Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(26): e2321877121, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38905239

RESUMEN

How tissue-level information encoded by fields of regulatory gene activity is translated into the patterns of cell polarity and growth that generate the diverse shapes of different species remains poorly understood. Here, we investigate this problem in the case of leaf shape differences between Arabidopsis thaliana, which has simple leaves, and its relative Cardamine hirsuta that has complex leaves divided into leaflets. We show that patterned expression of the transcription factor CUP-SHAPED COTYLEDON1 in C. hirsuta (ChCUC1) is a key determinant of leaf shape differences between the two species. Through inducible genetic perturbations, time-lapse imaging of growth, and computational modeling, we find that ChCUC1 provides instructive input into auxin-based leaf margin patterning. This input arises via transcriptional regulation of multiple auxin homeostasis components, including direct activation of WAG kinases that are known to regulate the polarity of PIN-FORMED auxin transporters. Thus, we have uncovered a mechanism that bridges biological scales by linking spatially distributed and species-specific transcription factor expression to cell-level polarity and growth, to shape diverse leaf forms.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Polaridad Celular , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos , Hojas de la Planta , Ácidos Indolacéticos/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Polaridad Celular/genética , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Cardamine/genética , Cardamine/metabolismo , Cardamine/crecimiento & desarrollo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética
2.
Plant Biotechnol J ; 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39058556

RESUMEN

Branch length is an important plant architecture trait in cotton (Gossypium) breeding. Development of cultivars with short branch has been proposed as a main object to enhance cotton yield potential, because they are suitable for high planting density. Here, we report the molecular cloning and characterization of a semi-dominant quantitative trait locus, Short Branch Internode 1(GhSBI1), which encodes a NAC transcription factor homologous to CUP-SHAPED COTYLEDON 2 (CUC2) and is regulated by microRNA ghr-miR164. We demonstrate that a point mutation found in sbi1 mutants perturbs ghr-miR164-directed regulation of GhSBI1, resulting in an increased expression level of GhSBI1. The sbi1 mutant was sensitive to exogenous gibberellic acid (GA) treatments. Overexpression of GhSBI1 inhibited branch internode elongation and led to the decreased levels of bioactive GAs. In addition, gene knockout analysis showed that GhSBI1 is required for the maintenance of the boundaries of multiple tissues in cotton. Transcriptome analysis revealed that overexpression of GhSBI1 affects the expression of plant hormone signalling-, axillary meristems initiation-, and abiotic stress response-related genes. GhSBI1 interacted with GAIs, the DELLA repressors of GA signalling. GhSBI1 represses expression of GA signalling- and cell elongation-related genes by directly targeting their promoters. Our work thus provides new insights into the molecular mechanisms for branch length and paves the way for the development of elite cultivars with suitable plant architecture in cotton.

3.
Genes Dev ; 29(22): 2391-404, 2015 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-26588991

RESUMEN

Two interrelated problems in biology are understanding the regulatory logic and predictability of morphological evolution. Here, we studied these problems by comparing Arabidopsis thaliana, which has simple leaves, and its relative, Cardamine hirsuta, which has dissected leaves comprising leaflets. By transferring genes between the two species, we provide evidence for an inverse relationship between the pleiotropy of SHOOTMERISTEMLESS (STM) and BREVIPEDICELLUS (BP) homeobox genes and their ability to modify leaf form. We further show that cis-regulatory divergence of BP results in two alternative configurations of the genetic networks controlling leaf development. In C. hirsuta, ChBP is repressed by the microRNA164A (MIR164A)/ChCUP-SHAPED COTYLEDON (ChCUC) module and ChASYMMETRIC LEAVES1 (ChAS1), thus creating cross-talk between MIR164A/CUC and AS1 that does not occur in A. thaliana. These different genetic architectures lead to divergent interactions of network components and growth regulation in each species. We suggest that certain regulatory genes with low pleiotropy are predisposed to readily integrate into or disengage from conserved genetic networks influencing organ geometry, thus rapidly altering their properties and contributing to morphological divergence.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Cardamine/crecimiento & desarrollo , Cardamine/genética , Redes Reguladoras de Genes/genética , Proteínas de Homeodominio/genética , Hojas de la Planta , Proteínas de Plantas/genética , Arabidopsis/anatomía & histología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cardamine/anatomía & histología , Regulación de la Expresión Génica de las Plantas , Proteínas de Homeodominio/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Hojas de la Planta/anatomía & histología , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Proteínas de Plantas/metabolismo
4.
Plant J ; 106(1): 41-55, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33368800

RESUMEN

The CUP-SHAPED COTYLEDON (CUC) genes (CUC1, CUC2 and CUC3) regulate organ boundary formation in Arabidopsis. However, the functions of their homologous genes in rice (Oryza sativa) are still unknown. Here, we have identified an orthologous gene of CUC1 and CUC2 in rice, named OsNAM. Subcellular localization and yeast two-hybrid assay results have suggested that OsNAM encodes a conserved nuclear NAC (NAM/ATAF1/CUC2) protein with a transcriptional activator. The null mutant osnam-1 presented a fused leaf structure, small panicles, reduced branches and aberrant floral organ identities when compared with those of the wild type. Beta-glucuronidase staining and GFP reporter lines indicated that OsNAM was expressed in young tissues and that its boundary enrichment expression was regulated by OsmiR164. Loss-of-function mutants for OsCUC3 resulted in no obvious defects throughout rice development. The osnam oscuc3 double mutant, however, resulted in severe leaf fusion of the first two leaves, while the osnam single mutant showed a similar phenotype from the seventh leaf. These results indicated that OsNAM and OsCUC3 act redundantly for boundary specification during post-embryonic development. Overall, we describe the biological functions of OsNAM and OsCUC3 in rice development and the expression characteristics of OsNAM. This work reveals the important role of CUC genes in rice.


Asunto(s)
Arabidopsis/fisiología , Oryza/fisiología , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Meristema/genética , Meristema/metabolismo , Meristema/fisiología , Oryza/genética , Oryza/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Plantas Modificadas Genéticamente/fisiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
5.
BMC Plant Biol ; 22(1): 47, 2022 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-35065620

RESUMEN

BACKGROUND: In plants, a critical balance between differentiation and proliferation of stem cells at the shoot apical meristem zone is essential for proper growth. The spatiotemporal regulation of some crucial genes dictates the formation of a boundary within and around budding organs. The boundary plays a pivotal role in distinguishing one tissue type from another and provides a defined shape to the organs at their developed stage. NAM/CUC subfamily of the NAC transcription factors control the boundary formation during meristematic development. RESULTS: Here, we have identified the CUP-SHAPED COTYLEDON (CUC) genes in sugarcane and named SsCUC2 (for the orthologous gene of CUC1 and CUC2) and SsCUC3. The phylogenetic reconstruction showed that SsCUCs occupy the CUC2 and CUC3 clade together with monocots, whereas eudicot CUC2 and CUC3 settled separately in the different clade. The structural analysis of CUC genes showed that most of the CUC3 genes were accompanied by an intron gain during eudicot divergence. Besides, the study of SsCUCs expression in the RNA-seq obtained during different stages of ovule development revealed that SsCUCs express in developing young tissues, and the expression of SsCUC2 is regulated by miR164. We also demonstrate that SsCUC2 (a monocot) could complement the cuc2cuc3 mutant phenotype of Arabidopsis (eudicot). CONCLUSIONS: This study further supports that CUC2 has diverged in CUC1 and CUC2 during the evolution of monocots and eudicots from ancestral plants. The functional analysis of CUC expression patterns during sugarcane ovule development and ectopic expression of SsCUC2 in Arabidopsis showed that SsCUC2 has a conserved role in boundary formation. Overall, these findings improve our understanding of the functions of sugarcane CUC genes. Our results reveal the crucial functional role of CUC genes in sugarcane.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Plantas/genética , Saccharum/genética , Factores de Transcripción/genética , Cotiledón/genética , Regulación de la Expresión Génica de las Plantas , Prueba de Complementación Genética , Meristema/genética , MicroARNs/genética , Mutación , Óvulo Vegetal/genética , Óvulo Vegetal/crecimiento & desarrollo , Fenotipo , Filogenia , Plantas Modificadas Genéticamente
6.
J Exp Bot ; 73(5): 1268-1276, 2022 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-34849719

RESUMEN

The investigation of a phenomenon called the unfolded protein response (UPR) started approximately three decades ago, and we now know that the UPR is involved in a number of cellular events among metazoans, higher plants, and algae. The relevance of the UPR in human diseases featuring protein folding defects, such as Alzheimer's and Huntington's diseases, has drawn much attention to the response in medical research to date. While metazoans and plants share similar molecular mechanisms of the UPR, recent studies shed light on the uniqueness of the plant UPR, with plant-specific protein families appearing to play pivotal roles. Given the considerable emphasis on the original discoveries of key factors in metazoans, this review highlights the uniqueness of the plant UPR based on current knowledge.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Estrés del Retículo Endoplásmico/fisiología , Plantas/metabolismo , Respuesta de Proteína Desplegada
7.
New Phytol ; 229(3): 1566-1581, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32964416

RESUMEN

The specification of the meristem/organ boundary is critical for plant development. Here, we investigate two previously uncharacterized NAC transcription factors: the first, OsCUC1, which is negatively regulated by osa-miR164c, dimerizes with the second, OsCUC3, and functions partially redundantly in meristem/organ boundary specification in rice (Oryza sativa). We produced knockout lines for rice OsCUC1 (the homolog of Arabidopsis CUC1 and CUC2) and OsCUC3 (the homolog of Arabidopsis CUC3), as well as an overexpression line for osa-miR164c, to study the molecular mechanism of boundary specification in rice. A single mutation in either OsCUC1 or OsCUC3 leads to defects in the establishment of the meristem/organ boundary, resulting in reduced stamen numbers and the fusion of leaves and filaments, and the defects are greatly enhanced in the double mutant. Transgenic plants overexpressing osa-miR164c showed a phenotype similar to that of the OsCUC1 knockout line. In addition, knockout of OsCUC1 leads to multiple defects, including dwarf plant architecture, male sterility and twisted-rolling leaves. Further study indicated that OsCUC1 physically interacts with leaf-rolling related protein CURLED LEAF AND DWARF 1 (CLD1) and stabilizes it in the nucleus to control leaf morphology. This work demonstrated that the interplay of osa-miR164c, OsCUC1 and OsCUC3 controls boundary specification in rice.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , MicroARNs , Oryza , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Meristema/genética , Meristema/metabolismo , MicroARNs/genética , Mutación/genética , Oryza/genética , Oryza/metabolismo , Fenotipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
8.
Plant Cell Physiol ; 61(3): 659-670, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-31868910

RESUMEN

The presence of small tooth-like indentations, or serrations, characterizes leaf margins of Arabidopsis thaliana plants. The NAC family member CUP-SHAPED COTYLEDON 2 (CUC2), which undergoes post-transcriptional gene silencing by three micro-RNA genes (MIR164A, B and C), controls the extension of leaf serration. Here, we analyzed the role of AtHB1, a transcription factor (TF) belonging to the homeodomain-leucine zipper subfamily I, in shaping leaf margins. Using mutants with an impaired silencing pathway as background, we obtained transgenic plants expressing AtHB1 over 100 times compared to controls. These plants presented an atypical developmental phenotype characterized by leaves with deep serration. Transcript measurements revealed that CUC2 expression was induced in plants overexpressing AtHB1 and repressed in athb1 mutants, indicating a positive regulation exerted by this TF. Moreover, molecular analyses of AtHB1 overexpressing and mutant plants revealed that AtHB1 represses MIR164 transcription. We found that overexpression of MIR164B was able to reverse the serration phenotype of plants overexpressing AtHB1. Finally, chromatin immunoprecipitation assays revealed that AtHB1 was able to bind in vivo the promoter regions of all three MIR164 encoding loci. Altogether, our results indicate that AtHB1 directly represses MIR164 expression to enhance leaf serration by increasing CUC2 levels.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , MicroARNs/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Factores de Transcripción/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , MicroARNs/genética , Fenotipo , Plantas Modificadas Genéticamente , Factores de Transcripción/genética , Transcriptoma
9.
Plant J ; 90(3): 435-446, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28161901

RESUMEN

The shoot stem cell niche, contained within the shoot apical meristem (SAM) is maintained in Arabidopsis by the homeodomain protein SHOOT MERISTEMLESS (STM). STM is a mobile protein that traffics cell-to-cell, presumably through plasmodesmata. In maize, the STM homolog KNOTTED1 shows clear differences between mRNA and protein localization domains in the SAM. However, the STM mRNA and protein localization domains are not obviously different in Arabidopsis, and the functional relevance of STM mobility is unknown. Using a non-mobile version of STM (2xNLS-YFP-STM), we show that STM mobility is required to suppress axillary meristem formation during embryogenesis, to maintain meristem size, and to precisely specify organ boundaries throughout development. STM and organ boundary genes CUP SHAPED COTYLEDON1 (CUC1), CUC2 and CUC3 regulate each other during embryogenesis to establish the embryonic SAM and to specify cotyledon boundaries, and STM controls CUC expression post-embryonically at organ boundary domains. We show that organ boundary specification by correct spatial expression of CUC genes requires STM mobility in the meristem. Our data suggest that STM mobility is critical for its normal function in shoot stem cell control.


Asunto(s)
Arabidopsis/metabolismo , Meristema/metabolismo , Proteínas de Arabidopsis/metabolismo , Transporte Biológico/genética , Transporte Biológico/fisiología , Regulación del Desarrollo de la Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Brotes de la Planta/metabolismo , Plasmodesmos/metabolismo
10.
BMC Plant Biol ; 17(1): 6, 2017 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-28061815

RESUMEN

BACKGROUND: The NAC family of transcription factors is one of the largest gene families of transcription factors in plants and the conifer NAC gene family is at least as large, or possibly larger, as in Arabidopsis. These transcription factors control both developmental and stress induced processes in plants. Yet, conifer NACs controlling stress induced processes has received relatively little attention. This study investigates NAC family transcription factors involved in the responses to the pathogen Heterobasidion annosum (Fr.) Bref. sensu lato. RESULTS: The phylogeny and domain structure in the NAC proteins can be used to organize functional specificities, several well characterized stress-related NAC proteins are found in III-3 in Arabidopsis (Jensen et al. Biochem J 426:183-196, 2010). The Norway spruce genome contain seven genes with similarity to subgroup III-3 NACs. Based on the expression pattern PaNAC03 was selected for detailed analyses. Norway spruce lines overexpressing PaNAC03 exhibited aberrant embryo development in response to maturation initiation and 482 misregulated genes were identified in proliferating cultures. Three key genes in the flavonoid biosynthesis pathway: a CHS, a F3'H and PaLAR3 were consistently down regulated in the overexpression lines. In accordance, the overexpression lines showed reduced levels of specific flavonoids, suggesting that PaNAC03 act as a repressor of this pathway, possibly by directly interacting with the promoter of the repressed genes. However, transactivation studies of PaNAC03 and PaLAR3 in Nicotiana benthamiana showed that PaNAC03 activated PaLAR3A, suggesting that PaNAC03 does not act as an independent negative regulator of flavan-3-ol production through direct interaction with the target flavonoid biosynthetic genes. CONCLUSIONS: PaNAC03 and its orthologs form a sister group to well characterized stress-related angiosperm NAC genes and at least PaNAC03 is responsive to biotic stress and appear to act in the control of defence associated secondary metabolite production.


Asunto(s)
Flavonoides/biosíntesis , Picea/embriología , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Noruega , Filogenia , Picea/clasificación , Picea/genética , Picea/metabolismo , Proteínas de Plantas/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
11.
J Exp Bot ; 68(21-22): 5801-5811, 2017 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-29186469

RESUMEN

The CUP-SHAPED COTYLEDON (CUC) transcription factors control plant boundary formation, thus allowing the emergence of novel growth axes. While the developmental roles of the CUC genes in different organs and across species are well characterized, upstream and downstream events that contribute to their function are still poorly understood. To identify new players in this network, we performed a suppressor screen of CUC2g-m4, a line overexpressing CUC2 that has highly serrated leaves. We identified a mutation that simplifies leaf shape and affects MURUS1 (MUR1), which is responsible for GDP-L-fucose production. Using detailed morphometric analysis, we show that GDP-L-fucose has an essential role in leaf shape acquisition by sustaining differential growth at the leaf margins. Accordingly, reduced CUC2 expression levels are observed in mur1 leaves. Furthermore, genetic analyses reveal a conserved role for GDP-L-fucose in different developmental contexts where it contributes to organ separation in the same pathway as CUC2. Taken together, our results reveal that GDP-L-fucose is necessary for proper establishment of boundary domains in various developmental contexts.


Asunto(s)
Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Guanosina Difosfato Fucosa/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación del Desarrollo de la Expresión Génica , Guanosina Difosfato Fucosa/genética , Mutación , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
12.
Plant J ; 83(4): 732-42, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26119568

RESUMEN

The evolution of plant reproductive strategies has led to a remarkable diversity of structures, especially within the flower, a structure characteristic of the angiosperms. In flowering plants, sexual reproduction depends notably on the development of the gynoecium that produces and protects the ovules. In Arabidopsis thaliana, ovule initiation is promoted by the concerted action of auxin with CUC1 (CUP-SHAPED COTYLEDON1) and CUC2, two genes that encode transcription factors of the NAC family (NAM/ATAF1,2/CUC). Here we highlight an additional role for CUC2 and CUC3 in Arabidopsis thaliana ovule separation. While CUC1 and CUC2 are broadly expressed in the medial tissue of the gynoecium, CUC2 and CUC3 are expressed in the placental tissue between developing ovules. Consistent with the partial overlap between CUC1, CUC2 and CUC3 expression patterns, we show that CUC proteins can physically interact, both in yeast cells and in planta. We found that the cuc2;cuc3 double mutant specifically harbours defects in ovule separation, producing fused seeds that share the seed coat, and suggesting that CUC2 and CUC3 promote ovule separation in a partially redundant manner. Functional analyses show that CUC transcription factors are also involved in ovule development in Cardamine hirsuta. Additionally we show a conserved expression pattern of CUC orthologues between ovule primordia in other phylogenetically distant species with different gynoecium architectures. Taken together these results suggest an ancient role for CUC transcription factors in ovule separation, and shed light on the conservation of mechanisms involved in the development of innovative structures.


Asunto(s)
Óvulo Vegetal/crecimiento & desarrollo , Óvulo Vegetal/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cardamine/crecimiento & desarrollo , Cardamine/metabolismo , Regulación de la Expresión Génica de las Plantas , Magnoliopsida/crecimiento & desarrollo , Magnoliopsida/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
13.
Ann Bot ; 115(5): 807-20, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25681504

RESUMEN

BACKGROUND AND AIMS: The arrangement of flowers in inflorescence shoots of Arabidopsis thaliana represents a regular spiral Fibonacci phyllotaxis. However, in the cuc2 cuc3 double mutant, flower pedicels are fused to the inflorescence stem, and phyllotaxis is aberrant in the mature shoot regions. This study examined the causes of this altered development, and in particular whether the mutant phenotype is a consequence of defects at the shoot apex, or whether post-meristematic events are involved. METHODS: The distribution of flower pedicels and vascular traces was examined in cross-sections of mature shoots; sequential replicas were used to investigate the phyllotaxis and geometry of shoot apices, and growth of the young stem surface. The expression pattern of CUC3 was analysed by examining its promoter activity. KEY RESULTS: Phyllotaxis irregularity in the cuc2 cuc3 double mutant arises during the post-meristematic phase of shoot development. In particular, growth and cell divisions in nodes of the elongating stem are not restricted in the mutant, resulting in pedicel-stem fusion. On the other hand, phyllotaxis in the mutant shoot apex is nearly as regular as that of the wild type. Vascular phyllotaxis, generated almost simultaneously with the phyllotaxis at the apex, is also much more regular than pedicel phyllotaxis. The most apparent phenotype of the mutant apices is a higher number of contact parastichies. This phenotype is associated with increased meristem size, decreased angular width of primordia and a shorter plastochron. In addition, the appearance of a sharp and deep crease, a characteristic shape of the adaxial primordium boundary, is slightly delayed and reduced in the mutant shoot apices. CONCLUSIONS: The cuc2 cuc3 double mutant displays irregular phyllotaxis in the mature shoot but not in the shoot apex, thus showing a post-meristematic effect of the mutations on phyllotaxis. The main cause of this effect is the formation of pedicel-stem fusions, leading to an alteration of the axial positioning of flowers. Phyllotaxis based on the position of vascular flower traces suggests an additional mechanism of post-meristematic phyllotaxis alteration. Higher density of flower primordia may be involved in the post-meristematic effect on phyllotaxis, whereas delayed crease formation may be involved in the fusion phenotype. Promoter activity of CUC3 is consistent with its post-meristematic role in phyllotaxis.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Factores de Transcripción/genética , Arabidopsis/anatomía & histología , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , Flores/anatomía & histología , Flores/genética , Flores/crecimiento & desarrollo , Inflorescencia/anatomía & histología , Inflorescencia/genética , Inflorescencia/crecimiento & desarrollo , Meristema/citología , Meristema/genética , Meristema/crecimiento & desarrollo , Mutación , Fenotipo , Brotes de la Planta/anatomía & histología , Brotes de la Planta/genética , Brotes de la Planta/crecimiento & desarrollo , Regiones Promotoras Genéticas/genética , Factores de Transcripción/metabolismo
14.
Plant J ; 76(3): 446-55, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23941199

RESUMEN

Upon hormonal signaling, ovules develop as lateral organs from the placenta. Ovule numbers ultimately determine the number of seeds that develop, and thereby contribute to the final seed yield in crop plants. We demonstrate here that CUP-SHAPED COTYLEDON 1 (CUC1), CUC2 and AINTEGUMENTA (ANT) have additive effects on ovule primordia formation. We show that expression of the CUC1 and CUC2 genes is required to redundantly regulate expression of PINFORMED1 (PIN1), which in turn is required for ovule primordia formation. Furthermore, our results suggest that the auxin response factor MONOPTEROS (MP/ARF5) may directly bind ANT, CUC1 and CUC2 and promote their transcription. Based on our findings, we propose an integrative model to describe the molecular mechanisms of the early stages of ovule development.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/embriología , Óvulo Vegetal/embriología , Factores de Transcripción/fisiología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas Fluorescentes Verdes , Proteínas de Transporte de Membrana/metabolismo , Modelos Biológicos , Regiones Promotoras Genéticas , Factores de Transcripción/metabolismo
15.
Comput Struct Biotechnol J ; 18: 2709-2722, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33101609

RESUMEN

A series of complex transport, storage and regulation mechanisms control iron metabolism and thereby maintain iron homeostasis in plants. Despite several studies on iron deficiency responses in different plant species, these mechanisms remain unclear in the allohexaploid wheat, which is the most widely cultivated commercial crop. We used RNA sequencing to reveal transcriptomic changes in the wheat flag leaves and roots, when subjected to iron limited conditions. We identified 5969 and 2591 differentially expressed genes (DEGs) in the flag leaves and roots, respectively. Genes involved in the synthesis of iron ligands i.e., nicotianamine (NA) and deoxymugineic acid (DMA) were significantly up-regulated during iron deficiency. In total, 337 and 635 genes encoding transporters exhibited altered expression in roots and flag leaves, respectively. Several genes related to MAJOR FACILITATOR SUPERFAMILY (MFS), ATP-BINDING CASSETTE (ABC) transporter superfamily, NATURAL RESISTANCE ASSOCIATED MACROPHAGE PROTEIN (NRAMP) family and OLIGOPEPTIDE TRANSPORTER (OPT) family were regulated, indicating their important roles in combating iron deficiency stress. Among the regulatory factors, the genes encoding for transcription factors of BASIC HELIX-LOOP-HELIX (bHLH) family were highly up-regulated in both roots and the flag leaves. The jasmonate biosynthesis pathway was significantly altered but with notable expression differences between roots and flag leaves. Homoeologs expression and induction bias analysis revealed subgenome specific differential expression. Our findings provide an integrated overview on regulated molecular processes in response to iron deficiency stress in wheat. This information could potentially serve as a guideline for breeding iron deficiency stress tolerant crops as well as for designing appropriate wheat iron biofortification strategies.

16.
Plant Biol (Stuttg) ; 18(6): 893-902, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27500862

RESUMEN

Research rationale: Evolution of fused petals (sympetaly) is considered to be an important innovation that has repeatedly led to increased pollination efficiency, resulting in accelerated rates of plant diversification. Although little is known about the underlying regulation of sympetaly, genetic pathways ancestrally involved in organ boundary establishment (e.g. CUP SHAPED COTYLEDON [CUC] 1-3 genes) are strong candidates. In sympetalous petunia, mutations in the CUC1/2-like orthologue NO APICAL MERISTEM (NAM) inhibit shoot apical meristem formation. Despite this, occasional 'escape shoots' develop flowers with extra petals and fused inter-floral whorl organs. Central methods: To To determine if petunia CUC-like genes regulate additional floral patterning, we used virus-induced silencing (VIGS) following establishment of healthy shoot apices to re-examine the role of NAM in petunia petal development, and uniquely characterise the CUC3 orthologue NH16. KEY RESULTS: Confirming previous results, we found that reduced floral NAM/NH16 expression caused increased petal-stamen and stamen-carpel fusion, and often produced extra petals. However, further to previous results, all VIGS plants infected with NAM or NH16 constructs exhibited reduced fusion in the petal whorl compared to control plants. MAIN CONCLUSIONS: Together with previous data, our results demonstrate conservation of petunia CUC-like genes in establishing inter-floral whorl organ boundaries, as well as functional evolution to affect the fusion of petunia petals.


Asunto(s)
Flores/genética , Petunia/genética , Proteínas de Plantas/genética , Evolución Biológica , Cotiledón/anatomía & histología , Cotiledón/genética , Flores/anatomía & histología , Silenciador del Gen , Mutación , Petunia/anatomía & histología , Fenotipo , Filogenia , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
17.
Plant Signal Behav ; 10(2): e988071, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25761011

RESUMEN

The Arabidopsis thaliana GROWTH-REGULATING FACTOR (GRF) gene family comprises 9 members and encodes a class of transcription factors. We previously demonstrated that GRF genes played an essential role in formation of the boundary region between cotyledons, since their loss-of-function mutants developed fused cotyledons. Our present study shows that the grf mutants display fused floral organs as well. Such fusion phenotypes of embryonic and post-embryonic floral organs are highly reminiscent of the cup-shaped cotyledon (cuc) mutants. In order to test a genetic interaction between GRFs and CUCs, we constructed cuc1 grf1/2/3, cuc2 grf1/2/3, and cuc3 grf1/2/3 quadruple mutants, and found that the mutants showed dramatic increases in cotyledon fusion as well as floral organ fusion. The results suggest that the signaling pathway of GRFs may be genetically associated with that of CUCs in the organ separation process.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Epistasis Genética , Organogénesis/genética , Cotiledón/metabolismo , Flores/metabolismo , Flores/ultraestructura , Mutación/genética , Fenotipo
18.
Front Plant Sci ; 6: 1239, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26793217

RESUMEN

The majority of angiosperms are syncarpous- their gynoecium is composed of two or more fused carpels. In Arabidopsis thaliana, this fusion is regulated through the balance of expression between CUP SHAPED COTYLEDON (CUC) genes, which are orthologs of the Petunia hybrida transcription factor NO APICAL MERISTEM (NAM), and their post-transcriptional regulator miR164. Accordingly, the expression of a miR164-insensitive form of A. thaliana CUC2 causes a radical breakdown of carpel fusion. Here, we investigate the role of the NAM/miR164 genetic module in carpel closure in monocarpous plants. We show that the disruption of this module in monocarpous flowers of A. thaliana aux1-22 mutants causes a failure of carpel closure, similar to the failure of carpel fusion observed in the wild-type genetic background. This observation suggested that closely related mechanisms may bring about carpel closure and carpel fusion, at least in A. thaliana. We therefore tested whether these mechanisms were conserved in a eurosid species that is monocarpous in its wild-type form. We observed that expression of MtNAM, the NAM ortholog in the monocarpous eurosid Medicago truncatula, decreases during carpel margin fusion, suggesting a role for the NAM/miR164 module in this process. We transformed M. truncatula with a miR164-resistant form of MtNAM and observed, among other phenotypes, incomplete carpel closure in the resulting transformants. These data confirm the underlying mechanistic similarity between carpel closure and carpel fusion which we observed in A. thaliana. Our observations suggest that the role of the NAM/miR164 module in the fusion of carpel margins has been conserved at least since the most recent common ancestor of the eurosid clade, and open the possibility that a similar mechanism may have been responsible for carpel closure at much earlier stages of angiosperm evolution. We combine our results with studies of early diverging angiosperms to speculate on the role of the NAM/miR164 module in the origin and further evolution of the angiosperm carpel.

19.
Plants (Basel) ; 3(2): 251-65, 2014 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-27135503

RESUMEN

The plant specific transcription factor LEAFY (LFY) plays a pivotal role in the developmental switch to floral meristem identity in Arabidopsis. Our recent study revealed that LFY additionally acts downstream of AUXIN RESPONSE FACTOR5/MONOPTEROS to promote flower primordium initiation. LFY also promotes initiation of the floral organ and floral organ identity. To further investigate the interplay between LFY and auxin during flower development, we examined the phenotypic consequence of disrupting polar auxin transport in lfy mutants by genetic means. Plants with compromised LFY activity exhibit increased sensitivity to disruption of polar auxin transport. Compromised polar auxin transport activity in the lfy mutant background resulted in formation of fewer floral organs, abnormal gynoecium development, and fused sepals. In agreement with these observations, expression of the auxin response reporter DR5rev::GFP as well as of the direct LFY target CUP-SHAPED COTYLEDON2 were altered in lfy mutant flowers. We also uncovered reduced expression of ETTIN, a regulator of gynoecium development and a direct LFY target. Our results suggest that LFY and polar auxin transport coordinately modulate flower development by regulating genes required for elaboration of the floral organs.

20.
Plant Signal Behav ; 2(4): 293-5, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19704686

RESUMEN

Phyllotaxy, the arrangement of organs along the stem, has puzzled scientists for centuries. The shoot apical meristem plays a crucial role in the formation of this pattern, by initiating organ primordia on its flanks in a temporally and spatially controlled manner. Recent studies have shown that primordium position at the meristem is governed by local auxin gradients, but little is known about the subsequent events leading to the phyllotaxy along the mature stem.In a recent report we showed that deviation from the initial phyllotaxy set-up in the meristem is generated during stem growth of transgenic lines affected in miR164-mediated regulation of CUC2 and, to a smaller extent, of wild-type Arabidopsis. This underlines the requirement of maintaining the pattern initiated at the meristem during stem development. In this addendum, we discuss the importance of this mechanism in different mutants and at different stages of Arabidopsis development.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda