Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
J Cell Sci ; 136(13)2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37282854

RESUMEN

Tylosis with oesophageal cancer (TOC) is a rare familial disorder caused by cytoplasmic mutations in inactive rhomboid 2 (iRhom2 or iR2, encoded by Rhbdf2). iR2 and the related iRhom1 (or iR1, encoded by Rhbdf1) are key regulators of the membrane-anchored metalloprotease ADAM17, which is required for activating EGFR ligands and for releasing pro-inflammatory cytokines such as TNFα (or TNF). A cytoplasmic deletion in iR2, including the TOC site, leads to curly coat or bare skin (cub) in mice, whereas a knock-in TOC mutation (toc) causes less severe alopecia and wavy fur. The abnormal skin and hair phenotypes of iR2cub/cub and iR2toc/toc mice depend on amphiregulin (Areg) and Adam17, as loss of one allele of either gene rescues the fur phenotypes. Remarkably, we found that iR1-/- iR2cub/cub mice survived, despite a lack of mature ADAM17, whereas iR2cub/cub Adam17-/- mice died perinatally, suggesting that the iR2cub gain-of-function mutation requires the presence of ADAM17, but not its catalytic activity. The iR2toc mutation did not substantially reduce the levels of mature ADAM17, but instead affected its function in a substrate-selective manner. Our findings provide new insights into the role of the cytoplasmic domain of iR2 in vivo, with implications for the treatment of TOC patients.


Asunto(s)
Queratodermia Palmar y Plantar Difusa , Queratodermia Palmoplantar , Neoplasias , Animales , Ratones , Proteína ADAM17/genética , Proteína ADAM17/metabolismo , Proteínas Portadoras/genética , Queratodermia Palmoplantar/genética , Proteínas de la Membrana/genética
2.
Cell Mol Life Sci ; 81(1): 102, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38409522

RESUMEN

The protease ADAM17 plays an important role in inflammation and cancer and is regulated by iRhom2. Mutations in the cytosolic N-terminus of human iRhom2 cause tylosis with oesophageal cancer (TOC). In mice, partial deletion of the N-terminus results in a curly hair phenotype (cub). These pathological consequences are consistent with our findings that iRhom2 is highly expressed in keratinocytes and in oesophageal cancer. Cub and TOC are associated with hyperactivation of ADAM17-dependent EGFR signalling. However, the underlying molecular mechanisms are not understood. We have identified a non-canonical, phosphorylation-independent 14-3-3 interaction site that encompasses all known TOC mutations. Disruption of this site dysregulates ADAM17 activity. The larger cub deletion also includes the TOC site and thus also dysregulated ADAM17 activity. The cub deletion, but not the TOC mutation, also causes severe reductions in stimulated shedding, binding, and stability of ADAM17, demonstrating the presence of additional regulatory sites in the N-terminus of iRhom2. Overall, this study contrasts the TOC and cub mutations, illustrates their different molecular consequences, and reveals important key functions of the iRhom2 N-terminus in regulating ADAM17.


Asunto(s)
Proteínas Portadoras , Neoplasias Esofágicas , Queratodermia Palmoplantar , Humanos , Ratones , Animales , Fosforilación , Proteínas Portadoras/metabolismo , Proteína ADAM17/genética , Proteína ADAM17/metabolismo , Transducción de Señal/genética , Mutación , Neoplasias Esofágicas/genética
3.
J Neurosci ; 43(21): 3949-3969, 2023 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-37037606

RESUMEN

Autism spectrum disorder (ASD) is a neurodevelopmental disorder with highly heritable heterogeneity. Mutations of CUB and sushi multiple domains 3 (CSMD3) gene have been reported in individuals with ASD. However, the underlying mechanisms of CSMD3 for the onset of ASD remain unexplored. Here, using male CSMD3 knock-out (CSMD3 -/-) mice, we found that genetic deletion of CSMD3 produced core autistic-like symptoms (social interaction deficits, restricted interests, and repetitive and stereotyped behaviors) and motor dysfunction in mice, indicating that the CSMD3 gene can be considered as a candidate for ASD. Moreover, we discovered that the ablation of CSMD3 in mice led to abnormal cerebellar Purkinje cell (PC) morphology in Crus I/II lobules, including aberrant developmental dendritogenesis and spinogenesis of PCs. Furthermore, combining in vivo fiber photometry calcium imaging and ex vivo electrophysiological recordings, we showed that the CSMD3 -/- mice exhibited an increased neuronal activity (calcium fluorescence signals) in PCs of Crus I/II lobules in response to movement activity, as well as an enhanced intrinsic excitability of PCs and an increase of excitatory rather than inhibitory synaptic input to the PCs, and an impaired long-term depression at the parallel fiber-PC synapse. These results suggest that CSMD3 plays an important role in the development of cerebellar PCs. Loss of CSMD3 causes abnormal PC morphology and dysfunction in the cerebellum, which may underlie the pathogenesis of motor deficits and core autistic-like symptoms in CSMD3 -/- mice. Our findings provide novel insight into the pathophysiological mechanisms by which CSMD3 mutations cause impairments in cerebellar function that may contribute to ASD.SIGNIFICANCE STATEMENT Autism spectrum disorder (ASD) is a neurodevelopmental disorder with highly heritable heterogeneity. Advances in genomic analysis have contributed to numerous candidate genes for the risk of ASD. Recently, a novel giant gene CSMD3 encoding a protein with CUB and sushi multiple domains (CSMDs) has been identified as a candidate gene for ASD. However, the underlying mechanisms of CSMD3 for the onset of ASD remain largely unknown. Here, we unravel that loss of CSMD3 results in abnormal morphology, increased intrinsic excitabilities, and impaired synaptic plasticity in cerebellar PCs, subsequently leading to motor deficits and ASD-like behaviors in mice. These results provide novel insight into the pathophysiological mechanisms by which CSMD3 mutations cause impairments in cerebellar function that may contribute to ASD.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Trastornos Motores , Animales , Masculino , Ratones , Calcio/metabolismo , Cerebelo/fisiología , Ratones Noqueados , Trastornos Motores/genética , Trastornos Motores/metabolismo , Células de Purkinje/fisiología
4.
Microb Pathog ; 194: 106796, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39025379

RESUMEN

Bats contain a diverse spectrum of viral species in their bodies. The RNA virus family Paramyxoviridae tends to infect several vertebrate species, which are accountable for a variety of devastating infections in both humans and animals. Viruses of this kind include measles, mumps, and Hendra. Some synonymous codons are favoured over others in mRNAs during gene-to-protein synthesis process. Such phenomenon is termed as codon usage bias (CUB). Our research emphasized many aspects that shape the CUB of genes in the Paramyxoviridae family found in bats. Here, the nitrogenous base A occurred the most. AT was found to be abundant in the coding sequences of the Paramyxoviridae family. RSCU data revealed that A or T ending codons occurred more frequently than predicted. Furthermore, 3 overrepresented codons (CAT, AGA, and GCA) and 7 underrepresented codons (CCG, TCG, CGC, CGG, CGT, GCG and ACG) were detected in the viral genomes. Correspondence analysis, neutrality plot, and parity plots highlight the combined impact of mutational pressure and natural selection on CUB. The neutrality plot of GC12 against GC3 yielded a regression coefficient value of 0.366, indicating that natural selection had a significant (63.4 %) impact. Moreover, RNA editing analysis was done, which revealed the highest frequency of C to T mutations. The results of our research revealed the pattern of codon usage and RNA editing sites in Paramyxoviridae genomes.


Asunto(s)
Quirópteros , Uso de Codones , Genoma Viral , Paramyxoviridae , Edición de ARN , Animales , Paramyxoviridae/genética , Genoma Viral/genética , Edición de ARN/genética , Quirópteros/virología , Quirópteros/genética , Codón/genética , Selección Genética , ARN Viral/genética , Virus ARN/genética , Mutación
5.
Zoo Biol ; 43(2): 149-163, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38214214

RESUMEN

In the wild, female polar bears (Ursus maritimus) with cubs may spend extended periods of time within the den following initial emergence. As a result, studying behavioral development of cubs at the denning site has been difficult and unreliable. Although care staff at zoological institutions have easier access to animals, every effort is made to minimize intrusions to maternal groups, which presents research limitations. Detroit Zoological Society staff used audio-equipped cameras installed in behind-the-scenes spaces to conduct approximately 9 weeks of monitoring on two female polar bear cubs of the same litter, one of whom (Laerke) was hand-reared while the other (Astra) was mother-reared. Monitoring spanned ages 14-24 weeks and consisted of 12, 5-min focal observations per observation day timed to evenly cover the entire 24-h day. Using generalized linear mixed models, we examined relationships between behavior and time of day, hour, and age. We also conducted descriptive analyses and used these to draw comparisons between the two cubs where appropriate. Despite different rearing environments, both cubs had highly comparable patterns of inactive, locomotory, and independent play behaviors. Astra generally decreased time spent nursing and in proximity to Suka as she aged. Data presented here represent a continuation of previous neonatal observations conducted on Astra, adding to the minimal body of knowledge currently available on first year polar bear cub development. We also report successful mitigation of stereotypic behavior in Laerke. Further studies of captive maternal groups can provide insight into this critical developmental stage, supporting both captive-based breeding efforts and in situ conservation efforts.


Asunto(s)
Ursidae , Humanos , Femenino , Animales , Animales de Zoológico , Conducta Estereotipada
6.
IUBMB Life ; 75(6): 493-513, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36598826

RESUMEN

Since the proposition of the pro-invasive activity of proteolytic enzymes over 70 years ago, several roles for proteases in cancer progression have been established. About half of the 473 active human proteases are expressed in the prostate and many of the most well-characterized members of this enzyme family are regulated by androgens, hormones essential for development of prostate cancer. Most notably, several kallikrein-related peptidases, including KLK3 (prostate-specific antigen, PSA), the most well-known prostate cancer marker, and type II transmembrane serine proteases, such as TMPRSS2 and matriptase, have been extensively studied and found to promote prostate cancer progression. Recent findings also suggest a critical role for proteases in the development of advanced and aggressive castration-resistant prostate cancer (CRPC). Perhaps the most intriguing evidence for this role comes from studies showing that the protease-activated transmembrane proteins, Notch and CDCP1, are associated with the development of CRPC. Here, we review the roles of proteases in prostate cancer, with a special focus on their regulation by androgens.


Asunto(s)
Péptido Hidrolasas , Neoplasias de la Próstata , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/enzimología , Neoplasias de la Próstata/patología , Humanos , Animales , Péptido Hidrolasas/sangre , Péptido Hidrolasas/metabolismo , Inhibidores de Proteínas Quinasas/uso terapéutico , Biomarcadores de Tumor/sangre
7.
Mol Ecol ; 32(9): 2271-2286, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36722794

RESUMEN

The gut microbiome of the giant panda (Ailuropoda melanoleuca) plays a vital role in nutrient acquisition from its specialized bamboo diet. Giant panda cubs harbour significantly different gut microbiota during their growth and development when feeding on milk before switching to bamboo. The fetal gut is sterile, and following birth, mother-to-infant microbial transmission has been implicated as a seeding source for the infant gut microbiota. Details of this transmission in giant pandas remain unclear. In this study, faecal samples were collected from seven panda mother-cub pairs when the cubs were 4-16 months old. Additional samples from the cubs' diet, soil and drinking water, and multiple body sites of the mothers were collected. Bacterial 16S rRNA gene sequencing and shotgun metagenomic sequencing were performed to determine the source and potential transmission routes of the cub gut microbiome. Source tracking analysis showed that maternal vagina, milk and faeces were the primary contributory sources of microbes, shaping the cub gut microbiome. Bacterial species from maternal faeces persisted the longest in the cub gut. Bacterial species in the diet contributed to the microbial community. Metagenomics analysis indicated that the predicted metabolic pathways of the gut microbiome also varied at different growth stages. Gut colonization with bacteria from various body sites of the mothers provides a foundational microbial community that is beneficial in fulfilling the evolving dietary needs of the cubs. This study suggests that mother-to-cub transmission is indispensable in shaping the gut microbiome of the developing panda cub.


Asunto(s)
Microbioma Gastrointestinal , Ursidae , Animales , Femenino , Bacterias/genética , Dieta/veterinaria , Heces/microbiología , Microbioma Gastrointestinal/genética , ARN Ribosómico 16S/genética , Ursidae/genética
8.
Anim Welf ; 32: e34, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38487433

RESUMEN

Lion (Panthera leo) cubs are used in wildlife interaction tourism but the effects on cub welfare are unknown. We assessed the behaviour of three cohorts of lion cubs, twelve animals in total, at three different interaction facilities, using continuous and scan-sampling methodologies for the entire duration of cub utilisation for human interactions. Cubs spent most time inactive (62%), particularly sleeping (38%), but also spent a substantial amount of time playing (13%) and being alert (12%). A generalised linear mixed model revealed that cub behaviour was similar in two facilities but different from cubs in the third. In these two similar facilities, as human interactions increased, the time spent resting, sleeping and playing with other cubs decreased, and alert behaviour, grooming of humans and flight responses increased. In the third facility, cubs had an abnormal activity budget, with high levels of inactivity (80%) accompanied by a lack of response to human interactions. We conclude that in some facilities normal cub behaviour cannot be achieved and may be compromised by a high frequency of human interactions, which therefore needs to be controlled to limit adverse effects on cub behaviour.

9.
Molecules ; 28(24)2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38138506

RESUMEN

Boron presents an important role in chemistry, biology, and materials science. Diatomic transition-metal borides (MBs) are the building blocks of many complexes and materials, and they present unique electronic structures with interesting and peculiar properties and a variety of bonding schemes which are analyzed here. In the first part of this paper, we present a review on the available experimental and theoretical studies on the first-row-transition-metal borides, i.e., ScB, TiB, VB, CrB, MnB, FeB, CoB, NiB, CuB, and ZnB; the second-row-transition-metal borides, i.e., YB, ZrB, NbB, MoB, TcB, RuB, RhB, PdB, AgB, and CdB; and the third-row-transition-metal borides, i.e., LaB, HfB, TaB, WB, ReB, OsB, IrB, PtB, AuB, and HgB. Consequently, in the second part, the second- and third-row MBs are studied via DFT calculations using the B3LYP, TPSSh, and MN15 functionals and, in some cases, via multi-reference methods, MRCISD+Q, in conjunction with the aug-cc-pVQZ-PPM/aug-cc-pVQZB basis sets. Specifically, bond distances, dissociation energies, frequencies, dipole moments, and natural NPA charges are reported. Comparisons between MB molecules along the three rows are presented, and their differences and similarities are analyzed. The bonding of the diatomic borides is also described; it is found that, apart from RhB(X1Σ+), which was just recently found to form quadruple bonds, RuB(X2Δ) and TcB(X3Σ-) also form quadruple σ2σ2π2π2 bonds in their X states. Moreover, to fill the gap existing in the current literature, here, we calculate the TcB molecule.

10.
Indian J Crit Care Med ; 27(3): 157-158, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36960113

RESUMEN

How to cite this article: Jagathkar G. Elderly in the ICU. Indian J Crit Care Med 2023;27(3):157-158.

11.
Mol Biol Rep ; 49(1): 539-565, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34822069

RESUMEN

Codon usage bias is the preferential or non-random use of synonymous codons, a ubiquitous phenomenon observed in bacteria, plants and animals. Different species have consistent and characteristic codon biases. Codon bias varies not only with species, family or group within kingdom, but also between the genes within an organism. Codon usage bias has evolved through mutation, natural selection, and genetic drift in various organisms. Genome composition, GC content, expression level and length of genes, position and context of codons in the genes, recombination rates, mRNA folding, and tRNA abundance and interactions are some factors influencing codon bias. The factors shaping codon bias may also be involved in evolution of the universal genetic code. Codon-usage bias is critical factor determining gene expression and cellular function by influencing diverse processes such as RNA processing, protein translation and protein folding. Codon usage bias reflects the origin, mutation patterns and evolution of the species or genes. Investigations of codon bias patterns in genomes can reveal phylogenetic relationships between organisms, horizontal gene transfers, molecular evolution of genes and identify selective forces that drive their evolution. Most important application of codon bias analysis is in the design of transgenes, to increase gene expression levels through codon optimization, for development of transgenic crops. The review gives an overview of deviations of genetic code, factors influencing codon usage or bias, codon usage bias of nuclear and organellar genes, computational methods to determine codon usage and the significance as well as applications of codon usage analysis in biological research, with emphasis on plants.


Asunto(s)
Uso de Codones , Codón , Animales , Anticodón , Composición de Base , Evolución Biológica , Biología Computacional/métodos , Bases de Datos Genéticas , Epistasis Genética , Evolución Molecular , Regulación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Humanos , Biosíntesis de Proteínas , ARN de Transferencia/genética , Selección Genética , Factores Sexuales , Especificidad de la Especie , Relación Estructura-Actividad
12.
BMC Vet Res ; 18(1): 68, 2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-35144609

RESUMEN

BACKGROUND: The red panda has been classified as an endangered species due to the decreased number in the world and disease is considered as a great threat to the health and survival of the cubs in captivity. RESULTS: This study analyzed 32 red panda cub mortalities (15 females and 17 males, age less than two months) through gross necropsy, microbiological examination, and histopathological observation at the Chengdu Research Base of Giant Panda Breeding, China, during 2014-2020. The results showed that screenings for canine distemper virus, canine parvovirus, rotavirus and parasite infection were all negative, however bacteria such as Klebsiella pneumoniae, Proteus mirabilis, Escherichia coli, Enterococcus faecalis, Pseudomonas were isolated from the tissue samples of some cubs. The major causes of death were respiratory (43.75%) and digestive system disease (28.13%), followed by cardiovascular disease (12.5%) and neonatal stillbirths (9.38%). Renal system diseases and trauma were also detected, at lower incidence (one case for each). The mortality rate within 15 days of birth was 68.75% and gradually decreased with age, there was no significant difference in gender. CONCLUSION: This study can provide a scientific basis for the analysis of the cause of death among red panda cubs in captivity, so as to improve the survival rate, help build the captive population and further the ex-situ conservation management of this endangered species. Additionally, our research may also provide insights into the in-situ conservation of wild red pandas by identifying emerging disease threats within the wild population and potential treatment for rescued individuals.


Asunto(s)
Ailuridae , Virus del Moquillo Canino , Enfermedades de los Perros , Infecciones por Escherichia coli , Animales , China/epidemiología , Perros , Especies en Peligro de Extinción , Infecciones por Escherichia coli/veterinaria , Femenino , Masculino
13.
Int J Mol Sci ; 23(16)2022 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-36012221

RESUMEN

Mahogunin ring finger 1 (MGRN1), an E3 ubiquitin, is involved in several physiological and neuropathological processes. Although mgrn1 mRNA is widely distributed in the central nervous system (CNS), detailed information on its cellular and subcellular localization is lacking and its physiological role remains unclear. In this study, we aimed to determine the distribution of MGRN1 in the mouse CNS using a newly produced antibody against MGRN1. We found that the MGRN1 protein was expressed in most neuronal cell bodies. An intense MGRN1 expression was also observed in the neuropil of the gray matter in different regions of the CNS, including the main olfactory bulb, cerebral cortex, caudate, putamen, thalamic nuclei, hypothalamic nuclei, medial eminence, superior colliculus, hippocampus, dentate gyrus, and spinal cord. Contrastingly, no MGRN1 expression was observed in glial cells. Double fluorescence and immunoelectron microscopic analyses revealed the intracellular distribution of MGRN1 in pre-synapses and near the outer membrane of the mitochondria in neurons. These findings indicate that MGRN1 is more widely expressed throughout the CNS; additionally, the intracellular expression of MGRN1 suggests that it may play an important role in synaptic and mitochondrial functions.


Asunto(s)
Neuronas , Ubiquitina-Proteína Ligasas , Animales , Sistema Nervioso Central/metabolismo , Ratones , Mitocondrias/metabolismo , Neuronas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
14.
Prog Pediatr Cardiol ; 62: 101407, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34121829

RESUMEN

Multisystem inflammatory syndrome of children (MIS-C) continues to be a highly concerning diagnosis in those recently infected with SARS-CoV-2. The diagnosis of MIS-C cases will likely become even more challenging as vaccine uptake and natural immunity in previously infected persons leads to lower circulating rates of SARS-CoV-2 infection and will make cases sporadic. Febrile children presenting with cardiac dysfunction, symptoms overlapping Kawasaki disease or significant gastrointestinal complaints warrant a thorough screen in emergency departments, urgent care centers, and outpatient pediatric or family medicine practices. An increased index of suspicion and discussion regarding higher level of care (transferring to pediatric tertiary care centers or to intensive care) continues to be recommended. Herein we outline a broad approach with a multidisciplinary team for those meeting the case definition and believe such an approach is crucial for successful outcomes.

15.
J Biol Chem ; 294(47): 17889-17902, 2019 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-31628192

RESUMEN

The neuropilin and tolloid-like (Neto) proteins Neto1 and Neto2 are auxiliary subunits of kainate-type glutamate receptors (KARs) that regulate KAR trafficking and gating. However, how Netos bind and regulate the biophysical functions of KARs remains unclear. Here, we found that the N-terminal domain (NTD) of glutamate receptor ionotropic kainate 2 (GluK2) binds the first complement C1r/C1s-Uegf-BMP (CUB) domain of Neto proteins (i.e. NTD-CUB1 interaction) and that the core of GluK2 (GluK2ΔNTD) binds Netos through domains other than CUB1s (core-Neto interaction). Using electrophysiological analysis in HEK293T cells, we examined the effects of these interactions on GluK2 gating, including deactivation, desensitization, and recovery from desensitization. We found that NTD deletion does not affect GluK2 fast gating kinetics, the desensitization, and the deactivation. We also observed that Neto1 and Neto2 differentially regulate GluK2 fast gating kinetics, which largely rely on the NTD-CUB1 interactions. NTD removal facilitated GluK2 recovery from desensitization, indicating that the NTD stabilizes the GluK2 desensitization state. Co-expression with Neto1 or Neto2 also accelerated GluK2 recovery from desensitization, which fully relied on the NTD-CUB1 interactions. Moreover, we demonstrate that the NTD-CUB1 interaction involves electric attraction between positively charged residues in the GluK2_NTD and negatively charged ones in the CUB1 domains. Neutralization of these charges eliminated the regulatory effects of the NTD-CUB1 interaction on GluK2 gating. We conclude that KARs bind Netos through at least two sites and that the NTD-CUB1 interaction critically regulates Neto-mediated GluK2 gating.


Asunto(s)
Activación del Canal Iónico , Proteínas de la Membrana/metabolismo , Receptores de Ácido Kaínico/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Células HEK293 , Humanos , Proteínas de la Membrana/química , Ratones , Modelos Biológicos , Modelos Moleculares , Unión Proteica , Dominios Proteicos , Ratas , Receptores de Ácido Kaínico/química , Receptores de N-Metil-D-Aspartato/química , Eliminación de Secuencia , Receptor de Ácido Kaínico GluK2
16.
Exp Cell Res ; 383(1): 111499, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31302030

RESUMEN

CUB domains are most exclusively found in secreted proteins and in a few transmembrane proteins. These domains are approximately 110 amino acids long and have four conserved cysteines that form a ß-sandwich fold. CUB domains proteins are involved in a wide range of biological functions. We have shown that CUB domains from Tolloid/BMP1 can bind BMP4 and block BMP signaling in the developing frog embryo. CUB domain-containing protein 1 (CDCP1) is one of the few transmembrane glycoprotein that contains three extracellular CUB domains and regulates anchorage-independent growth and cancer cell migration through activation of Src kinases. In the extracellular space, only a few proteins were found to interact with CDCP1 and at the moment no ligand was found. We demonstrate by using real time protein interaction on BIAcore chip that CDCP1 CUB domains bind directly to TGF-ß1 and BMP4. CDCP1 enhances TGF-ß1 signaling reporter activity and phosphorylated Smad2 levels but does not modulate BMP signaling pathway. CDCP1 actions on TGF-ß/Smad2 signaling are dependent on Smad2 and TGFRI and do not require Src or PKCδ binding. Our findings uncover a new co-receptor for TGF-ß1 and bring up new questions on whether CDCP1 cooperates with TGF-ß1 to promote cancer progression.


Asunto(s)
Antígenos de Neoplasias/metabolismo , Moléculas de Adhesión Celular/metabolismo , Proteína Smad2/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Familia-src Quinasas/metabolismo , Células HeLa , Humanos , Fosforilación
17.
J Enzyme Inhib Med Chem ; 35(1): 726-732, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32180482

RESUMEN

Tyrosinase is a copper-binding enzyme involved in melanin biosynthesis. However, the detailed structure of human tyrosinase has not yet been solved, along with the identification of the key sites responsible for its catalytic activity. We used site-directed mutagenesis to identify the residues critical for the copper binding of human tyrosinase. Seven histidine mutants in the two copper-binding sites were generated, and catalytic activities were characterised. The tyrosine hydroxylase activities of the CuA site mutants were approximately 50% lower than those of the wild-type tyrosinase, while the dopa oxidation activities of the mutants were not significantly different from that of wild-type tyrosinase. By contrast, mutations at CuB significantly decreased both tyrosine hydroxylation and dopa oxidation activities, confirming that the catalytic sites for these two activities are at least partially distinct. These findings provide a useful resource for further structural determination and development of tyrosinase inhibitors in the cosmetic and pharmaceutical industries.


Asunto(s)
Cobre/metabolismo , Histidina/metabolismo , Monofenol Monooxigenasa/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Biocatálisis , Cobre/química , Histidina/química , Humanos , Cinética , Modelos Moleculares , Monofenol Monooxigenasa/química , Monofenol Monooxigenasa/genética , Mutagénesis Sitio-Dirigida , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia
18.
Genomics ; 111(6): 1292-1297, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-30179657

RESUMEN

Codon usage bias (CUB) and mRNA structural stability are important intrinsic features of mRNA that correlate positively with mRNA expression level. However, it remains unclear whether the mRNA expression level can be regulated by adjusting these two parameters, influencing the mRNAs' structure. Here we explored the influence of CUB and mRNA structural stability on mRNA expression levels in Saccharomyces cerevisiae, using both wild type and computationally mutated mRNAs. Although in wild type, both CUB and mRNA stability positively regulate the mRNA expression level, any deviation from natural situation breaks such equilibrium. The naturally occurring codon composition is responsible for optimizing the mRNA expression, and under such composition, the mRNA structure having highest stability is selected by nature.


Asunto(s)
Uso de Codones , Estabilidad del ARN , ARN Mensajero/metabolismo , Codón , ARN Mensajero/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
19.
J Cell Physiol ; 234(5): 6397-6413, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30417339

RESUMEN

The mitochondrial cytochrome oxidase (CO) genes are involved in complex IV of the electron transport system, and dysfunction of CO genes leads to several diseases. However, no work has been reported on the codon usage pattern of these genes. We used bioinformatic methods to analyze the compositional properties and the codon usage pattern of the COI, COII, and COIII genes in fishes, birds, and mammals to understand the similarities and dissimilarities of codon usage in these genes, which gave an insight into the molecular biology of these genes. The effective number of codons (ENC) value of genes was high in different species of fishes, birds and mammals, which indicates that the codon bias of CO genes was low and the ENC values were significantly different among fishes, birds, and mammals, as revealed from the t test. The overall guanine and cytosine (GC) content in fishes, birds, and mammals was lower than 50% in all genes, indicating that the genes were AT-rich and significantly different among fishes, birds, and mammals. The TCA codon was overrepresented in fishes, birds, and mammals for the COI gene, in birds and mammals for the COII gene, but it was not overrepresented in others. Only three codons, namely CTA, CGA, and AAA, were overrepresented in all three groups for the COI, COII, and COIII genes, repectively. From the neutrality plot in fishes, birds, and mammals, it was observed that the slopes of the regression lines (regression coefficients) in the COI, COII, and COIII genes were <0.5, suggesting that natural selection played a major role, whereas mutation pressure played a minor role.


Asunto(s)
Uso de Codones/genética , Complejo IV de Transporte de Electrones/genética , Enfermedades Mitocondriales/genética , Selección Genética/genética , Animales , Biología Computacional , Genes Mitocondriales , Humanos
20.
BMC Cancer ; 19(1): 359, 2019 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-30991970

RESUMEN

BACKGROUND: Nonsynonymous mutations change the protein sequences and are frequently subjected to natural selection. The same goes for nonsense mutations that introduce pre-mature stop codons into CDSs (coding sequences). Synonymous mutations, however, are intuitively thought to be functionally silent and evolutionarily neutral. Now researchers know that the optimized synonymous codon usage is advantageous in the speedy mRNA translation process. With the advent of NGS technique, the explosion of NGS data generated from the tumor tissues help researchers identify driver mutations in cancer-related genes, but relatively less attention is paid to the SNP data in healthy human populations when studying cancer. METHODS: Here, we analyzed the publically available human SNPs. We classified these SNPs according to their functional and evolutionary categories. By simply dividing the human genes into cancer-related genes and other genes, we compared the features of nonsynonymous, synonymous and nonsense mutations in these two gene sets from multiple aspects. RESULTS: We provided lines of evidence that the nonsynonymous, synonymous and nonsense mutations in cancer-related genes undergo stronger purifying selection when compared to the expected pattern in other genes. The lower nonsynonymous to synonymous ratio observed in cancer-related genes suggests the suppression of amino acid substitutions in these genes. The synonymous SNPs, after excluding those in splicing regions, exhibit preferred changes in codon usage and higher codon frequencies in cancer-related genes compared to other genes, indicating the constraint exerted on these mutations. Nonsense mutations are less frequent and located closer to stop codons in cancer-related genes than in other genes, which putatively minimize their deleterious effects. CONCLUSION: Our study demonstrated the evolutionary constraint on mutations in CDS of cancer-related genes without the requirement of data from cancer tissues or patients. Our work provides novel perspectives on interpreting the constraint on mutations in cancer-related genes. We reveal extra constraint on synonymous mutations in cancer-related genes which is related to codon usage bias and is in addition to the splicing effect.


Asunto(s)
Evolución Biológica , Mutación , Oncogenes , Selección Genética , Animales , Biomarcadores de Tumor , Codón , Factores de Confusión Epidemiológicos , Bases de Datos Genéticas , Evolución Molecular , Humanos , Modelos Genéticos , Polimorfismo de Nucleótido Simple , Mutación Silenciosa
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda