Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 166
Filtrar
1.
Funct Integr Genomics ; 24(2): 48, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38436805

RESUMEN

Long non-coding RNA cyclin-dependent kinase inhibitor 2B antisense RNA 1 (CDKN2B-AS1) in various diseases has been verified. However, the underlying mechanism of CDKN2B-AS1 contributes to the development of allergic rhinitis (AR) remains unknown. To evaluate the impact of CDKN2B-AS1 on AR, BALB/c mice were sensitized by intraperitoneal injection of normal saline containing ovalbumin (OVA) and calmogastrin to establish an AR model. Nasal rubbing and sneezing were documented after the final OVA treatment. The concentrations of IgE, IgG1, and inflammatory elements were quantified using ELISA. Hematoxylin and eosin (H&E) staining and immunofluorescence were used to assess histopathological variations and tryptase expression, respectively. StarBase, TargetScan and luciferase reporter assays were applied to predict and confirm the interactions among CDKN2B-AS1, miR-98-5p, and SOCS1. CDKN2B-AS1, miR-98-5p, and SOCS1 levels were assessed by quantitative real-time PCR (qRT-PCR) or western blotting. Our results revealed that CDKN2B-AS1 was obviously over-expressed in the nasal mucosa of AR patients and AR mice. Down-regulation of CDKN2B-AS1 significantly decreased nasal rubbing and sneezing frequencies, IgE and IgG1 concentrations, and cytokine levels. Furthermore, down-regulation of CDKN2B-AS1 also relieved the pathological changes in the nasal mucosa, and the infiltration of eosinophils and mast cells. Importantly, these results were reversed by the miR-98-5p inhibitor, whereas miR-98-5p directly targeted CDKN2B-AS1, and miR-98-5p negatively regulated SOCS1 level. Our findings demonstrate that down-regulation of CDKN2B-AS1 improves allergic inflammation and symptoms in a murine model of AR through the miR-98-5p/SOCS1 axis, which provides new insights into the latent functions of CDKN2B-AS1 in AR treatment.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Rinitis Alérgica , Animales , Humanos , Ratones , Regulación hacia Abajo , Inmunoglobulina E , Inmunoglobulina G , Ratones Endogámicos BALB C , MicroARNs/genética , Rinitis Alérgica/inducido químicamente , Rinitis Alérgica/genética , ARN Largo no Codificante/genética , Estornudo , Proteína 1 Supresora de la Señalización de Citocinas/genética
2.
Exp Cell Res ; 422(1): 113413, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36400182

RESUMEN

BACKGROUND: Protein arginine methyltransferase 6 (PRMT6) is a type I arginine methyltransferase that asymmetrically dimethylates histone H3 arginine 2 (H3R2me2a). However, the biological roles and underlying molecular mechanisms of PRMT6 in colorectal cancer (CRC) remain unclear. METHODS: PRMT6 expression in CRC tissue was examined using immunohistochemistry. The effect of PRMT6 on CRC cells was investigated in vitro and in vivo. Mass spectrometry, co-immunoprecipitation and GST pulldown assays were performed to identify interaction partners of PRMT6. RNA-seq, chromatin immunoprecipitation, Western blot and qRT-PCR assays were used to investigate the mechanism of PRMT6 in gene regulation. RESULTS: PRMT6 is significantly upregulated in CRC tissues and facilitates cell proliferation of CRC cells in vitro and in vivo. Through RNA-seq analysis, CDKN2B (p15INK4b) and CCNG1 were identified as new transcriptional targets of PRMT6. PRMT6-dependent H3R2me2a mark was predominantly deposited at the promoters of CDKN2B and CCNG1 in CRC cells. Furthermore, PRMT5 was firstly characterized as an interaction partner of PRMT6. Notably, H3R2me2a coincides with PRMT5-mediated H4R3me2s and H3R8me2s marks at the promoters of CDKN2B and CCNG1 genes, thus leading to transcriptional repression of these genes. CONCLUSIONS: PRMT6 functionally associates with PRMT5 to promote CRC progression through epigenetically repressing the expression of CDKN2B and CCNG1. These insights raise the possibility that combinational intervention of PRMT6 and PRMT5 may be a promising strategy for CRC therapy.


Asunto(s)
Neoplasias Colorrectales , Represión Epigenética , Proteínas Nucleares , Proteína-Arginina N-Metiltransferasas , Humanos , Arginina/química , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Ciclina G1/genética , Ciclina G1/metabolismo , Regulación de la Expresión Génica , Histonas/metabolismo , Proteínas Nucleares/metabolismo , Proteína-Arginina N-Metiltransferasas/metabolismo , Represión Epigenética/genética , Inhibidor p15 de las Quinasas Dependientes de la Ciclina/metabolismo
3.
Mol Carcinog ; 62(6): 743-753, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36825759

RESUMEN

Decitabine (5-aza-2-deoxycytidine, DAC), a DNA-hypomethylating agent, has been one of the frontline therapies for clonal hematopoietic stem cell disorders, such as myelodysplastic syndrome and acute myeloid leukemia, but DAC-resistance often occurs and leads to treatment failure. Therefore, elucidating the mechanisms of DAC resistance is important for improving its therapeutic efficacy. The extracellular vesicles and particles (EVPs) have been reported to be involved in mediating drug resistance by transporting diverse bioactive components. In this study, we established the DAC-resistant cell line (KG1a-DAC) from its parental human leukemia-derived cell line KG1a and observed that EVPs released from KG1a-DAC can promote DAC-resistant in KG1a cells. Moreover, treatment with KG1a-DAC EVPs reduced the expression of cyclin-dependent kinase inhibitor 2B (CDKN2B) in KG1a cells. miRNA-Seq analysis revealed that miR-4755-5p is overexpressed in EVPs from KG1a-DAC. Dual-luciferase reporter assay and flow cytometry analysis confirmed that miR-4755-5p rendered KG1a cells resistant to the DAC by targeting CDKN2B gene. Taken together, miR-4755-5p in EVPs released from the DAC-resistant cells plays an essential role in inducing DAC-resistance, and is a potential therapeutic target for suppression of DAC resistance.


Asunto(s)
Vesículas Extracelulares , Leucemia Mieloide Aguda , MicroARNs , Humanos , Decitabina/farmacología , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , MicroARNs/genética , MicroARNs/metabolismo
4.
Cell Tissue Res ; 394(3): 455-469, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37907763

RESUMEN

Excessive proliferation and migration of vascular smooth muscle cells (VSMCs) contribute to the intimal hyperplasia in type 2 diabetes mellitus (T2DM) patients after percutaneous coronary intervention. We aimed to investigate the role of lncRNA cyclin-dependent kinase inhibitor 2B antisense RNA 1 (CDKN2B-AS1) in VSMC proliferation and migration, as well as the underlying mechanism. T2DM model mice with carotid balloon injury were used in vivo and mouse aortic vascular smooth muscle cells (MOVAS) stimulated by insulin were used in vitro to assess the role of CDKN2B-AS1 in VSMC proliferation and migration following vascular injury in T2DM state. To investigate cell viability and migration, MTT assay and Transwell assay were conducted. To elucidate the underlying molecular mechanisms, the methylation-specific polymerase chain reaction, RNA immunoprecipitation, RNA-pull down, co-immunoprecipitation, and chromatin immunoprecipitation were performed. In vivo, CDKN2B-AS1 was up-regulated in common carotid artery tissues. In vitro, insulin treatment increased CDKN2B-AS1 level, enhanced MOVAS cell proliferation and migration, while the promoting effect was reversed by CDKN2B-AS1 knockdown. CDKN2B-AS1 forms a complex with enhancer of zeste homolog 2 (EZH2) and DNA methyltransferase (cytosine-5) 1 (DNMT1) to regulate smooth muscle 22 alpha (SM22α) methylation levels. In insulin-stimulated cells, SM22α knockdown abrogated the inhibitory effect of CDKN2B-AS1 knockdown on cell viability and migration. Injection of lentivirus-sh-CDKN2B-AS1 relieved intimal hyperplasia in T2DM mice with carotid balloon injury. Up-regulation of CDKN2B-AS1 induced by insulin promotes cell proliferation and migration by targeting SM22α through forming a complex with EZH2 and DNMT1, thereby aggravating the intimal hyperplasia after vascular injury in T2DM.


Asunto(s)
Diabetes Mellitus Tipo 2 , ARN Largo no Codificante , Lesiones del Sistema Vascular , Animales , Ratones , Movimiento Celular , Proliferación Celular , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/metabolismo , Hiperplasia , Insulina/farmacología , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/patología , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Lesiones del Sistema Vascular/genética , Lesiones del Sistema Vascular/metabolismo , Lesiones del Sistema Vascular/patología
5.
BMC Infect Dis ; 23(1): 568, 2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37653506

RESUMEN

BACKGROUND: There is no doubt about the cardiovascular complications of coronavirus disease 2019 (COVID-19). Several genetic studies have demonstrated an association between genetic variants in a region on chromosome 9p21 and in a region on chromosome 16q22 with myocardial infarction (MI) and atrial fibrillation (AF) accompanied by cerebral infarction (CI), respectively. OBJECTIVES: MI and CI susceptibility in patients with CDKN2B-AS1 and ZFHX3 polymorphisms, respectively, may have an effect on COVID-19 severity. We aimed to investigate whether there is an association between the cyclin-dependent kinase inhibitor 2B antisense RNA 1 (CDKN2B-AS1) rs1333049 and zinc finger homeobox 3 (ZFHX3) rs2106261 single nucleotide polymorphisms (SNPs) and the degree of COVID-19 severity. SUBJECTS AND METHODS: This current work was carried out on 360 subjects. They were classified into three groups: 90 severe COVID-19 cases, 90 moderate COVID-19 cases and 180 age- and gender-matched healthy controls. All subjects underwent genotyping of CDKN2B-AS1 (rs1333049) and ZFHX3 (rs2106261) by real-time PCR. RESULTS: The frequency of G/C in CDKN2B-AS1 (rs1333049) was higher in severe and moderate COVID-19 patients than in controls (71.1% and 53.3% vs. 37.8%). The frequency of the C/C of CDKN2B-AS1 (rs1333049) was higher in moderate COVID-19 patients than in controls (26.7% vs. 13.3%). There were no significant differences regarding genotype frequency and allelic distribution of ZFHX3 (rs2106261) between COVID-19 patients and healthy controls. CONCLUSION: CDKN2B-AS1 (rs1333049) gene polymorphism may play a role in determining the degree of COVID-19 severity. Further studies on its effect on cyclins and cyclin-dependent kinases (CDKs) [not measured in our study] may shed light on new treatment options for COVID-19.


Asunto(s)
COVID-19 , Infarto del Miocardio , Humanos , Inhibidor p15 de las Quinasas Dependientes de la Ciclina , Genes Homeobox , COVID-19/genética , Polimorfismo de Nucleótido Simple , Infarto Cerebral , Dedos de Zinc
6.
Exp Cell Res ; 419(1): 113268, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35750242

RESUMEN

As CDKN2B-AS1 is demonstrated to exert promotive effects on thyroid cancer (TC), this research aims to investigate the role of cancer stem cell-like cells (CSCs)-derived exosomal CDKN2B-AS1 in TC and the underlying regulatory mechanism. Specifically, CDKN2B expression and the correlation of CDKN2B with CDKN2B-AS1 in TC were determined via bioinformatics analysis and further verified by qRT-PCR. After transfection or co-culture with CSCs-derived exosomes, viability, migration, and invasion of TPC-1 and SW579 cells were evaluated by CCK-8, wound healing, and transwell assays, respectively. The uptake of exosomes by TC cells was detected by PKH67 labeling. In vivo tumor formation and metastasis models were established. Tumor volume and weight were calculated. Metastasis loci in lung tissues were observed by hematoxylin-eosin staining. The expression levels of CDKN2B-AS1, CDKN2B, and epithelial-mesenchymal transition- and TGF-ß1/Smad2/3 signaling-related factors were detected by qRT-PCR or Western blot. Concretely, CDKN2B and CDKN2B-AS1 were highly expressed in TC, and there was a positive correlation between the two. In addition, CDKN2B-AS1 promoted the translation and stability of CDKN2B. Furthermore, CDKN2B-AS1 was highly expressed in CSCs and CSCs-derived exosomes which could be absorbed by TC cells. CDKN2B silencing inhibited viability, migration, invasion, protein levels of CDKN2B, N-cadherin and Vimentin, and TGF-ß1/Smad2/3 signaling, while promoting E-cadherin expression in TC cells. CSCs-derived exosomal CDKN2B-AS1 did oppositely and reversed the effects of CDKN2B silencing on TC cells. CDKN2B silencing impeded tumor growth and metastasis in TC mice, while TGF-ß1 performed inversely and impaired the effects of CDKN2B silencing. Collectively, CSCs-derived exosomal CDKN2B-AS1 stabilizes CDKN2B to promote growth and metastasis of TC via TGF-ß1/Smad2/3 signaling.


Asunto(s)
ARN Largo no Codificante , Neoplasias de la Tiroides , Animales , Cadherinas , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Transición Epitelial-Mesenquimal , Ratones , Células Madre Neoplásicas , Factor de Crecimiento Transformador beta1
7.
Dig Dis Sci ; 68(7): 3009-3017, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36961670

RESUMEN

BACKGROUND: The incidence of gastric cancer has long been at a high level in China, seriously affecting the health of Chinese people. AIMS: This case‒control study was performed to identify gene methylation biomarkers of gastric cancer susceptibility. METHODS: A total of 393 gastric cancer cases and 397 controls were included in this study. Gene methylation in peripheral blood leukocytes was detected by a methylation-sensitive high-resolution melting method, and the Helicobacter pylori antibody presence was semi-quantified in serum by ELISA. RESULTS: Individuals with total methylation of CDKN2B/P15 had a 1.883-fold (95%CI: 1.166-3.040, P = 0.010) risk of gastric cancer compared with unmethylated individuals. Individuals with both CDKN2B/P15 and NEUROG1 methylation had a higher risk of gastric cancer (OR = 2.147, 95% CI: 1.137-4.073, P = 0.019). The interaction between CDKN2B/P15 and NEUROG1 total methylation on gastric cancer risk was affected by the pattern of adjustment. In addition, the joint effects between CDKN2B/P15 total methylation and environmental factors, such as freshwater fish intake (OR = 6.403, 95% CI = 2.970-13.802, P < 0.001), irregular diet (OR = 5.186, 95% CI = 2.559-10.510, P < 0.001), unsanitary water intake (OR = 2.238, 95% CI = 1.144-4.378, P = 0.019), smoking (OR = 2.421, 95% CI = 1.456-4.026, P = 0.001), alcohol consumption(OR = 2.163, 95% CI = 1.309-3.576, P = 0.003), and garlic intake(OR = 0.373, 95% CI = 0.196-0.709, P = 0.003) on GC risk were observed, respectively. However, CDKN2B/P15 and NEUROG1 total methylation were not associated with gastric cancer prognosis. CONCLUSION: CDKN2B/P15 methylation in peripheral blood may be a potential biomarker for evaluating susceptibility to gastric cancer. The joint effects between CDKN2B/P15 methylation and environmental factors may also contribute to gastric cancer susceptibility.


Asunto(s)
Metilación de ADN , Neoplasias Gástricas , Humanos , Biomarcadores , Estudios de Casos y Controles , Inhibidor p15 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p15 de las Quinasas Dependientes de la Ciclina/metabolismo , Neoplasias Gástricas/etiología , Neoplasias Gástricas/genética
8.
Int J Mol Sci ; 24(22)2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-38003316

RESUMEN

ANRIL (Antisense Noncoding RNA in the INK4 Locus), also named CDKN2B-AS1, is a long non-coding RNA with outstanding functions that regulates genes involved in atherosclerosis development. ANRIL genotypes and the expression of linear and circular isoforms have been associated with coronary artery disease (CAD). The CDKN2A and the CDKN2B genes at the CDKN2A/B locus encode the Cyclin-Dependent Kinase inhibitor protein (CDKI) p16INK4a and the p53 regulatory protein p14ARF, which are involved in cell cycle regulation, aging, senescence, and apoptosis. Abnormal ANRIL expression regulates vascular endothelial growth factor (VEGF) gene expression, and upregulated Vascular Endothelial Growth Factor (VEGF) promotes angiogenesis by activating the NF-κB signaling pathway. Here, we explored associations between determinations of the linear, circular, and linear-to-circular ANRIL gene expression ratio, CDKN2A, VEGF and its receptor kinase insert domain-containing receptor (KDR) and cardiovascular risk factors and all-cause mortality in high-risk coronary patients before they undergo coronary artery bypass grafting surgery (CABG). We found that the expression of ANRIL isoforms may help in the prediction of CAD outcomes. Linear isoforms were correlated with a worse cardiovascular risk profile while the expression of circular isoforms of ANRIL correlated with a decrease in oxidative stress. However, the determination of the linear versus circular ratio of ANRIL did not report additional information to that determined by the evaluation of individual isoforms. Although the expressions of the VEFG and KDR genes correlated with a decrease in oxidative stress, in binary logistic regression analysis it was observed that only the expression of linear isoforms of ANRIL and VEGF significantly contributed to the prediction of the number of surgical revascularizations.


Asunto(s)
Enfermedad de la Arteria Coronaria , ARN Largo no Codificante , Humanos , Enfermedad de la Arteria Coronaria/genética , Factor A de Crecimiento Endotelial Vascular , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , FN-kappa B/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Isoformas de Proteínas/genética
9.
Hum Mutat ; 43(10): 1368-1376, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35723634

RESUMEN

Schwannomatosis comprises a group of hereditary tumor predisposition syndromes characterized by, usually benign, multiple nerve sheath tumors, which frequently cause severe pain that does not typically respond to drug treatments. The most common schwannomatosis-associated gene is NF2, but SMARCB1 and LZTR1 are also associated. There are still many cases in which no pathogenic variants (PVs) have been identified, suggesting the existence of as yet unidentified genetic risk factors. In this study, we performed extended genetic screening of 75 unrelated schwannomatosis patients without identified germline PVs in NF2, LZTR1, or SMARCB1. Screening of the coding region of DGCR8, COQ6, CDKN2A, and CDKN2B was carried out, based on previous reports that point to these genes as potential candidate genes for schwannomatosis. Deletions or duplications in CDKN2A, CDKN2B, and adjacent chromosome 9 region were assessed by multiplex ligation-dependent probe amplification analysis. Sequencing analysis of a patient with multiple schwannomas and melanomas identified a novel duplication in the coding region of CDKN2A, disrupting both p14ARF and p16INK4a. Our results suggest that none of these genes are major contributors to schwannomatosis risk but the possibility remains that they may have a role in more complex mechanisms for tumor predisposition.


Asunto(s)
Inhibidor p16 de la Quinasa Dependiente de Ciclina , Neurilemoma , Neurofibromatosis , Neoplasias Cutáneas , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Humanos , Neurilemoma/genética , Neurilemoma/patología , Neurofibromatosis/genética , Proteínas de Unión al ARN , Proteína SMARCB1/genética , Neoplasias Cutáneas/genética , Factores de Transcripción/genética
10.
J Gene Med ; 24(1): e3389, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34559933

RESUMEN

BACKGROUND: Although cyclin-dependent kinase inhibitor 2B antisense RNA 1 (CDKN2B-AS1) is upregulated in glioma, its function and potential mechanism in glioma remain unclear. METHODS: CDKN2B-AS1 level in glioma tissues and cell lines LN229, U251, and U87 was measured by qRT-PCR. Loss-of-function assays using short hairpin RNA for CDKN2B-AS1 (sh-CDKN2B-AS1) were performed to evaluate the effect of CDKN2B-AS1 on cell invasion, migration, proliferation, and apoptosis. The relationship among CDKN2B-AS1, miR-199a-5p, and DDR1 was determined by bioinformatics analysis and luciferase reporter assay. Rescue experiments were conducted to explore the function of CDKN2B-AS1 and miR-199a-5p in glioma. An in vivo animal model of lentivirally transduced U87 glioma xenografts in mice was established to confirm the role of CDKN2B-AS1. RESULTS: CDKN2B-AS1 is significantly upregulated in glioma tissues and cell lines. CDKN2B-AS1 knockdown significantly inhibits cell proliferation, invasion, and migration, while promoting apoptosis of glioma cell lines U251 and U87. Further, a miR-199a-5p inhibitor attenuates the inhibitory effects of sh-CDKN2B-AS1 on these cell phenotypes. CDKN2B-AS1 positively regulates DDR1 expression by directly sponging miR-199a-5p. Moreover, CDKN2B-AS1 knockdown efficiently inhibits U87 tumor xenograft growth in mice. CONCLUSION: Our study reveals that CDKN2B-AS1 promotes glioma development by regulating the miR-199a-5p/DDR1 axis, suggesting that this lncRNA might be a potential therapeutic target.


Asunto(s)
Neoplasias Encefálicas , Glioma , MicroARNs , ARN Largo no Codificante , Animales , Apoptosis/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Inhibidor p15 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p15 de las Quinasas Dependientes de la Ciclina/metabolismo , Receptor con Dominio Discoidina 1/genética , Receptor con Dominio Discoidina 1/metabolismo , Regulación Neoplásica de la Expresión Génica , Glioma/genética , Humanos , Ratones , MicroARNs/genética , MicroARNs/metabolismo , ARN Largo no Codificante/metabolismo , Transducción de Señal
11.
J Recept Signal Transduct Res ; 42(1): 71-79, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33283575

RESUMEN

Osteosarcoma (OS), a prevalent aggressive malignancy in the bone, has limited therapeutic targets and diagnostic biomarkers. In the current investigation, RT-qPCR showed that CDKN2B-AS1 was enhanced in OS samples and cells. This research was set to examine the modulation of CDKN2B-AS1 in OS. The expression of CDKN2B-AS1 and downstream molecules was analyzed by RT-qPCR method. CCK8, EdU staining along with Transwell assays were applied to evaluate cell proliferation and invasion. Those in vitro investigations specified that silencing of CDKN2B-AS1 with shRNAs obviously impeded the proliferation and invasion of MG63 cells. To authenticate the relationships between CDKN2B-AS1 and microRNA-122-5p (miR-122-5p) or cyclin G1 (CCNG1) and miR-122-5p, we next employed luciferase reporter assay. We displayed that CDKN2B-AS1 repressed miR-122-5p to restore CCNG1 expression. All in all, our findings substantiated the indispensable function of CDKN2B-AS1 in OS progression and the possible molecular mechanism.


Asunto(s)
Neoplasias Óseas , Ciclina G1 , MicroARNs , Osteosarcoma , ARN Largo no Codificante , Neoplasias Óseas/genética , Línea Celular Tumoral , Proliferación Celular , Ciclina G1/genética , Regulación Neoplásica de la Expresión Génica , Humanos , MicroARNs/genética , Osteosarcoma/genética , ARN Largo no Codificante/genética
12.
Mol Biol Rep ; 49(11): 10339-10346, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36097105

RESUMEN

BACKGROUND: Previous genomewide association studies (GWASs), single nucleotide polymorphisms (SNPs) on cyclin-dependent kinase inhibitor 2 A (CDKN2A), cyclin-dependent kinase inhibitor 2B (CDKN2B), and cyclin-dependent kinase inhibitor 2B antisense RNA1 (CDKN2B-AS1) were reported as risk loci for glioma, a subgroup of the brain tumor. To further characterize this association with the risk of brain tumors in a Korean population, we performed a fine-mapping association study of CDKN2A, CDKN2B, and CDKN2B-AS1. METHODS AND RESULTS: A total of 17 SNPs were selected and genotyped in 1,439 subjects which were comprised of 959 patients (pituitary adenoma 335; glioma 324; meningioma 300) and 480 population controls (PCs). We discovered that a 3'untranslated region (3'UTR) variant, rs181031884 of CDKN2B (Asian-specific variant), had significant association with the risk of pituitary adenoma (PA) (Odds ratio = 0.58, P = 0.00003). Also, rs181031884 appeared as an independent causal variant among the significant variants in CDKN2A and CDKN2B, and showed dose-dependent effects on PA. CONCLUSIONS: Although further studies are needed to verify the impact of this variant on PA susceptibility, our results may help to understand CDKN2B polymorphism and the risk of PA.


Asunto(s)
Glioma , Neoplasias Hipofisarias , ARN Largo no Codificante , Humanos , Inhibidor p15 de las Quinasas Dependientes de la Ciclina/genética , Regiones no Traducidas 3'/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Neoplasias Hipofisarias/genética , Polimorfismo de Nucleótido Simple/genética , ARN Largo no Codificante/genética , Predisposición Genética a la Enfermedad
13.
J Clin Lab Anal ; 36(4): e24289, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35176183

RESUMEN

BACKGROUND: The present study aimed to explore the changes in the expressions of six tumor-related genes in myeloproliferative neoplasms (MPNs). The study population included 130 patients with MPNs (52 with chronic myeloid leukemia (CML), 49 with essential thrombocythemia (ET), 20 with polycythemia vera (PV), and 9 with primary myelofibrosis (PMF)) and 51 healthy individuals. METHODS: The expression profiling of six genes (ADAMTS18, CMTM5, CDKN2B, DCC, FHIT, and WNT5B) in the peripheral blood granulocyte cells was explored by real-time quantitative reverse transcription polymerase chain reaction. RESULTS: The patients with MPNs showed significant downregulation of CMTM5 (EFC = 0.66) and DCC (EFC = 0.65) genes in contrast to a non-significant upregulation of ADAMTS18, CDKN2B, FHIT, and WNT5B genes. Downregulation of DCC was consistent in all subtypes of MPN (EFC range: 0.591-0.860). However, CMTM5 had a 1.22-fold upregulation in PMF in contrast to downregulation in other MPN subtypes (EFC range: 0.599-0.775). The results revealed a significant downregulation in CMTM5 and DCC at below 60-years of age. Furthermore, female patients showed a clear-cut downregulation in both CMTM5 and DCC (EFC DCC: 0.436 and CMTM5: 0.570), while male patients presented a less prominent downregulation with a borderline p-value only in DCC (EFC: 0.69; p = 0.05). CONCLUSIONS: Chronic myeloid leukemia cases showed a significant upregulation of WNT5B, as a known oncogenesis gene. Two tumor suppressor genes, namely DCC and CMTM5, were downregulated in the patients with MPNs, especially in females and patients below 60 years of age.


Asunto(s)
Leucemia Mielógena Crónica BCR-ABL Positiva , Trastornos Mieloproliferativos , Policitemia Vera , Mielofibrosis Primaria , Proteínas ADAMTS/genética , Carcinogénesis/genética , Quimiocinas , Femenino , Genes Supresores de Tumor , Humanos , Janus Quinasa 2/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Proteínas con Dominio MARVEL/genética , Masculino , Trastornos Mieloproliferativos/genética , Policitemia Vera/genética , Mielofibrosis Primaria/genética
14.
Biochem Genet ; 60(1): 106-126, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34109516

RESUMEN

Recent genome-wide association studies reported the association of polymorphic alleles of PHACTR1 (rs9349379 (G)), CDDKN2B-AS1 (rs2891168 (G)), COL4A2 (rs11838776 (A)) and SOD2 (rs4880 (T)) with increased risk of coronary artery disease (CAD). The aim of our study was to assess the association of genetic variants with risk of CAD and its severity and in Southeast Iranian population. This study was examined in 250 CAD-suspected patients (mean age 53.49 ± 6.9 years) and 250 healthy individuals (mean age 52.96 ± 5.9 years). The Taqman SNP genotyping assay was used for genotyping of rs9349379 and rs2891168 variants. Tetra-primer Amplified refractory mutation system-PCR (Tetra-primer ARMS-PCR) was employed for rs11838776 and rs4880. Multivariate logistic regression analyses indicated that the G allele of rs9349379 and rs2891168 were associated with increased risk of CAD. The GG homozygous genotype of rs9349379 and rs2891168 had also been associated with risk of CAD. Additionally, the AG genotype of rs2891168 was associated with CAD. The significance of association of rs2891168 (G, GG, AG) increases with severity of CAD; but the rs9349379 (G, GG) have shown reverse association with severity of CAD. The genetic variants of COL4A2 (rs11838776) and SOD2 (rs4880) reflected no association with CAD in Southeast Iranian population. The findings of this study revealed that the PHACTR1 (rs9349379) and CDKN2B-AS1 (rs2891168) genetic variants might serve as genetic risk factor in CAD.


Asunto(s)
Enfermedad de la Arteria Coronaria , Proteínas de Microfilamentos/genética , ARN Largo no Codificante/genética , Estudios de Casos y Controles , Colágeno Tipo IV/genética , Enfermedad de la Arteria Coronaria/genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Irán , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Superóxido Dismutasa/genética
15.
Hum Mutat ; 42(10): 1208-1214, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34153138

RESUMEN

Genome-wide association studies have identified SNPs associated with glioma risk on 9p21.3, but biological mechanisms underlying this association are unknown. We tested the hypothesis that a functional SNP on 9p21.3 affects activity of an enhancer, causing altered expression of nearby genes. We considered all SNPs in linkage disequilibrium with the 9p21.3 sentinel SNP rs634537 that mapped to putative enhancers. An enhancer containing rs1537372 exhibited allele-specific effects on luciferase activity. Deletion of this enhancer in GBM cell lines correlated with decreased expression of CDKN2B-AS1. Expression quantitative trait loci analysis using non-diseased brain samples showed rs1537372 to be a consistently significant eQTL for CDKN2B-AS1. Additionally, our analysis of Hi-C data generated in neural progenitor cells showed that the bait region containing rs1537372 interacted with the CDKN2B-AS1 promoter. These data suggest rs1537372, a SNP at the 9p21.3 risk locus, is a functional variant that modulates expression of CDKN2B-AS1.


Asunto(s)
Glioma , ARN Largo no Codificante , Elementos de Facilitación Genéticos , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Glioma/genética , Humanos , Polimorfismo de Nucleótido Simple , ARN Largo no Codificante/genética
16.
J Cell Mol Med ; 25(18): 8877-8889, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34418317

RESUMEN

It has been implied that there is a possible relationship between cyclin-dependent protein kinase inhibitors antisense RNA 1 (CDKN2B-AS1) gene rs4977574 A/G polymorphism and coronary heart disease (CHD) susceptibility. However, as the research results are discrepant, no distinct consensus on this issue has been reached so far. In order to further elaborate the latent association of the CDKN2B-AS1 gene rs4977574 A/G polymorphism and CHD, this present meta-analysis was conducted. There were 40,979 subjects of 17 individual studies in the present meta-analysis. The pooled odds ratios (ORs) and their corresponding 95% confidence intervals (CIs) were estimated to determine the association strength. Considering the significant heterogeneity among the individual studies, the random-effect models were used. In the current meta-analysis, a significant association between CDKN2B-AS1 gene rs4977574 A/G polymorphism and CHD was found under allelic (OR: 1.18, 95% CI: 1.08-1.29, p = 4.83×10-4 ), recessive (OR: 1.36, 95% CI: 1.11-1.67, p = 0.003), dominant (OR: 0.71, 95% CI: 0.58-0.86, p = 6.26×10-4 ), heterozygous (OR:1.210, 95% CI: 1.076-1.360, p = 0.001), homozygous (OR: 1.394, 95% CI: 1.163-1.671, p = 3.31×10-4 ) and additive (OR: 1.180, 95% CI: 1.075-1.295, p = 4.83×10-4 ) genetic models. A more significant association between them was found in the Asian population than that in the whole population under these genetic models (p < 0.05). However, no significant association between them was found in the Caucasian population (p > 0.05). CDKN2B-AS1 gene rs4977574 A/G polymorphism was associated with CHD susceptibility, especially in the Asian population. G allele of CDKN2B-AS1 gene rs4977574 A/G polymorphism is the risk allele for CHD.


Asunto(s)
Enfermedad de la Arteria Coronaria/genética , ARN Largo no Codificante/genética , Predisposición Genética a la Enfermedad , Humanos , Polimorfismo de Nucleótido Simple , Factores de Riesgo
17.
J Biol Chem ; 295(25): 8374-8386, 2020 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-32336677

RESUMEN

The intrinsic regeneration ability of neurons is a pivotal factor in the repair of peripheral nerve injury. Therefore, identifying the key modulators of nerve regeneration may help improve axon regeneration and functional recovery after injury. Unlike for classical transcription factors and regeneration-associated genes, the function of long noncoding RNAs (lncRNAs) in the regulation of neuronal regeneration remains mostly unknown. In this study, we used RNA-Seq-based transcriptome profiling to analyze the expression patterns of lncRNAs and mRNAs in rat dorsal root ganglion (DRG) following sciatic nerve injury. Analyses using the lncRNA-mRNA co-expression network, gene ontology enrichment, and Kyoto Encyclopedia of Genes and Genomes pathway databases indicated that the lncRNA Arrl1 decreases neurite outgrowth after neuronal injury. shRNA-mediated Arrl1 silencing increased axon regeneration both in vitro and in vivo and improved functional recovery of the sciatic nerve. Moreover, inhibiting an identified target gene of Arrl1, cyclin-dependent kinase inhibitor 2B (Cdkn2b), markedly promoted neurite outgrowth of DRG neurons. We also found that Arrl1 acts as a competing endogenous RNA that sponges a Cdkn2b repressor, microRNA-761 (miR-761), and thereby up-regulates Cdkn2b expression during neuron regeneration. We conclude that the lncRNA Arrl1 affects the intrinsic regeneration of DRG neurons by derepressing Cdkn2b expression. Our findings indicate a role for an lncRNA-microRNA-kinase pathway in the regulation of axon regeneration and functional recovery following peripheral nerve injury in rats.


Asunto(s)
Regeneración Nerviosa/fisiología , Proyección Neuronal/fisiología , ARN Largo no Codificante/metabolismo , ARN Mensajero/metabolismo , Animales , Antagomirs/metabolismo , Axones/metabolismo , Células Cultivadas , Inhibidor p15 de las Quinasas Dependientes de la Ciclina/química , Inhibidor p15 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p15 de las Quinasas Dependientes de la Ciclina/metabolismo , Ganglios Espinales/citología , Ganglios Espinales/metabolismo , Masculino , MicroARNs/antagonistas & inhibidores , MicroARNs/genética , MicroARNs/metabolismo , Neuronas/citología , Neuronas/metabolismo , Traumatismos de los Nervios Periféricos/metabolismo , Traumatismos de los Nervios Periféricos/patología , Interferencia de ARN , ARN Largo no Codificante/antagonistas & inhibidores , ARN Largo no Codificante/genética , ARN Mensajero/genética , ARN Interferente Pequeño/metabolismo , Ratas , Ratas Sprague-Dawley , Nervio Ciático/lesiones , Nervio Ciático/fisiología , Transcriptoma
18.
J Cell Sci ; 132(16)2019 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-31371485

RESUMEN

Expression of hyperactive RAF kinases, such as the oncogenic B-RAF-V600E mutant, in normal human cells triggers a proliferative arrest that blocks tumor formation. We discovered that glucocorticoids delayed the entry into senescence induced by B-RAF-V600E in human fibroblasts, and allowed senescence bypass when the cells were regularly passaged, but that they did not allow proliferation of cells that were already senescent. Transcriptome and siRNA analyses revealed that the EGR1 gene is one target of glucocorticoid action. Transcription of the EGR1 gene is activated by the RAF-MEK-ERK MAPK pathway and acts as a sensor of hyper-mitogenic pathway activity. The EGR1 transcription factor regulates the expression of p15 and p21 (encoded by CDKN2B and CDKN1A, respectively) that are redundantly required for the proliferative arrest of BJ fibroblasts upon expression of B-RAF-V600E. Our results highlight the need to evaluate the action of glucocorticoid on cancer progression in melanoma, thyroid and colon carcinoma in which B-RAF-V600E is a frequent oncogene, and cancers in which evasion from senescence has been shown.


Asunto(s)
Senescencia Celular/efectos de los fármacos , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Fibroblastos/metabolismo , Glucocorticoides/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Proteínas Proto-Oncogénicas B-raf/metabolismo , Sustitución de Aminoácidos , Línea Celular , Senescencia Celular/genética , Inhibidor p15 de las Quinasas Dependientes de la Ciclina , Inhibidor p21 de las Quinasas Dependientes de la Ciclina , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Humanos , Sistema de Señalización de MAP Quinasas/genética , Mutación Missense , Proteínas Proto-Oncogénicas B-raf/genética
19.
Reprod Biomed Online ; 42(6): 1057-1066, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33820740

RESUMEN

RESEARCH QUESTION: Endometriosis is a common and complicated gynaecologic disease. Long non-coding RNA CDKN2B-AS1 plays a crucial role in the development and progression of several cancers. Whether CDKN2B-AS1 contributes to endometriosis, however, remains unknown. DESIGN: Cellular proliferation, invasion and DNA synthesis abilities were assessed by CCK8, transwell and 5-ethynyle-2'-deoxyuridine assays. The expression of epithelial-mesenchymal transition markers and three isoforms of AKT was detected using Western blot. Real-time polymerase chain reaction was used to determine the relative expression levels of CDKN2B-AS1 and candidate miRNAs in ectopic, eutopic endometria and normal endometrial tissues. The relationship between CDKN2B-AS1 and miRNA was determined by luciferase reporter assays. RESULTS: The relative expression level of CDKN2B-AS1 was up-regulated in eutopic and ectopic endometria. In endometrial stromal cells and Ishikawa cells, CDKN2B-AS1 overexpression promoted cellular proliferation and invasion, and increased the protein expression of vimentin but decreased the expression of E-cadherin. miR-424-5p was confirmed the target of CDKN2B-AS1 through bioinformatics tools and luciferase reporter assays. In addition, the enhanced effect of cellular phenotype of CDKN2B-AS1 overexpression was significantly attenuated by miR-424-5p overexpression. Furthermore, miR-424-5p was able to directly target AKT3 through luciferase reporter assay. Mechanistically, CDKN2B-AS1 acts as a ceRNA by sponging miR-424-5p and targets AKT3. CONCLUSIONS: The cellular mechanism of CDKN2B-AS1 in endometriosis was confirmed; CDKN2B-AS1 may be a potential target for ovarian endometriosis therapy.


Asunto(s)
Endometriosis/metabolismo , MicroARNs/metabolismo , Enfermedades del Ovario/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Largo no Codificante/metabolismo , Adulto , Endometriosis/etiología , Transición Epitelial-Mesenquimal , Femenino , Humanos , Persona de Mediana Edad , Enfermedades del Ovario/etiología , Cultivo Primario de Células , Adulto Joven
20.
Pathobiology ; 88(4): 289-300, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34130294

RESUMEN

INTRODUCTION: Follicular thyroid carcinoma (FTC) is more aggressive than the most common papillary thyroid carcinoma (PTC). However, the current research on FTC is less than PTC. Here, we investigated the effects of long noncoding RNA (lncRNA) GAS5 and miR-221-3p in FTC. METHODS: Quantitative real-time polymerase chain reaction (qRT-PCR) was employed to detect GAS5 and miR-221-3p expression in the FTC tissues and cells. Cell proliferation was assessed by CCK8 and EdU assays. Flow cytometry was performed to determine the cell cycle. The dual-luciferase reporter assay was employed to validate the binding relationship of GAS5/miR-221-3p and miR-221-3p/cyclin-dependent kinase inhibitor 2B (CDKN2B). Western blot was conducted to measure the protein level of CDKN2B. RESULTS: Our results displayed that GAS5 was downregulated, while miR-221-3p was upregulated in FTC tissues and cells. What's more, overexpression of GAS5 or miR-221-3p inhibition induced G0/G1 phase arrest and inhibited cell proliferation of FTC cells. GAS5 acted as a sponge of miR-221-3p, and CDKN2B was a target gene of miR-221-3p. Additionally, GAS5 inhibited cell cycle and proliferation of FTC cells via reducing miR-221-3p expression to enhance CDKN2B expression. CONCLUSION: GAS5 induced G0/G1 phase arrest and inhibited cell proliferation via targeting miR-221-3p/CDKN2B axis in FTC. Thus, GAS5 may be a potential therapeutic target for the treatment of FTC.


Asunto(s)
Adenocarcinoma Folicular/genética , Ciclo Celular/genética , Proliferación Celular/genética , Inhibidor p15 de las Quinasas Dependientes de la Ciclina/genética , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , ARN Largo no Codificante/genética , Neoplasias de la Tiroides/genética , Línea Celular Tumoral , Inhibidor p15 de las Quinasas Dependientes de la Ciclina/metabolismo , Humanos , MicroARNs/metabolismo , Neoplasias de la Tiroides/patología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda