Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 589
Filtrar
Más filtros

Publication year range
1.
Mol Cell ; 83(22): 4062-4077.e5, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37977118

RESUMEN

Abnormal increases in cell size are associated with senescence and cell cycle exit. The mechanisms by which overgrowth primes cells to withdraw from the cell cycle remain unknown. We address this question using CDK4/6 inhibitors, which arrest cells in G0/G1 and are licensed to treat advanced HR+/HER2- breast cancer. We demonstrate that CDK4/6-inhibited cells overgrow during G0/G1, causing p38/p53/p21-dependent cell cycle withdrawal. Cell cycle withdrawal is triggered by biphasic p21 induction. The first p21 wave is caused by osmotic stress, leading to p38- and size-dependent accumulation of p21. CDK4/6 inhibitor washout results in some cells entering S-phase. Overgrown cells experience replication stress, resulting in a second p21 wave that promotes cell cycle withdrawal from G2 or the subsequent G1. We propose that the levels of p21 integrate signals from overgrowth-triggered stresses to determine cell fate. This model explains how hypertrophy can drive senescence and why CDK4/6 inhibitors have long-lasting effects in patients.


Asunto(s)
Proteína p53 Supresora de Tumor , Humanos , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Ciclo Celular , División Celular , Proteína p53 Supresora de Tumor/genética , Quinasa 4 Dependiente de la Ciclina/genética , Quinasa 4 Dependiente de la Ciclina/metabolismo
2.
Genes Dev ; 35(9-10): 619-634, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33888561

RESUMEN

Development of the ovary or testis is required to establish reproductive competence. Gonad development relies on key cell fate decisions that occur early in embryonic development and are actively maintained. During gonad development, both germ cells and somatic cells proliferate extensively, a process facilitated by cell cycle regulation. This review focuses on the Cip/Kip family of cyclin-dependent kinase inhibitors (CKIs) in mouse gonad development. We particularly highlight recent single-cell RNA sequencing studies that show the heterogeneity of cyclin-dependent kinase inhibitors. This diversity highlights new roles for cell cycle inhibitors in controlling and maintaining female fertility.


Asunto(s)
Puntos de Control del Ciclo Celular/genética , Fertilidad/genética , Gónadas/crecimiento & desarrollo , Animales , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Diferenciación Celular/genética , Gónadas/metabolismo , Ratones , Procesos de Determinación del Sexo/genética , Análisis de la Célula Individual
3.
Genes Dev ; 35(5-6): 379-391, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33602872

RESUMEN

Senescence is a key barrier to neoplastic transformation. To identify senescence regulators relevant to cancer, we screened a genome-wide shRNA library. Here, we describe exportin 7 (XPO7) as a novel regulator of senescence and validate its function in telomere-induced, replicative, and oncogene-induced senescence (OIS). XPO7 is a bidirectional transporter that regulates the nuclear-cytoplasmic shuttling of a broad range of substrates. Depletion of XPO7 results in reduced levels of TCF3 and an impaired induction of the cyclin-dependent kinase inhibitor p21CIP1 during OIS. Deletion of XPO7 correlates with poorer overall survival in several cancer types. Moreover, depletion of XPO7 alleviated OIS and increased tumor formation in a mouse model of liver cancer. Our results suggest that XPO7 is a novel tumor suppressor that regulates p21CIP1 expression to control senescence and tumorigenesis.


Asunto(s)
Senescencia Celular/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Carioferinas/genética , Carioferinas/metabolismo , Proteína de Unión al GTP ran/genética , Proteína de Unión al GTP ran/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Línea Celular Tumoral , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Femenino , Regulación del Desarrollo de la Expresión Génica/genética , Técnicas de Silenciamiento del Gen , Humanos , Ratones , Neoplasias/fisiopatología , Proteína 2 de Unión a Repeticiones Teloméricas/genética
4.
Proc Natl Acad Sci U S A ; 120(35): e2307989120, 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37603765

RESUMEN

As a promising environmental remediation technology, the electro-Fenton (EF) process is mainly limited by the two rate-limiting steps, which are H2O2 generation and activation. The electrocatalytic three-electron oxygen reduction reaction (3e- ORR) can directly activate oxygen to hydroxyl radicals (•OH), which is expected to break through the rate-limiting steps of the EF process. However, limited success has been achieved in the design of 3e- ORR electrocatalysts. Herein, we propose Cu/CoSe2/C with the strong metal-support interactions to enhance the 3e- ORR process, exhibiting remarkable reactivity and stability for •OH generation. Both experiment and DFT calculation results reveal that CoSe2 is conducive to the generation of H2O2. Meanwhile, the metallic Cu can enhance the adsorption strength of *H2O2 intermediates and thus promotes the one-electron reduction to •OH. The Cu/CoSe2/C catalyst exhibits the electron-transfer number close to 3.0 during the ORR process, and exhibits the outstanding •OH generation performance, achieving a higher apparent rate constant (6.0 times faster) toward ciprofloxacin compared with its analogy without the SMSI effect. Our work represents that the SMSI effect endows Cu/CoSe2/C high activity and selectivity for •OH generation, providing a unique perspective for the design of a high-efficiency 3e- ORR catalyst.

5.
Proc Natl Acad Sci U S A ; 119(23): e2202469119, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-35653562

RESUMEN

Cells exposed to environmental stress arrest the cell cycle until they have adapted to their new environment. Cells adjust the length of the arrest for each unique stressor, but how they do this is not known. Here, we investigate the role of the stress-activated phosphatase calcineurin (CN) in controlling cell cycle arrest in Saccharomyces cerevisiae. We find that CN controls arrest duration through activation of the G1 cyclin­dependent kinase inhibitor Cip1. Our results demonstrate that multiple stressors trigger a G1/S arrest through Hog1-dependent down-regulation of G1 cyclin transcription. When a stressor also activates CN, this arrest is lengthened as CN prolongs Hog1-dependent phosphorylation of Cip1. Cip1 plays no role in response to stressors that activate Hog1 but not CN. These findings illustrate how stress response pathways cooperate to tailor the stress response and suggest that Cip1 functions to prolong cell cycle arrest when a cell requires additional time for adaptation.


Asunto(s)
Calcineurina , Proteínas de Saccharomyces cerevisiae , Calcineurina/metabolismo , Ciclo Celular/fisiología , Puntos de Control del Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
BMC Biol ; 22(1): 71, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38523261

RESUMEN

BACKGROUND: Mitogen-activated protein kinases (MAPKs) preserve cell homeostasis by transducing physicochemical fluctuations of the environment into multiple adaptive responses. These responses involve transcriptional rewiring and the regulation of cell cycle transitions, among others. However, how stress conditions impinge mitotic progression is largely unknown. The mitotic checkpoint is a surveillance mechanism that inhibits mitotic exit in situations of defective chromosome capture, thus preventing the generation of aneuploidies. In this study, we investigate the role of MAPK Pmk1 in the regulation of mitotic exit upon stress. RESULTS: We show that Schizosaccharomyces pombe cells lacking Pmk1, the MAP kinase effector of the cell integrity pathway (CIP), are hypersensitive to microtubule damage and defective in maintaining a metaphase arrest. Epistasis analysis suggests that Pmk1 is involved in maintaining spindle assembly checkpoint (SAC) signaling, and its deletion is additive to the lack of core SAC components such as Mad2 and Mad3. Strikingly, pmk1Δ cells show up to twofold increased levels of the anaphase-promoting complex (APC/C) activator Cdc20Slp1 during unperturbed growth. We demonstrate that Pmk1 physically interacts with Cdc20Slp1 N-terminus through a canonical MAPK docking site. Most important, the Cdc20Slp1 pool is rapidly degraded in stressed cells undergoing mitosis through a mechanism that requires MAPK activity, Mad3, and the proteasome, thus resulting in a delayed mitotic exit. CONCLUSIONS: Our data reveal a novel function of MAPK in preventing mitotic exit and activation of cytokinesis in response to stress. The regulation of Cdc20Slp1 turnover by MAPK Pmk1 provides a key mechanism by which the timing of mitotic exit can be adjusted relative to environmental conditions.


Asunto(s)
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Ciclosoma-Complejo Promotor de la Anafase/genética , Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas Cdc20/genética , Proteínas Cdc20/metabolismo , Proteínas de Ciclo Celular/metabolismo , Mitosis , Huso Acromático/metabolismo
7.
J Biol Chem ; 299(2): 102842, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36581205

RESUMEN

The small GTPase KRAS is frequently mutated in pancreatic cancer and its cooperation with the transcription factor MYC is essential for malignant transformation. The key to oncogenic KRAS and MYC working together is the stabilization of MYC expression due to KRAS activating the extracellular signal-regulated kinase 1/2, which phosphorylates MYC at serine 62 (Ser 62). This prevents the proteasomal degradation of MYC while enhancing its transcriptional activity. Here, we identify how this essential signaling connection between oncogenic KRAS and MYC expression is mediated by the inhibitor of apoptosis protein family member Survivin. This discovery stemmed from our finding that Survivin expression is downregulated upon treatment of pancreatic cancer cells with the KRASG12C inhibitor Sotorasib. We went on to show that oncogenic KRAS increases Survivin expression by activating extracellular signal-regulated kinase 1/2 in pancreatic cancer cells and that treating the cells either with siRNAs targeting Survivin or with YM155, a small molecule that potently blocks Survivin expression, downregulates MYC and strongly inhibited their growth. We further determined that Survivin protects MYC from degradation by blocking autophagy, which then prevents cellular inhibitor of protein phosphatase 2A from undergoing autophagic degradation. Cellular inhibitor of protein phosphatase 2A, by inhibiting protein phosphatase 2A, helps to maintain MYC phosphorylation at Ser 62, thereby ensuring its cooperation with oncogenic KRAS in driving cancer progression. Overall, these findings highlight a novel role for Survivin in mediating the cooperative actions of KRAS and MYC during malignant transformation and raise the possibility that targeting Survivin may offer therapeutic benefits against KRAS-driven cancers.


Asunto(s)
Neoplasias Pancreáticas , Proteínas Proto-Oncogénicas c-myc , Proteínas Proto-Oncogénicas p21(ras) , Survivin , Humanos , Línea Celular Tumoral , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Neoplasias Pancreáticas/patología , Proteína Fosfatasa 2/metabolismo , Estabilidad Proteica , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Survivin/genética , Survivin/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Neoplasias Pancreáticas
8.
EMBO J ; 39(1): e102190, 2020 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-31755573

RESUMEN

TGF-ß signaling pathway plays a key role in breast cancer metastasis. Recent studies suggest that TGF-ß regulates tumor progression and invasion not only via transcriptional regulation, but also via translational regulation. Using both bioinformatics and experimental tools, we identified a micropeptide CIP2A-BP encoded by LINC00665, whose translation was downregulated by TGF-ß in breast cancer cell lines. Using TNBC cell lines, we showed that TGF-ß-activated Smad signaling pathway induced the expression of translation inhibitory protein 4E-BP1, which inhibited eukaryote translation initiation factor elF4E, leading to reduced translation of CIP2A-BP from LINC00665. CIP2A-BP directly binds tumor oncogene CIP2A to replace PP2A's B56γ subunit, thus releasing PP2A activity, which inhibits PI3K/AKT/NFκB pathway, resulting in decreased expression levels of MMP-2, MMP-9, and Snail. Downregulation of CIP2A-BP in TNBC patients was significantly associated with metastasis and poor overall survival. In the MMTV-PyMT model, either introducing CIP2A-BP gene or direct injection of CIP2A-BP micropeptide significantly reduced lung metastases and improved overall survival. In conclusion, we provide evidence that CIP2A-BP is both a prognostic marker and a novel therapeutic target for TNBC.


Asunto(s)
Autoantígenos/metabolismo , Biomarcadores de Tumor/metabolismo , Regulación Neoplásica de la Expresión Génica , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Fragmentos de Péptidos/metabolismo , ARN Largo no Codificante/genética , Neoplasias de la Mama Triple Negativas/prevención & control , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Apoptosis , Autoantígenos/genética , Biomarcadores de Tumor/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proliferación Celular , Progresión de la Enfermedad , Femenino , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de la Membrana/genética , Ratones , Ratones Desnudos , Invasividad Neoplásica , Fragmentos de Péptidos/genética , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Pronóstico , Proteína Fosfatasa 2/genética , Proteína Fosfatasa 2/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Proteína Smad4/genética , Proteína Smad4/metabolismo , Tasa de Supervivencia , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Biochem Biophys Res Commun ; 691: 149306, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38056247

RESUMEN

BACKGROUND: Inflammatory myofibroblastic tumors (IMTs) are characterized by myofibroblast proliferation and an inflammatory cell infiltrate. Our previous study on IMTs reveals that disrupt NMD pathway causes to lower the threshold for triggering the immune cell infiltration, thereby resulting in inappropriate immune activation. However, myofibroblast differentiation and proliferation is not yet known. METHODS: RT-PCR, RT-qPCR, DNA sequence, western bolt, 5'race analysis and site-specific mutagenesis were used in this study. RESULTS: Here, an alternative spliced (ALS) UPF2 mRNA skipping exon 2 and 3 and corresponding to the truncated UPF2 protein were found in 2 pancreatic IMTs. We showed that the uORF present in the 5'UTR of UPF2 mRNA is responsible for the translation inhibition, whiles ALS UPF2 is more facilitated to be translated into the truncated UPF2 protein. Several mRNA targets of the NMD were upregulated in IMT samples, indicating that the truncated UPF2 function is strongly perturbed, resulted in disrupted NMD pathway in IMTs. These upregulated NMD targets included cdkn1a expression and the generation of high levels of p21 (waf1/cip1), which may contribute to triggering IMTs. CONCLUSION: The disrupt UPFs/NMD pathway may link to molecular alteration associated with differentiation and proliferation for IMTs.


Asunto(s)
Neoplasias , Humanos , Degradación de ARNm Mediada por Codón sin Sentido , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo
10.
Mol Carcinog ; 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38801393

RESUMEN

The anticancer potential and associated mechanisms of flavonoid fisetin are yet to be fully investigated on human head and neck squamous cell carcinoma (HNSCC). In the present study, fisetin (25-75 µM for 24-48 h) dose-dependently inhibited growth and induced death in HNSCC Cal33 and UM-SCC-22B cells, without showing any death in normal cells. Fisetin (25-50 µM) induced G2/M phase arrest via decrease in Cdc25C, CDK1, cyclin B1 expression, and an increase in p53(S15). A concentration-dependent increase in fisetin-induced DNA damage and apoptosis in HNSCC cells was authenticated by comet assay, gamma-H2A.X(S139) phosphorylation, and marked cleavage of PARP protein. Interestingly, fisetin-induced cell death occurred independently of p53 and reactive oxygen species production. The activation of JNK and inhibition of PI3K/Akt, ERK1/2, EGFR, and STAT-3 signaling were identified. Further, fisetin-induced apoptosis was mediated, in part, via p21Cip1 and p27Kip1 cleavage by caspase, which was reversed by z-VAD-FMK, a pan-caspase inhibitor. Subsequently, fisetin was also found to induce autophagy; nevertheless, autophagy attenuation exaggerated apoptosis. Oral fisetin (50 mg/kg body weight) treatment to establish Cal33 xenograft in mice for 19 days showed 73% inhibition in tumor volume (p < 0.01) along with a decrease in Ki67-positive cells and an increase in cleaved caspase-3 level in tumors. Consistent with the effect of 50 µM fisetin in vitro, the protein levels of p21Cip1 and P27Kip1 were also decreased by fisetin in tumors. Together, these findings showed strong anticancer efficacy of fisetin against HNSCC with downregulation of EGFR-Akt/ERK1/2-STAT-3 pathway and activation of JNK/c-Jun, caspases and caspase-mediated cleavage of p21Cip1 and p27Kip1.

11.
EMBO Rep ; 23(12): e54911, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36305233

RESUMEN

Major depressive disorder (MDD) is a severe mental illness. Decreased brain plasticity and dendritic fields have been consistently found in MDD patients and animal models; however, the underlying molecular mechanisms remain to be clarified. Here, we demonstrate that the deletion of cancerous inhibitor of PP2A (CIP2A), an endogenous inhibitor of protein phosphatase 2A (PP2A), leads to depression-like behaviors in mice. Hippocampal RNA sequencing analysis of CIP2A knockout mice shows alterations in the PI3K-AKT pathway and central nervous system development. In primary neurons, CIP2A stimulates AKT activity and promotes dendritic development. Further analysis reveals that the effect of CIP2A in promoting dendritic development is dependent on PP2A-AKT signaling. In vivo, CIP2A deficiency-induced depression-like behaviors and impaired dendritic arborization are rescued by AKT activation. Decreased CIP2A expression and impaired dendrite branching are observed in a mouse model of chronic unpredictable mild stress (CUMS). Indicative of clinical relevance to humans, CIP2A expression is found decreased in transcriptomes from MDD patients. In conclusion, we discover a novel mechanism that CIP2A deficiency promotes depression through the regulation of PP2A-AKT signaling and dendritic arborization.


Asunto(s)
Trastorno Depresivo Mayor , Humanos , Ratones , Animales , Trastorno Depresivo Mayor/genética , Fosfatidilinositol 3-Quinasas , Neuronas , Plasticidad Neuronal
12.
Brain ; 146(12): 4880-4890, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37769650

RESUMEN

Congenital insensitivity to pain (CIP) and hereditary sensory and autonomic neuropathies (HSAN) are clinically and genetically heterogeneous disorders exclusively or predominantly affecting the sensory and autonomic neurons. Due to the rarity of the diseases and findings based mainly on single case reports or small case series, knowledge about these disorders is limited. Here, we describe the molecular workup of a large international cohort of CIP/HSAN patients including patients from normally under-represented countries. We identify 80 previously unreported pathogenic or likely pathogenic variants in a total of 73 families in the >20 known CIP/HSAN-associated genes. The data expand the spectrum of disease-relevant alterations in CIP/HSAN, including novel variants in previously rarely recognized entities such as ATL3-, FLVCR1- and NGF-associated neuropathies and previously under-recognized mutation types such as larger deletions. In silico predictions, heterologous expression studies, segregation analyses and metabolic tests helped to overcome limitations of current variant classification schemes that often fail to categorize a variant as disease-related or benign. The study sheds light on the genetic causes and disease-relevant changes within individual genes in CIP/HSAN. This is becoming increasingly important with emerging clinical trials investigating subtype or gene-specific treatment strategies.


Asunto(s)
Neuropatías Hereditarias Sensoriales y Autónomas , Insensibilidad Congénita al Dolor , Humanos , Insensibilidad Congénita al Dolor/genética , Neuropatías Hereditarias Sensoriales y Autónomas/genética , Mutación/genética
13.
Biometals ; 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38691278

RESUMEN

Under normal physiological conditions, the endogenous Labile Iron Pool (LIP) constitutes a ubiquitous, dynamic, tightly regulated reservoir of cellular ferrous iron. Furthermore, LIP is loaded into new apo-iron proteins, a process akin to the activity of metallochaperones. Despite such importance on iron metabolism, the LIP identity and binding properties have remained elusive. We hypothesized that LIP binds to cell constituents (generically denoted C) and forms an iron complex termed CLIP. Combining this binding model with the established Calcein (CA) methodology for assessing cytosolic LIP, we have formulated an equation featuring two experimentally quantifiable parameters (the concentrations of the cytosolic free CA and CA and LIP complex termed CALIP) and three unknown parameters (the total concentrations of LIP and C and their thermodynamic affinity constant Kd). The fittings of cytosolic CALIP × CA concentrations data encompassing a few cellular models to this equation with floating unknown parameters were successful. The computed adjusted total LIP (LIPT) and C (CT) concentrations fall within the sub-to-low micromolar range while the computed Kd was in the 10-2 µM range for all cell types. Thus, LIP binds and has high affinity to cellular constituents found in low concentrations and has remarkably similar properties across different cell types, shedding fresh light on the properties of endogenous LIP within cells.

14.
Cell Mol Life Sci ; 80(3): 80, 2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36869202

RESUMEN

Breast cancer is a persistent threat to women worldwide. A large proportion of breast cancers are dependent on the estrogen receptor α (ERα) for tumor progression. Therefore, targeting ERα with antagonists, such as tamoxifen, or estrogen deprivation by aromatase inhibitors remain standard therapies for ERα + breast cancer. The clinical benefits of monotherapy are often counterbalanced by off-target toxicity and development of resistance. Combinations of more than two drugs might be of great therapeutic value to prevent resistance, and to reduce doses, and hence, decrease toxicity. We mined data from the literature and public repositories to construct a network of potential drug targets for synergistic multidrug combinations. With 9 drugs, we performed a phenotypic combinatorial screen with ERα + breast cancer cell lines. We identified two optimized low-dose combinations of 3 and 4 drugs of high therapeutic relevance to the frequent ERα + /HER2-/PI3Kα-mutant subtype of breast cancer. The 3-drug combination targets ERα in combination with PI3Kα and cyclin-dependent kinase inhibitor 1 (p21). In addition, the 4-drug combination contains an inhibitor for poly (ADP-ribose) polymerase 1 (PARP1), which showed benefits in long-term treatments. Moreover, we validated the efficacy of the combinations in tamoxifen-resistant cell lines, patient-derived organoids, and xenograft experiments. Thus, we propose multidrug combinations that have the potential to overcome the standard issues of current monotherapies.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Receptor alfa de Estrógeno , Tamoxifeno , Estrógenos , Línea Celular
15.
Biochemistry (Mosc) ; 89(5): 839-852, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38880645

RESUMEN

Tumor-associated macrophages (TAMs) are an important component of the tumor microenvironment (TME) and the most abundant population of immune cells infiltrating a tumor. TAMs can largely determine direction of anti-tumor immune response by promoting it or, conversely, contribute to formation of an immunosuppressive TME that allows tumors to evade immune control. Through interactions with tumor cells or other cells in the microenvironment and, as a result of action of anti-cancer therapy, macrophages can enter senescence. In this review, we have attempted to summarize information available in the literature on the role of senescent macrophages in tumors. With the recent development of senolytic therapeutic strategies aimed at removing senescent cells from an organism, it seems important to discuss functions of the senescent macrophages and potential role of the senolytic drugs in reprogramming TAMs to enhance anti-tumor immune response and improve efficacy of cancer treatment.


Asunto(s)
Senescencia Celular , Neoplasias , Microambiente Tumoral , Macrófagos Asociados a Tumores , Microambiente Tumoral/inmunología , Humanos , Neoplasias/inmunología , Neoplasias/patología , Neoplasias/metabolismo , Neoplasias/tratamiento farmacológico , Macrófagos Asociados a Tumores/inmunología , Macrófagos Asociados a Tumores/metabolismo , Animales , Macrófagos/inmunología , Macrófagos/metabolismo , Biomarcadores de Tumor/metabolismo
16.
J Biol Chem ; 298(7): 102121, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35697074

RESUMEN

We have previously shown that the serine/threonine kinase PKCα triggers MAPK/ERK kinase (MEK)-dependent G1→S cell cycle arrest in intestinal epithelial cells, characterized by downregulation of cyclin D1 and inhibitor of DNA-binding protein 1 (Id1) and upregulation of the cyclin-dependent kinase inhibitor p21Cip1. Here, we use pharmacological inhibitors, genetic approaches, siRNA-mediated knockdown, and immunoprecipitation to further characterize antiproliferative ERK signaling in intestinal cells. We show that PKCα signaling intersects the Ras-Raf-MEK-ERK kinase cascade at the level of Ras small GTPases and that antiproliferative effects of PKCα require active Ras, Raf, MEK, and ERK, core ERK pathway components that are also essential for pro-proliferative ERK signaling induced by epidermal growth factor (EGF). However, PKCα-induced antiproliferative signaling differs from EGF signaling in that it is independent of the Ras guanine nucleotide exchange factors (Ras-GEFs), SOS1/2, and involves prolonged rather than transient ERK activation. PKCα forms complexes with A-Raf, B-Raf, and C-Raf that dissociate upon pathway activation, and all three Raf isoforms can mediate PKCα-induced antiproliferative effects. At least two PKCα-ERK pathways that collaborate to promote growth arrest were identified: one pathway requiring the Ras-GEF, RasGRP3, and H-Ras, leads to p21Cip1 upregulation, while additional pathway(s) mediate PKCα-induced cyclin D1 and Id1 downregulation. PKCα also induces ERK-dependent SOS1 phosphorylation, indicating possible negative crosstalk between antiproliferative and growth-promoting ERK signaling. Importantly, the spatiotemporal activation of PKCα and ERK in the intestinal epithelium in vivo supports the physiological relevance of these pathways and highlights the importance of antiproliferative ERK signaling to tissue homeostasis in the intestine.


Asunto(s)
Ciclina D1 , Proteína Quinasa C-alfa , Ciclina D1/genética , Ciclina D1/metabolismo , Factor de Crecimiento Epidérmico/metabolismo , Factor de Crecimiento Epidérmico/farmacología , Células Epiteliales/metabolismo , Mucosa Intestinal/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Proteína Quinasa C-alfa/genética , Proteína Quinasa C-alfa/metabolismo , Proteínas Serina-Treonina Quinasas , Proteínas Proto-Oncogénicas c-raf/genética , Proteínas Proto-Oncogénicas c-raf/metabolismo , Proteínas ras/genética , Proteínas ras/metabolismo
17.
J Clin Microbiol ; 61(10): e0035423, 2023 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-37728898

RESUMEN

This study aimed to evaluate different serological strategies for the postnatal diagnosis of congenital toxoplasmosis (CT) and establish a biological algorithm for CT diagnosis. The study analyzed serological data of immunoglobulins M, A, and G (IgM, IgA, IgG) performed by immunoenzymatic and compared immunological profile (CIP) assays in 668 newborns with CT diagnosis across four testing periods: P1 (D0- D10), P2 (D11-D35), P3 (D36-D45), and P4 (>D45). Forty-nine percent of the 668 CT cases were diagnosed during P1 and 34%, 4%, and 12% during P2, P3, and P4, respectively. CIP assays detected neosynthetized IgMs/IgGs in 98% of CT cases diagnosed during P1, while IgMs and IgAs were detected in 90% and 57% of CT cases diagnosed during P2 and in 88% and 67% of diagnoses made during P3, respectively. Detection of neosynthesized IgMs/IgGs, IgMs, and IgAs by immunoassay contributed to CT diagnosis in 81%, 77%, and 60% of cases, respectively. In total, 46% of serum samples were positive for all three parameters, 27% for two, and 27% for one of the three. The study recommends using the CIP assay as standard during P1 for CT diagnosis and IgM and IgA immunoassays after P1. A clinical and biological follow-up in a specialized center with a close collaboration between biologists and clinicians is highly recommended to increase the chances of early diagnosis. Overall, this study provides useful information for the development of a biological algorithm for CT diagnosis, which can aid in early detection and appropriate treatment of this disease.


Asunto(s)
Toxoplasma , Toxoplasmosis Congénita , Recién Nacido , Humanos , Toxoplasmosis Congénita/diagnóstico , Estudios Retrospectivos , Anticuerpos Antiprotozoarios , Inmunoglobulina M , Inmunoglobulina G , Inmunoglobulina A
18.
Mol Carcinog ; 62(4): 561-572, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36705466

RESUMEN

Cancerous inhibitor of protein phosphatase 2A (Cip2a) is an oncoprotein, playing important roles in tumor progression. However, the underlying mechanisms by which Cip2a promotes tumor aggressiveness in NSCLC remain to be further investigated. In this study, we found that Cip2a expression is elevated in NSCLC and correlates with poor prognosis. Knockdown of Cip2a significantly reduced the ability of cell proliferation, invasion, and metastasis of NSCLC both in vitro and in vivo. Furthermore, we found that Cip2a promotes tumor progression partly by inducing arginine biosynthesis, and knockdown of Cip2a exhibited a significantly increased sensitivity to arginine deprivation and mTOR inhibition. In addition, we found that p53 mutants in NSCLC cells increased Cip2a expression by inhibiting the activity of wild-type p53. Our findings provide new insights into the mechanisms of Cip2a in promoting tumor progression and suggest that Cip2a represents a potential therapeutic target for treating NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Neoplasias Pulmonares/metabolismo , Proteína p53 Supresora de Tumor , Proliferación Celular/genética , Autoantígenos/genética , Autoantígenos/metabolismo , Autoantígenos/uso terapéutico , Línea Celular Tumoral
19.
J Recept Signal Transduct Res ; 43(6): 133-143, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38166612

RESUMEN

Triple-negative breast cancer (TNBC) is associated with high-grade invasive carcinoma leading to a 10% to 15% death rate in younger premenopausal women. Targeting cancerous inhibitors of protein phosphatase (CIP2A) has been a highly effective approach for exploring therapeutic drug candidates. Lapatinib, a dual tyrosine kinase inhibitor, has shown promising inhibition properties by inducing apoptosis in TNBC carcinogenesis in vivo. Despite knowledge of the 3D structure of CIP2A, no reports provide insight into CIP2A ligand binding sites. To this effect, we conducted in silico site identification guided by lapatinib binding. Four of the five sites identified were cross-validated, and the stem domain revealed more excellent ligand binding affinity. The binding affinity of lapatinib in these sites was further computed using the Molecular Mechanics/Poisson-Boltzmann Surface Area (MM/PBSA) approach. According to MM/PBSA//200 ns MD simulations, lapatinib exhibited a higher binding affinity against CIP2A in site 2 with ΔG critical values of -37.1 kcal/mol. The steadiness and tightness of lapatinib with CIP2A inside the stem domain disclosed glutamic acid-318 as the culprit amino acid with the highest electrostatic energy. These results provide clear information on the CIP2A domain capable of ligand binding and validate lapatinib as a promising CIP2A inhibitor in TNBC carcinogenesis.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Femenino , Humanos , Lapatinib/uso terapéutico , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Ligandos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Factores de Transcripción , Sitios de Unión , Carcinogénesis , Línea Celular Tumoral
20.
FASEB J ; 36(3): e22209, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35195302

RESUMEN

Cancerous Inhibitor of PP2A (CIP2A), an endogenous PP2A inhibitor, is upregulated and causes reactive astrogliosis, synaptic degeneration, and cognitive deficits in Alzheimer's disease (AD). However, the mechanism underlying the increased CIP2A expression in AD brains remains unclear. We here demonstrated that the DNA damage-related Checkpoint kinase 1 (ChK1) is activated in AD human brains and 3xTg-AD mice. ChK1-mediated CIP2A overexpression drives inhibition of PP2A and activates STAT3, then leads to reactive astrogliosis and neurodegeneration in vitro. Infection of mouse brain with GFAP-ChK1-AAV induced AD-like cognitive deficits and exacerbated AD pathologies in vivo. In conclusion, we showed that ChK1 activation induces reactive astrogliosis, degeneration of neurons, and exacerbation of AD through the CIP2A-PP2A-STAT3 pathway, and inhibiting ChK1 may be a potential therapeutic approach for AD treatment.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Autoantígenos/metabolismo , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Gliosis/metabolismo , Proteínas de la Membrana/metabolismo , Animales , Astrocitos/metabolismo , Autoantígenos/genética , Células Cultivadas , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Células HEK293 , Humanos , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , Proteína Fosfatasa 2/metabolismo , Ratas , Ratas Sprague-Dawley , Factor de Transcripción STAT3/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda