoid HGBL. SOX11 expression showed a 100% specificity and positive predictive value for the diagnosis of MCL. Overall, the results support the conclusion that large or blastoid B-cell neoplasms that are positive for SOX11 are best classified as cyclin D1-negative blastoid/pleomorphic MCL, and not as DLBCL or blastoid HGBL. We also conclude that SOX11 is a specific marker for the diagnosis of MCL, including cyclin D1-negative blastoid/pleomorphic MCL cases and should be performed routinely on blastoid/large B-cell neoplasms to help identify potential cases of cyclin D1-negative blastoid/pleomorphic MCL.


Asunto(s)
Linfoma de Células B Grandes Difuso , Linfoma de Células del Manto , Adulto , Humanos , Linfoma de Células del Manto/metabolismo , Ciclina D1/genética , Hibridación Fluorescente in Situ , Inmunohistoquímica , Linfoma de Células B Grandes Difuso/patología , Factores de Transcripción SOXC/genética
3.
Exp Cell Res ; 410(1): 112936, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34801563

RESUMEN

BACKGROUND: The tumor suppressive function of microRNA-432-5p (miR-432-5p) has been reported in several human malignances. This study aimed to probe the expression profile and role of miR-432-5p in colorectal cancer (CRC) and the molecular mechanism. METHODS: Differentially expressed miRNAs between CRC and healthy samples were screened using a miRNA expression dataset GSE136020. The related molecules were identified by integrated bioinformatic analyses. A murine model of primary CRC was established and xenograft tumors were induced in mice. Altered expression of DNMT3B, miR-432-5p and cyclin D2 (CCND2) were introduced in CRC cells to determine their roles in the development of CRC. RESULTS: miR-432-5p was downregulated in CRC according to the GSE136020 dataset. CCND2 mRNA was confirmed as a target of miR-432-5p. miR-432-5p was downregulated, whereas CCND2 was abundantly expressed in CRC tissues and cells. DNA methyltransferase 3B (DNMT3B) induced DNA methylation at the CpG island of miR-432-5p to inhibit its expression. miR-432-5p mimic significantly suppressed tumorigenesis of primary CRC in mice. Downregulation of DNMT3B weakened viability, invasiveness, blocked the cell cycle progression of CRC cells in vitro, and inhibited xenograft tumor growth and metastasis in nude mice. However, additional downregulation of miR-432-5p or upregulation of CCND2 restored the malignant behaviors of CRC cells. CONCLUSION: This study showed that DNMT3B induced DNA methylation and downregulation of miR-432-5p to promote development of CRC by upregulating CCND2.


Asunto(s)
Neoplasias Colorrectales/genética , Ciclina D2/genética , ADN (Citosina-5-)-Metiltransferasas/genética , MicroARNs/genética , Animales , Apoptosis/genética , Carcinogénesis/genética , Movimiento Celular/genética , Proliferación Celular/genética , Neoplasias Colorrectales/patología , Regulación Neoplásica de la Expresión Génica/genética , Xenoinjertos , Humanos , Ratones , ADN Metiltransferasa 3B
4.
BMC Womens Health ; 23(1): 157, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-37013521

RESUMEN

BACKGROUND: Uterine angioleiomyoma is benign tumor that composed of smooth muscle cells and thick-walled vessels. It is a very rare condition reported to present as lower abdominal mass, accompanied by dysmenorrhea and hypermenorrhea. However, its clinical presentation is not known. CASE PRESENTATION: We report the case of a 44-year-old Japanese woman who developed severe anemia with disseminated intravascular coagulation without obvious external bleeding. The patient had a huge abdominal mass of over 20 cm in size, which was thought to be a uterine tumor. She received daily blood transfusions and her condition improved rapidly after she underwent hysterectomy. Pathological examination of the tumor revealed spindle-shaped cells with little atypia and mitosis, and numerous large vessels with smooth muscle and thrombus in the vessels. CONCLUSIONS: Uterine angioleiomyoma was identified as the cause of the coagulation abnormality. CCND2 and AR gene amplification was detected in the tumor. Uterine tumors that present with coagulopathy despite a clinical course suggestive of benign disease should undergo differential diagnosis for uterine angioleiomyoma.


Asunto(s)
Angiomioma , Coagulación Intravascular Diseminada , Neoplasias Uterinas , Femenino , Humanos , Adulto , Angiomioma/diagnóstico , Angiomioma/patología , Angiomioma/cirugía , Coagulación Intravascular Diseminada/complicaciones , Útero , Neoplasias Uterinas/complicaciones , Neoplasias Uterinas/diagnóstico , Neoplasias Uterinas/patología , Histerectomía
5.
Cancer Cell Int ; 22(1): 27, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-35033075

RESUMEN

BACKGROUND: Circular RNAs (circRNAs) have emerged as vital regulators of the initiation and progression of diverse kinds of human cancers. In this study, we explored the role of hsa_circ_0000231 and its downstream pathway in CRC. METHODS: The expression profile of circRNAs in 5 pairs of CRC tissues and adjacent normal tissues were analyzed by Microarray. Quantitative real-time PCR and in situ hybridization and Base Scope Assay were used to determine the level and prognostic values of hsa_circ_0000231. Then, functional experiments in vitro and in vivo were performed to investigate the effects of hsa_circ_0000231 on cell proliferation. Mechanistically, fluorescent in situ hybridization, dual luciferase reporter assay, RNA pull-down and RNA immunoprecipitation experiments were performed to confirm the interaction between hsa_circ_0000231 and IGF2BP3 or has_miR-375. RESULTS: We acquired data through circRNA microarray profiles, showing that the expression of hsa_circ_0000231 was upregulated in CRC primary tissues compared to adjacent normal tissues, which was indicated poor prognosis of patients with CRC. Functional analysis indicated that inhibition of hsa_circ_0000231 in CRC cell lines could suppress CRC cell proliferation as well as tumorigenesis in vitro and in vivo. The mechanistic analysis showed that hsa_circ_0000231 might, on the one hand, act as a competing endogenous RNA of miR-375 to promote cyclin D2 (CCND2) and, on the other hand, bind to the IGF2BP3 protein to prevent CCND2 degradation. CONCLUSIONS: The findings suggested that hsa_circ_0000231 facilitated CRC progression by sponging miR-375 or binding to IGF2BP3 to modulate CCND2, implying that hsa_circ_0000231 might be a potential new diagnostic and therapeutic biomarker of CRC.

6.
Pulm Pharmacol Ther ; 77: 102173, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36280202

RESUMEN

BACKGROUND: Asthma is an inflammatory syndrome characterized by airway hyperresponsiveness, bronchial inflammation, and airway remodeling. Abnormal proliferation of airway smooth muscle cells (ASMCs) is the main pathological feature of asthma. This study investigated the function and mechanism of serine arginine-rich splicing factor 1 (SRSF1) in ASMC proliferation in asthma. METHODS: SRSF1 expressions in the bronchi of ovalbumin-induced asthmatic mice and IgE-treated mouse ASMCs (mASMCs) were evaluated using quantitative real-time PCR and Western blot. The localization and expression of SRSF1 in the bronchi of asthmatic mice were assessed by immunohistochemistry. Functionally, gain- and loss-of-function assays, flow cytometry, and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays were conducted. Mechanistically, RNA degradation assay, RNA immunoprecipitation, RNA pull-down, and dual-luciferase reporter gene assays were carried out. RESULTS: SRSF1 was highly expressed in the bronchi of ovalbumin-induced asthma mice and IgE-treated mASMCs and was mainly located in the nucleus. Experiments on the function of SRSF1 showed that the silencing of SRSF1 induced the cell cycle of mASMC arrest and restrained mASMC proliferation. Investigations into the mechanism of SRSF1 revealed that SRSF1 and miR-135a are competitively bound to the 3'UTR region of Cyclin D2 (CCND2). SRSF1 overexpression repressed the degradation of CCND2 mRNA, and miR-135a negatively regulated CCND2 expression. Furthermore, SRSF1 knockdown inhibited ASMC proliferation in asthma mouse models by regulating the levels of miR-135a and CCND2. CONCLUSION: SRSF1 knockdown repressed ASMC proliferation in asthma by regulating miR-135a/CCND2 levels.


Asunto(s)
Asma , Ciclina D2 , MicroARNs , Factores de Empalme Serina-Arginina , Animales , Ratones , Asma/genética , Asma/patología , Bronquios/metabolismo , Proliferación Celular/genética , Ciclina D2/metabolismo , Inmunoglobulina E , MicroARNs/genética , Miocitos del Músculo Liso/metabolismo , Ovalbúmina , Factores de Empalme Serina-Arginina/metabolismo
7.
Mol Biol Rep ; 49(7): 6601-6611, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35616759

RESUMEN

BACKGROUND: Cyclin D (CCND) plays an important role in the cell cycle and is a rate-limiting factor that facilitates the G1/S transition. METHODS: In this study, the full-length cDNA of Hc-CCND2 was isolated from freshwater pearl mussel (Hyriopsis cumingii; Hc) and amplified using the 3´/5´ RACE system. The Hc-CCND2 expression profiles were analysed by quantitative real-time PCR. Functional analysis of the Hc-CCND2 genes was examined by both RNA interference (RNAi) and overexpression in H. cumingii. RESULTS: Hc-CCND2 protein sequences were 295 amino acids long, possessed D-type cyclin signature motifs and contained conserved cyclin box domains. Hc-CCND2 was expressed in all examined tissues (adductor, foot, visceral mass, gill, outer mantle, inner mantle and gonad), with the highest expression levels found in the gill (P < 0.05). During the different developmental periods of the embryo, the relative expression of Hc-CCND2 increased with embryonic development, peaking at the blastula stage and decreasing significantly in the gastrula stage. After knockdown of Hc-CCND2 by RNAi, a significant decrease in CDK6 expression levels was found, while the percentage of cells in the G0/G1 phase significantly increased. Overexpression of Hc-CCND2 in mantle cells led to increased proliferation of cultured cells (P < 0.05). CONCLUSIONS: Our results demonstrated that Hc-CCND2 may promote cell cycle progression in H. cumingii, and that overexpression of Hc-CCND2 promotes mantle cell proliferation. These findings may provide a novel approach for improving the slow proliferation rate of shellfish cells in in vitro cultures.


Asunto(s)
Bivalvos , Unionidae , Animales , Secuencia de Bases , Bivalvos/genética , Bivalvos/metabolismo , Clonación Molecular , Ciclinas/genética , Agua Dulce , Filogenia , Unionidae/genética
8.
J Cell Mol Med ; 25(21): 9995-10007, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34609043

RESUMEN

Diabetic cardiomyopathy (DbCM) is responsible for increased morbidity and mortality in patients with diabetes and heart failure. However, the pathogenesis of DbCM has not yet been identified. Here, we investigated the important role of lncRNA-ZFAS1 in the pathological process of DbCM, which is associated with ferroptosis. Microarray data analysis of DbCM in patients or mouse models from GEO revealed the significance of ZFAS1 and the significant downregulation of miR-150-5p and CCND2. Briefly, DbCM was established in high glucose (HG)-treated cardiomyocytes and db/db mice to form in vitro and in vivo models. Ad-ZFAS1, Ad-sh-ZFAS1, mimic miR-150-5p, Ad-CCND2 and Ad-sh-CCND2 were intracoronarily administered to the mouse model or transfected into HG-treated cardiomyocytes to determine whether ZFAS1 regulates miR-150-5p and CCND2 in ferroptosis. The effect of ZFAS1 on the left ventricular myocardial tissues of db/db mice and HG-treated cardiomyocytes, ferroptosis and apoptosis was determined by Masson staining, immunohistochemical staining, Western blotting, monobromobimane staining, immunofluorescence staining and JC-1 staining. The relationships among ZFAS1, miR-150-5p and CCND2 were evaluated using dual-luciferase reporter assays and RNA pull-down assays. Inhibition of ZFAS1 led to reduced collagen deposition, decreased cardiomyocyte apoptosis and ferroptosis, and attenuated DbCM progression. ZFAS1 sponges miR-150-5p to downregulate CCND2 expression. Ad-sh-ZFAS1, miR-150-5p mimic, and Ad-CCND2 transfection attenuated ferroptosis and DbCM development both in vitro and in vivo. However, transfection with Ad-ZFAS1 could reverse the positive effects of miR-150-5p mimic and Ad-CCND2 in vitro and in vivo. lncRNA-ZFAS1 acted as a ceRNA to sponge miR-150-5p and downregulate CCND2 to promote cardiomyocyte ferroptosis and DbCM development. Thus, ZFAS1 inhibition could be a promising therapeutic target for the treatment and prevention of DbCM.


Asunto(s)
Ciclina D2/genética , Cardiomiopatías Diabéticas/etiología , Cardiomiopatías Diabéticas/metabolismo , Ferroptosis/genética , MicroARNs/genética , Interferencia de ARN , ARN Largo no Codificante/genética , Animales , Biomarcadores , Cardiomiopatías Diabéticas/diagnóstico , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Humanos , Inmunohistoquímica , Ratones , Miocitos Cardíacos/metabolismo
9.
Cancer Cell Int ; 21(1): 650, 2021 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-34863152

RESUMEN

BACKGROUND: Previous studies indicated CRNDE to have a pivotal part within tumorigenesis. Notwithstanding, precise details on CRNDE activities within NPC are still uncertain. The investigation described in this article served to focus in greater depth on the mechanistics regarding CRNDE, together with all associated regulatory networks, on nasopharyngeal carcinoma (NPC) and its treatment possibilities. METHODS: Quantitative real-time polymerase chain reaction (RT-qPCR) analyzed CRNDE, miR-545-5p and CCND2 expression within NPCs and representative cell lineages. CCK-8 cell counting-, EdU-, wound-healing-/transwell-assays analyzed cellular proliferation, migrative, together with invasive properties. Apoptosis/cell cycle progression were scrutinized through flow cytometry. Dual-luciferase reporter assays validated CRNDE/miR-545-5p/CCND2 interplay. Proteomic expression of apoptosis-related protein, EMT-related protein and CCND2 protein were evaluated through Western blotting. In addition, Ki67 expression was evaluated through immunohistochemical staining. The effect of CRNDE in vivo was assessed by nude murine xenograft model studies. RESULTS: This study demonstrated up-regulated expression of CRNDE and CCND2 within NPC tissues/cell lines. Meanwhile, miR-545-5p was down-regulated. CRNDE knock-down or miR-545-5p over-expression drastically reduced NPC proliferative, migrative and invasive properties, promoted apoptosis/altered cell cycle, and inhibited CCND2 expression. However, miR-545-5p down-regulation had opposing effects. All inhibiting functions generated by CRNDE down-regulation upon NPC progression could be counterbalanced or synergistically exacerbated, depending on miR-545-5p down-regulation or up-regulation, respectively. Multiple-level investigations revealed CRNDE to serve as a sponge for miR-545-5p, and can target CCND2 within NPCs. CONCLUSIONS: CRNDE increases CCND2 expression by competitive binding with miR-545-5p, thus accelerating the development of NPC. This provides potential therapeutic targets and prognostic markers against NPC.

10.
Clin Exp Pharmacol Physiol ; 48(8): 1137-1149, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33844344

RESUMEN

Circular RNAs (circRNAs) are widely expressed in mammals and act as regulatory targets in the atherogenesis. The objective of this study was to research the biological role and molecular mechanism of circ_0093887 in oxidized low-density lipoprotein (ox-LDL)-induced atherosclerosis (AS) of human aortic endothelial cells (HAECs). Cell viability detection was performed by CCK-8 assay. Inflammatory molecules were examined using ELISA. Flow cytometry was used to measure cell-cycle progression and cell apoptotic rate. Caspase 3 activity was determined using caspase 3 activity assay. The expression levels of circ_0093887, miR-876-3p, CCND2 and SUCNR1 were assayed by quantitative real-time polymerase chain reaction (qRT-PCR). Dual-luciferase reporter, RNA immunoprecipitation (RIP) and RNA pull-down assays were used for the target analysis. EdU assay, wound healing assay/transwell assay and tube formation assay were, respectively, used to assess the effects of circ_0093887/miR-876-3p axis on cell proliferation, migration and tube formation. Oxidized low-density lipoprotein inhibited cell viability and cell-cycle progression but induced the inflammatory response and cell apoptosis. Circ_0093887 was downregulated and miR-876-3p was upregulated in AS patients and ox-LDL-treated HAECs. Functionally, the overexpression of circ_0093887 abrogated the cell injury of HAEC exposed to ox-LDL. For the functional mechanism, we found that circ_0093887 was a sponge for miR-876-3p and miR-876 targeted CCND2 or SUCNR1. The reverted experiment indicated that the function of circ_0093887 was achieved by sponging miR-876-3p. Meanwhile, miR-876-3p inhibitor relieved the inhibitory regulation of circ_0093887 knockdown in cell proliferation, migration and tube formation. Downregulation of miR-876-3p also alleviated the ox-LDL-induced cell injury by upregulating the expression of CCND2 or SUCNR1. Furthermore, circ_0093887 was validated to regulate the levels of CCND2 and SUCNR1 via the sponge effect on miR-876-3p. The protective effects of circ_0093887 on HAECs from ox-LDL were also ​alleviated by repressing the CCND2 and SUCNR1 levels. These findings suggested that circ_0093887 protected HAEC against the ox-LDL-induced inflammatory and apoptotic damages by targeting the miR-876-3p/CCND2 or miR-876/SUCNRA axis. Circ_0093887 could act as a potential therapeutic biomarker for AS patients.


Asunto(s)
Aterosclerosis , Células Endoteliales , Humanos , Lipoproteínas LDL , MicroARNs , ARN Circular
11.
Br J Haematol ; 191(5): 755-763, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32386081

RESUMEN

Previous genomic studies have revealed the genomic landscape of myeloma cells. Although some of the genomic abnormalities shown are believed to be correlated to the molecular pathogenesis of multiple myeloma and/or clinical outcome, these correlations are not fully understood. The aim of this study is to elucidate the correlation between genomic abnormalities and clinical characteristics by targeted capture sequencing in the Japanese multiple myeloma cohort. We analysed 154 patients with newly diagnosed multiple myeloma. The analysis revealed that the study cohort consisted of a less frequent hyperdiploid subtype (37·0%) with relatively high frequencies of KRAS mutation (36·4%) and IGH-CCND1 translocation (26·6%) compared with previous reports. Moreover, our targeted capture sequencing strategy was able to detect rare IGH-associated chromosomal translocations, such as IGH-CCND2 and IGH-MAFA. Interestingly, all 10 patients harboured MAX mutations accompanied by 14q23 deletion. The patients with del(17p) exhibited an unfavourable clinical outcome, and the presence of KRAS mutation was associated with shorter survival in patients with multiple myeloma, harbouring IGH-CCND1. Thus, our study provides a detailed landscape of genomic abnormalities, which may have potential clinical application for patients with multiple myeloma.


Asunto(s)
Deleción Cromosómica , Cromosomas Humanos Par 14/genética , Mieloma Múltiple/genética , Proteínas de Neoplasias/genética , Síndrome de Smith-Magenis/genética , Adulto , Cromosomas Humanos Par 17/genética , Femenino , Humanos , Japón , Masculino , Persona de Mediana Edad
12.
J Cell Mol Med ; 23(6): 4386-4394, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30973678

RESUMEN

Mounting evidence suggests the vital roles of long noncoding RNA (lncRNAs) in the glioma. However, the role of LINC00511 in gliomagenesis is still uncovered. Here, in this study, we aim to investigate the effects of LINC00511 on the glioma cancer phenotype and its deepgoing mechanism. Results indicated that LINC00511 was up-regulated in glioma tissues and cell lines, moreover its overexpression positively correlated with the poor prognosis and advanced pathological stages. For the upstream regulation, LINC00511 was epigenetically up-regulated by transcription factor specificity protein 1 (SP1). Gain and loss of functional experiments demonstrated that LINC00511 promoted the proliferation and invasion of glioma cells in vitro. The knockdown of LINC00511 repressed the tumour growth in vivo. Mechanistically, LINC00511 positively regulated the CCND2 expression via competitively sponging with miR-124-3p. Overall, our finding illuminates that LINC00511 is induced by SP1 and accelerates the glioma progression through targeting miR-124-3p/CCND2 axis, constructing the SP1/LINC00511/miR-124-3p/CCND2 axis.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Ciclina D2/metabolismo , Regulación Neoplásica de la Expresión Génica , Glioma/patología , MicroARNs/genética , ARN Largo no Codificante/genética , Factor de Transcripción Sp1/metabolismo , Animales , Apoptosis , Biomarcadores de Tumor/genética , Estudios de Casos y Controles , Movimiento Celular , Proliferación Celular , Ciclina D2/genética , Progresión de la Enfermedad , Estudios de Seguimiento , Glioma/genética , Glioma/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Pronóstico , Factor de Transcripción Sp1/genética , Tasa de Supervivencia , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
13.
J Cell Biochem ; 120(6): 9324-9336, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30520141

RESUMEN

Glioma is the most aggressive malignant tumor in the adult central nervous system. Abnormal long noncoding RNA (lncRNA) FOXD2-AS1 expression was associated with tumor development. However, the possible role of FOXD2-AS1 in the progression of glioma is not known. In the present study, we used in vitro and in vivo assays to investigate the effect of abnormal expression of FOXD2-AS1 on glioma progression and to explore the mechanisms. FOXD2-AS1 was upregulated in glioma tissue, cells, and sphere subpopulation. Upregulation of FOXD2-AS1 was correlated with poor prognosis of glioma. Downregulation of FOXD2-AS1 decreased cell proliferation, migration, invasion, stemness, and epithelial-mesenchymal transition (EMT) in glioma cells and inhibited tumor growth in transplanted tumor. We also revealed that FOXD2-AS1 was mainly located in cytoplasm and microRNA (miR)-185-5p both targeted FOXD2-AS1 and CCND2 messenger RNA (mRNA) 3'-untranslated region (3'-UTR). miR-185-5p was downregulated in glioma tissue, cells, and sphere subpopulation. Downregulation of miR-185-5p was closely correlated with poor prognosis of glioma patients. In addition, miR-185-5p mimics decreased cell proliferation, migration, invasion, stemness, and EMT in glioma cells. CCND2 was upregulated in glioma tissue, cells, and sphere subpopulation. Upregulation of CCND2 was closely correlated with poor prognosis of glioma patients. CCND2 knockdown decreased cell proliferation, migration, invasion, and EMT in glioma cells. In glioma tissues, CCND2 expression was negatively associated with miR-185-5p, but positively correlated with FOXD2-AS1. FOXD2-AS1 knockdown and miR-185-5p mimics decreased CCND2 expression. Inhibition of miR-185-5p suppressed FOXD2-AS1 knockdown-induced decrease of CCND2 expression. Overexpression of CCND2 suppressed FOXD2-AS1 knockdown-induced inhibition of glioma malignancy. Taken together, our findings highlight the FOXD2-AS1/miR-185-5p/CCND2 axis in the glioma development.


Asunto(s)
Ciclina D2/genética , Glioma/genética , MicroARNs/genética , ARN Largo no Codificante/genética , Apoptosis/genética , Carcinogénesis/genética , Proliferación Celular/genética , Progresión de la Enfermedad , Transición Epitelial-Mesenquimal/genética , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Glioma/patología , Xenoinjertos , Humanos , Masculino , Transducción de Señal/genética
14.
Biochem Biophys Res Commun ; 510(3): 462-466, 2019 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-30722989

RESUMEN

Non-small cell lung cancer (NSCLC) is an aggressive malignancy with poor clinical outcomes. Accumulating evidence indicated that dysregulation of circular RNAs (circRNAs) plays a key role in multiple solid tumors. In this study, circ-RAD23B was explored. The expression of circ-RAD23B in NSCLC was detected by RT-qPCR. The clinical value of circ-RAD23B was analyzed by Fisher's exact test and Kaplan-Meier curves. Gain and loss of function experiments were carried out to elucidate the biological functions of circ-RAD23B in NSCLC cell lines. Dual luciferase reporter assay and rescue experiments were used to reveal the mechanism of circ-RAD23B. The findings demonstrated that circ-RAD23B, identified to be amplified and overexpressed in NSCLC, was associated with lymph node invasion, lower differentiation grade and shorter overall survival (OS). Furthermore, circ-RAD23B functions as an oncogene in NSCLC cells. Mechanistically, circ-RAD23B could sponge miR-593-3p and miR-653-5p and thus elevate CCND2 and TIAM1 expression, respectively. Rescue assays proved that circ-RAD23B promotes cell growth via miR-593-3p/CCND2 axis and facilitates cell invasion by miR-653-5p/TIAM1 pathway. Taken together, we propose circ-RAD23B as a promising biomarker and therapeutic target for NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/genética , MicroARNs/metabolismo , ARN/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/mortalidad , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular , Línea Celular Tumoral , Ciclina D2/genética , Ciclina D2/metabolismo , Femenino , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/mortalidad , Neoplasias Pulmonares/patología , Masculino , Persona de Mediana Edad , Invasividad Neoplásica , ARN Circular , Proteína 1 de Invasión e Inducción de Metástasis del Linfoma-T/genética , Proteína 1 de Invasión e Inducción de Metástasis del Linfoma-T/metabolismo
15.
Anim Genet ; 50(3): 250-253, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30957260

RESUMEN

Body weight is a complex trait in cattle associated with commonly used commercial breeding measurements related to growth. Although many quantitative trait loci (QTL) for body weight have been identified in cattle so far, searching for genetic determinants in different breeds or environments is promising. Therefore, we carried out a genome-wide association study (GWAS) in two cattle populations from the Russian Federation (Siberian region) using the GGP HD150K array containing 139 376 single nucleotide polymorphism (SNP) markers. Association tests for 107 550 SNPs left after filtering revealed five statistically significant SNPs on BTA5, considering a false discovery rate of less than 0.05. The chromosomal region containing these five SNPs contains the CCND2 gene, which was previously associated with average daily weight gain and body mass index in US beef cattle populations and in humans respectively. Our study is the first GWAS for body weight in beef cattle populations from the Russian Federation. The results provided here suggest that, despite the existence of breed- and species-specific QTL, the genetic architecture of body weight could be evolutionarily conserved in mammals.


Asunto(s)
Peso Corporal , Bovinos/genética , Bovinos/fisiología , Animales , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Siberia
16.
Cell Physiol Biochem ; 49(4): 1289-1303, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30205383

RESUMEN

BACKGROUND/AIMS: The long noncoding RNA homeobox (HOX) transcript antisense intergenic RNA (HOTAIR) has been demonstrated to be a vital modulator in the proliferation and metastasis of ovarian cancer cells, but its potential molecular mechanism remains to be elucidated. In the current study, we aimed to uncover the biological role of lncRNA HOTAIR and its underlying regulatory mechanism in the progression and metastasis of ovarian cancer. METHODS: HOTAIR expression was detected by quantitative RT-PCR (qRT-PCR) and northern blotting. The SKOV3 ovarian cancer cell line was chosen for the subsequent assays. In addition, the molecular mRNA and protein expression levels were examined by qRT-PCR and western blotting. The competitive endogenous RNA (ceRNA) mechanism was validated by bioinformatics analysis and a dual luciferase reporter gene assay. RESULTS: HOTAIR expression was significantly higher in ovarian carcinoma tissues and cell lines than in the control counterparts. Both CCND1 and CCND2 were downstream targets of miR-206. The inhibition of HOTAIR elevated the expression of miR-206 and inhibited the expression of CCND1 and CCND2. Moreover, CCND1 and CCND2 were highly expressed in ovarian cancer tissues, and their expression was positively correlated with HOTAIR expression. Finally, the functional assays indicated that the anticancer effects of miR-206 could be rescued by the simultaneous overexpression of either CCND1 or CCND2 in ovarian cancer. CONCLUSION: HOTAIR enhanced CCND1 and CCND2 expression by negatively modulating miR-206 expression and stimulating the proliferation, cell cycle progression, migration and invasion of ovarian cancer cells.


Asunto(s)
Ciclina D1/metabolismo , Ciclina D2/metabolismo , MicroARNs/metabolismo , Neoplasias Ováricas/patología , ARN Largo no Codificante/metabolismo , Regiones no Traducidas 3' , Antagomirs/metabolismo , Secuencia de Bases , Línea Celular Tumoral , Movimiento Celular , Ciclina D1/antagonistas & inhibidores , Ciclina D1/genética , Ciclina D2/antagonistas & inhibidores , Ciclina D2/genética , Femenino , Puntos de Control de la Fase G1 del Ciclo Celular , Regulación Neoplásica de la Expresión Génica , Humanos , MicroARNs/antagonistas & inhibidores , MicroARNs/genética , Persona de Mediana Edad , Neoplasias Ováricas/metabolismo , Interferencia de ARN , ARN Largo no Codificante/antagonistas & inhibidores , ARN Largo no Codificante/genética , ARN Interferente Pequeño/metabolismo , Alineación de Secuencia
17.
Biochem Biophys Res Commun ; 496(2): 628-632, 2018 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-29366479

RESUMEN

In decades, a lot of long non-coding RNAs (LncRNAs) have been proven to exert influences on tumorigenesis in vitro and in vivo. Many lncRNAs have been reported as effective therapeutic targets and biomarkers in various cancers. However, whether LncRNAs are associated with the progression of PTC remains largely unknown. In this study, we measured the expression of CCND2-AS1 in PTC cell lines by quantitative real-time polymerase chain reaction (qRT-PCR).We found that CCND2-AS1 expression was significantly over-expressed in PTC cell lines compared to normal thyroid epithelial cells. Gain-and loss-of-function experiments were performed to investigate the role of CCND2-AS1 in PTC cells. In vitro experiments, we proved that CCND2-AS1 knockdown in TPC1 significantly suppressed cell proliferation, migration, and invasion, while CCND2-AS1 overexpression in BCPAP had the opposite effects. Meanwhile, we also found that CCND2-AS1 could regulate N-cadherin and Vimentin expression, which may influence invasion and migration. Our findings indicate that the lncRNA CCND2-AS1 is a gene associated with PTC and might become a potential therapeutic target.


Asunto(s)
Carcinoma Papilar/genética , Regulación Neoplásica de la Expresión Génica , Invasividad Neoplásica/genética , ARN Largo no Codificante/genética , Neoplasias de la Tiroides/genética , Carcinoma Papilar/patología , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Humanos , Invasividad Neoplásica/patología , Cáncer Papilar Tiroideo , Glándula Tiroides/patología , Neoplasias de la Tiroides/patología
18.
Clin Genet ; 93(3): 687-692, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-28941273

RESUMEN

The PI3K-AKT signalling cascade has a highly conserved role in a variety of processes including cell growth and glucose homoeostasis. Variants affecting this pathway can lead to one of several segmental overgrowth disorders. These conditions are genetically heterogeneous and require tailored, multidisciplinary involvement throughout life. Hypoglycaemia is common in other overgrowth syndromes but has been described only sporadically in association with PIK3CA and CCND2 variants. We report a cohort of 6 children with megalencephaly-capillary malformation (MCAP) and megalencephaly-polydactyly-polymicrogyria-hydrocephalus (MPPH) syndromes who developed clinically significant hypoglycaemia. Based on our findings, we suggest that segmental overgrowth patients should be screened for low blood glucose levels during childhood and there should be early specialist endocrine review in any children who develop hypoglycaemia.


Asunto(s)
Fosfatidilinositol 3-Quinasa Clase I/genética , Ciclina D2/genética , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Hipoglucemia/diagnóstico , Hipoglucemia/genética , Fenotipo , Adolescente , Alelos , Niño , Preescolar , Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Ciclina D2/metabolismo , Femenino , Estudios de Asociación Genética/métodos , Variación Genética , Genotipo , Humanos , Lactante , Masculino , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Adulto Joven
19.
Int J Mol Sci ; 19(10)2018 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-30308939

RESUMEN

Lung and breast cancer are the leading causes of mortality in women worldwide. The discovery of molecular alterations that underlie these two cancers and corresponding drugs has contributed to precision medicine. We found that CCND2 is a common target in lung and breast cancer. Hypermethylation of the CCND2 gene was reported previously; however, no comprehensive study has investigated the clinical significance of CCND2 alterations and its applications and drug discovery. Genome-wide methylation and quantitative methylation-specific real-time polymerase chain reaction (PCR) showed CCND2 promoter hypermethylation in Taiwanese breast cancer patients. As compared with paired normal tissues and healthy individuals, CCND2 promoter hypermethylation was detected in 40.9% of breast tumors and 44.4% of plasma circulating cell-free DNA of patients. The western cohort of The Cancer Genome Atlas also demonstrated CCND2 promoter hypermethylation in female lung cancer, lung adenocarcinoma, and breast cancer patients and that CCND2 promoter hypermethylation is an independent poor prognostic factor. The cell model assay indicated that CCND2 expression inhibited cancer cell growth and migration ability. The demethylating agent antroquinonol D upregulated CCND2 expression, caused cell cycle arrest, and inhibited cancer cell growth and migration ability. In conclusion, hypermethylation of CCND2 is a potential diagnostic, prognostic marker and drug target, and it is induced by antroquinonol D.


Asunto(s)
Neoplasias de la Mama/genética , Ciclina D2/genética , Metilación de ADN , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Neoplasias Pulmonares/genética , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Biomarcadores de Tumor , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/mortalidad , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Ciclina D2/antagonistas & inhibidores , Relación Dosis-Respuesta a Droga , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/mortalidad , Pronóstico , Regiones Promotoras Genéticas , Modelos de Riesgos Proporcionales , ARN Mensajero/genética , Ubiquinona/análogos & derivados
20.
Biochem Biophys Res Commun ; 482(4): 1219-1225, 2017 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-27923660

RESUMEN

Glioma is the most common and aggressive primary brain tumor in adults. Long-non coding RNAs (lncRNAs) have been recently shown to play important roles in regulating numerous biological processes both in physiologic and pathologic condition. However, the role of lncRNAs in glioma remains largely unknown. In this study, we firstly found that lncRNA CCND2-AS2 is significantly up regulated in malignant glioma tissues and cell lines. Both loss- and gain-functions assays show that CCND2-AS1 promotes glioma cells proliferation and growth. In addition, we also revealed that highly expressed CCND2-AS1 could enhance Wnt/ß-catenin signaling in glioma. Taken together, our findings revealed a novel lncRNA CCND2-AS1 promotes glioma cell proliferation through Wnt/ß-catenin signaling and CCND2-AS1 might function as a potential novel therapeutic target for the treatment of glioma.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Ciclina D2/metabolismo , Glioma/metabolismo , ARN Largo no Codificante/genética , Vía de Señalización Wnt , Astrocitos/metabolismo , Ciclo Celular , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Pronóstico , Transfección , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda