Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Cytokine ; 174: 156459, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38056250

RESUMEN

An increasing number of studies have shown that Nonalcoholic fatty liver disease (NAFLD) is strongly associated with obesity, insulin resistance, dyslipidemia, hypertension and metabolic syndrome, but its specific pathogenesis remains unclear. By analyzing GEO database, we found CXCL6 was upregulated in liver tissues of patients with NAFLD. We also confirmed with qPCR that CXCL6 is highly expressed in serum of patients with NAFLD. To identify the underlying impact of CXCL6 on NAFLD, we established animal and cell models of NAFLD. Similarly, we confirmed by qPCR and Western blot that CXCL6 was upregulated in the NAFLD model in vitro and vivo. After transfecting NAFLD cells with siRNA targeting CXCL6 (si-CXCL6), a series of functional experiments were carried out, and these data indicated that the inhibition of CXCL6 reduced intracellular lipid deposition, decreased AST, ALT and TG level, facilitate cell proliferation and suppress their apoptosis. Furthermore, western blot and qPCR analyses displayed that the suppression of CXCL6 could raise the PPARα expression, but PPAR α inhibitor, GW6471 could partially counteract this effect. What's more, Oil Red O staining, biochemical analyzer and TG detection kit revealed that GW6471 could reverse the inhibitory effect of si-CXCL6 on NAFLD. In summary, we provide convincing evidence that CXCL6 is markedly elevated in NAFLD, and the CXCL6/PPARα regulatory network mediates disease progression of NAFLD.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Animales , Humanos , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , PPAR alfa/genética , Hígado/metabolismo , Obesidad/metabolismo , ARN Interferente Pequeño/metabolismo , Metabolismo de los Lípidos , Quimiocina CXCL6/metabolismo
2.
Osteoarthritis Cartilage ; 31(12): 1581-1593, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37562758

RESUMEN

OBJECTIVE: To investigate the efficacy of basic fibroblast growth factor (bFGF) in promoting meniscus regeneration by cultivating synovial mesenchymal stem cells (SMSCs) and to validate the underlying mechanisms. METHODS: Human SMSCs were collected from patients with osteoarthritis. Eight-week-old nude rats underwent hemi-meniscectomy, and SMSCs in pellet form, either with or without bFGF (1.0 × 106 cells per pellet), were implanted at the site of meniscus defects. Rats were divided into the control (no transplantation), FGF (-) (pellet without bFGF), and FGF (+) (pellet with bFGF) groups. Different examinations, including assessment of the regenerated meniscus area, histological scoring of the regenerated meniscus and cartilage, meniscus indentation test, and immunohistochemistry analysis, were performed at 4 and 8 weeks after surgery. RESULTS: Transplanted SMSCs adhered to the regenerative meniscus. Compared with the control group, the FGF (+) group had larger regenerated meniscus areas, superior histological scores of the meniscus and cartilage, and better meniscus mechanical properties. RNA sequencing of SMSCs revealed that the gene expression of chemokines that bind to CXCR2 was upregulated by bFGF. Furthermore, conditioned medium derived from SMSCs cultivated with bFGF exhibited enhanced cell migration, proliferation, and chondrogenic differentiation, which were specifically inhibited by CXCR2 or CXCL6 inhibitors. CONCLUSION: SMSCs cultured with bFGF promoted the expression of CXCL6. This mechanism may enhance cell migration, proliferation, and chondrogenic differentiation, thereby resulting in superior meniscus regeneration and cartilage preservation.


Asunto(s)
Menisco , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Humanos , Ratas , Animales , Factor 2 de Crecimiento de Fibroblastos/farmacología , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Membrana Sinovial , Células Madre Mesenquimatosas/metabolismo , Regeneración , Diferenciación Celular , Células Cultivadas , Trasplante de Células Madre Mesenquimatosas/métodos , Quimiocina CXCL6/metabolismo
3.
Am J Obstet Gynecol ; 229(2): 166.e1-166.e16, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36649818

RESUMEN

BACKGROUND: Perinatal mood and anxiety disorders encompass a range of mental health disorders that occur during pregnancy and up to 1 year postpartum, affecting approximately 20% of women. Traditional risk factors, such as a history of depression and pregnancy complications including preeclampsia, are known. Their predictive utility, however, is not specific or sensitive enough to inform clinical decision-making or prevention strategies for perinatal mood and anxiety disorders. Better diagnostic and prognostic models are needed for early identification and referral to treatment. OBJECTIVE: This study aimed to determine if a panel of novel third-trimester plasma protein biomarkers in pregnant women can be used to identify those who have a high predisposed risk for perinatal mood and anxiety disorders within 3 months postpartum. STUDY DESIGN: We studied 52 women (n=34 with a risk for perinatal mood and anxiety disorders and n=18 controls) among whom mental health screening was conducted at 2 time points, namely in the third trimester and again at 3 months postdelivery. An elevated perinatal mood and anxiety disorder risk was identified by screening individuals with above-validated cutoffs for depression (Edinburgh Postnatal Depression Scale ≥12), anxiety (Overall Anxiety Severity and Impairment Scale ≥7), and/or posttraumatic stress disorder (Impact of Events Scale >26) at both time points. Plasma samples collected in the third trimester were screened using the aptamer-based SomaLogic SomaScan proteomic assay technology to evaluate perinatal mood and anxiety disorder-associated changes in the expression of 1305 protein analytes. Ingenuity Pathway Analysis was conducted to highlight pathophysiological relationships between perinatal mood and anxiety disorder-specific proteins found to be significantly up- or down-regulated in all subjects with perinatal mood and anxiety disorder and in those with perinatal mood and anxiety disorders and no preeclampsia. RESULTS: From a panel of 53 significant perinatal mood and anxiety disorder-associated proteins, a unique 20-protein signature differentiated perinatal mood and anxiety disorder cases from controls in a principal component analysis (P<.05). This protein signature included NCAM1, NRCAM, and NTRK3 that converge around neuronal signaling pathways regulating axonal guidance, astrocyte differentiation, and maintenance of GABAergic neurons. Interestingly, when we restricted the analysis to subjects without preeclampsia, a 30-protein signature differentiated perinatal mood and anxiety disorder cases from all controls without overlap on the principal component analysis (P<.001). In the nonpreeclamptic perinatal mood and anxiety disorder group, we observed increased expression of proteins, such as CXCL11, CXCL6, MIC-B, and B2MG, which regulate leucocyte migration, inflammation, and immune function. CONCLUSION: Participants with perinatal mood and anxiety disorders had a unique and distinct plasma protein signature that regulated a variety of neuronal signaling and proinflammatory pathways. Additional validation studies with larger sample sizes are needed to determine whether some of these molecules can be used in conjunction with traditional risk factors for the early detection of perinatal mood and anxiety disorders.


Asunto(s)
Depresión Posparto , Complicaciones del Embarazo , Femenino , Embarazo , Humanos , Trastornos de Ansiedad/diagnóstico , Trastornos de Ansiedad/psicología , Depresión/diagnóstico , Proteómica , Ansiedad/complicaciones , Complicaciones del Embarazo/psicología , Biomarcadores , Depresión Posparto/diagnóstico
4.
Mol Cell Proteomics ; 19(5): 793-807, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32075873

RESUMEN

The respiratory epithelium comprises polarized cells at the interface between the environment and airway tissues. Polarized apical and basolateral protein secretions are a feature of airway epithelium homeostasis. Human respiratory syncytial virus (hRSV) is a major human pathogen that primarily targets the respiratory epithelium. However, the consequences of hRSV infection on epithelium secretome polarity and content remain poorly understood. To investigate the hRSV-associated apical and basolateral secretomes, a proteomics approach was combined with an ex vivo pediatric human airway epithelial (HAE) model of hRSV infection (data are available via ProteomeXchange and can be accessed at https://www.ebi.ac.uk/pride/ with identifier PXD013661). Following infection, a skewing of apical/basolateral abundance ratios was identified for several individual proteins. Novel modulators of neutrophil and lymphocyte activation (CXCL6, CSF3, SECTM1 or CXCL16), and antiviral proteins (BST2 or CEACAM1) were detected in infected, but not in uninfected cultures. Importantly, CXCL6, CXCL16, CSF3 were also detected in nasopharyngeal aspirates (NPA) from hRSV-infected infants but not healthy controls. Furthermore, the antiviral activity of CEACAM1 against RSV was confirmed in vitro using BEAS-2B cells. hRSV infection disrupted the polarity of the pediatric respiratory epithelial secretome and was associated with immune modulating proteins (CXCL6, CXCL16, CSF3) never linked with this virus before. In addition, the antiviral activity of CEACAM1 against hRSV had also never been previously characterized. This study, therefore, provides novel insights into RSV pathogenesis and endogenous antiviral responses in pediatric airway epithelium.


Asunto(s)
Antivirales/metabolismo , Quimiocinas/metabolismo , Proteoma/metabolismo , Mucosa Respiratoria/virología , Infecciones por Virus Sincitial Respiratorio/inmunología , Infecciones por Virus Sincitial Respiratorio/virología , Virus Sincitial Respiratorio Humano/fisiología , Bronquios/patología , Línea Celular , Niño , Células Epiteliales/patología , Células Epiteliales/virología , Células Caliciformes/metabolismo , Células Caliciformes/virología , Homeostasis , Humanos , Lactante , Cinética , Nasofaringe/virología , Mucosa Respiratoria/metabolismo , Virus Sincitial Respiratorio Humano/crecimiento & desarrollo , Tropismo , Proteínas Virales/metabolismo
5.
J Cell Physiol ; 236(7): 5373-5386, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33368292

RESUMEN

CXCL6, contraction of C-X-C motif chemokine ligand 6, whose biological roles have been rarely described in esophageal squamous cell carcinoma (ESCC). To understand the clinicopathological and biological roles played by CXCL6 in the growth and metastasis of ESCC, immunohistochemistry was used to detect the expression of CXCL6 in ESCC tissues, totaling 105 cases; and the correlation was statistically analyzed between CXCL6 expression and clinicopathological parameters. The role mediated in migration and invasion was evaluated using wound-healing and Transwell assays. MTT and flow cytometry were used to assay the proliferative variation. In vivo, tail vein injection model was established in nude mice xenografted with human ESCC cell lines whose CXCL6 were artificially manipulated. It was found that relative to normal control, CXCL6 was profoundly higher in ESCC; upregulated CXCL6 only significantly correlated with differentiation degree. In vitro, CXCL6 was found to promote the proliferation, migration, and invasion of ESCC cells; which was fully corroborated by nude mice experiment that CXCL6 can promote the growth and metastases of ESCC cells in vivo. Mechanistically, CXCL6 was discovered to be capable of promoting epithelial-mesenchymal transition and upregulating PD-L1 expression through activation of the STAT3 pathway. Collectively, all the data we showed here demonstrate that CXCL6 can enhance the growth and metastases of ESCC cells both in vivo and in vitro.


Asunto(s)
Antígeno B7-H1/metabolismo , Quimiocina CXCL6/metabolismo , Neoplasias Esofágicas/patología , Carcinoma de Células Escamosas de Esófago/patología , Factor de Transcripción STAT3/metabolismo , Animales , Proliferación Celular , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas de Esófago/metabolismo , Xenoinjertos , Humanos , Ratones , Ratones Desnudos , Invasividad Neoplásica/patología , Transducción de Señal/fisiología , Regulación hacia Arriba
6.
J Cell Biochem ; 121(11): 4440-4449, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32037619

RESUMEN

Hepatocellular carcinoma (HCC) is a common liver malignancy worldwide accompanying with the high rate of recurrence. Accumulating reports have documented the significance of circular RNAs (circRNAs) in carcinogenesis and development of HCC. This study aimed to establish the mechanism underlying circ-HOMER1 involvement in HCC. To this end, we identified a binding site for miR-1322 via bioinformatics, quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR), and dual-luciferase reporter assays providing evidence of a direct link between circ-HOMER1 and miR-1322. Similarly, the target gene of miR-1322 was investigated. Moreover, we determined the specific function of circ-HOMER1 in HCC with the aid of qRT-PCR based on patient clinical records, Cell Counting Kit-8, acridine orange/ethidium bromide double fluorescence staining, flow cytometry, and wound-healing and transwell assays. Notably, circ-HOMER1 was upregulated in both HCC cells and tissues. This aberrant expression pattern was closely correlated with larger tumor size, higher tumor-node-metastasis stage, and poorer prognosis for the patients with HCC. Moreover, silenced circ-HOMER1 inhibited cell proliferation, migration, and invasion concomitant with the promotion of apoptosis in HCC cells, and vice versa. Mechanistically, circ-HOMER1 enhanced the inhibition of miR-1322 on CXCL6 in HCC. Furthermore, we found that circ-HOMER1 promoted HCC cell growth and aggressiveness by miR-1322/CXCL6 axis. This study may provide a potential prognostic indicator and therapeutic target for patients with HCC.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Carcinoma Hepatocelular/patología , Quimiocina CXCL6/metabolismo , Regulación Neoplásica de la Expresión Génica , Proteínas de Andamiaje Homer/genética , MicroARNs/genética , ARN Circular/genética , Apoptosis , Biomarcadores de Tumor/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Movimiento Celular , Proliferación Celular , Quimiocina CXCL6/genética , Progresión de la Enfermedad , Femenino , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Masculino , Persona de Mediana Edad , Invasividad Neoplásica , Pronóstico , Tasa de Supervivencia , Células Tumorales Cultivadas
7.
J Cell Mol Med ; 22(10): 5050-5061, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30106235

RESUMEN

Liver fibrosis is the excessive accumulation of extracellular matrix proteins in response to the inflammatory response that accompanies tissue injury, which at an advanced stage can lead to cirrhosis and even liver failure. This study investigated the role of the CXC chemokine CXCL6 (GCP-2) in liver fibrosis. The expression of CXCL6 was found to be elevated in the serum and liver tissue of high stage liver fibrosis patients. Furthermore, treatment with CXCL6 (100 ng/mL) stimulated the phosphorylation of EGFR and the expression of TGF-ß in cultured Kupffer cells (KCs). Although treatment with CXCL6 directly did not activate the hepatic stellate cell (HSC) line, HSC-T6, HSCs cultured with media taken from KCs treated with CXCL6 or TGF-ß showed increased expression of α-SMA, a marker of HSC activation. CXCL6 was shown to function via the SMAD2/BRD4/C-MYC/EZH2 pathway by enhancing the SMAD3-BRD4 interaction and promoting direct binding of BRD4 to the C-MYC promoter and CMY-C to the EZH2 promoter, thereby inducing profibrogenic gene expression in HSCs, leading to activation and transdifferentiation into fibrogenic myofibroblasts. These findings were confirmed in a mouse model of CCl4 -induced chronic liver injury and fibrosis in which the levels of CXCL6 and TGF-ß in serum and the expression of α-SMA, SMAD3, BRD4, C-MYC, and EZH2 in liver tissue were increased. Taken together, our results reveal that CXCL6 plays an important role in liver fibrosis through stimulating the release of TGF-ß by KCs and thereby activating HSCs.


Asunto(s)
Quimiocina CXCL6/genética , Cirrosis Hepática/genética , Hígado/metabolismo , Factor de Crecimiento Transformador beta1/genética , Animales , Proteínas de Ciclo Celular , Proliferación Celular/genética , Células Cultivadas , Colágeno Tipo I/genética , Proteína Potenciadora del Homólogo Zeste 2/genética , Receptores ErbB/genética , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/patología , Humanos , Macrófagos del Hígado/metabolismo , Macrófagos del Hígado/patología , Hígado/patología , Cirrosis Hepática/patología , Ratones , Proteínas Nucleares/genética , Proteínas Proto-Oncogénicas c-myc/genética , Transducción de Señal/genética , Proteína Smad2/genética , Factores de Transcripción/genética
8.
Biochem Cell Biol ; 94(3): 229-35, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27032929

RESUMEN

Hepatocyte proliferation and collagen I (COLI) secretion are important processes during liver regeneration. This study aimed to investigate the role of CXCL6 in hepatocyte proliferation and COLI secretion. Serum CXCL6 levels in patients with chronic hepatitis B (CHB) were examined and the effects of CXCL6 on the proliferation of L02 hepatocytes and the secretion of COLI from LX2 human hepatic stellate cells were evaluated. We found that serum CXCL6 levels increased gradually with disease progression of CHB, and there was positive correlation between serum CXCL6 level and alanine transaminase (ALT) and aspartate transaminase (AST). In vitro, CXCL6 promoted L02 proliferation but this was blocked upon CXCR1 knockdown. The level of phospho-IκBα was upregulated by CXCL6 but downregulated by CXCR1 siRNA in L02 cells. CXCL6 inhibited the secretion of COLI by LX2 cells, dependent on CXCR1 and CXCR2. Taken together, these data suggest that increased expression of CXCL6 during CHB could promote hepatocyte proliferation through the CXCR1-NFκB pathway and inhibit the secretion of COLI by hepatic stellate cells.


Asunto(s)
Quimiocina CXCL6/metabolismo , Colágeno Tipo I/metabolismo , Hepatitis B Crónica/metabolismo , FN-kappa B/metabolismo , Receptores de Interleucina-8A/metabolismo , Adulto , Línea Celular , Proliferación Celular , Femenino , Células Estrelladas Hepáticas/metabolismo , Hepatitis B Crónica/patología , Hepatocitos/citología , Hepatocitos/metabolismo , Hepatocitos/patología , Humanos , Masculino , Redes y Vías Metabólicas , Persona de Mediana Edad , Receptores de Interleucina-8A/genética
9.
Am J Obstet Gynecol ; 213(4 Suppl): S29-52, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26428501

RESUMEN

Acute inflammatory lesions of the placenta consist of diffuse infiltration of neutrophils at different sites in the organ. These lesions include acute chorioamnionitis, funisitis, and chorionic vasculitis and represent a host response (maternal or fetal) to a chemotactic gradient in the amniotic cavity. While acute chorioamnionitis is evidence of a maternal host response, funisitis and chorionic vasculitis represent fetal inflammatory responses. Intraamniotic infection generally has been considered to be the cause of acute chorioamnionitis and funisitis; however, recent evidence indicates that "sterile" intraamniotic inflammation, which occurs in the absence of demonstrable microorganisms induced by "danger signals," is frequently associated with these lesions. In the context of intraamniotic infection, chemokines (such as interleukin-8 and granulocyte chemotactic protein) establish a gradient that favors the migration of neutrophils from the maternal or fetal circulation into the chorioamniotic membranes or umbilical cord, respectively. Danger signals that are released during the course of cellular stress or cell death can also induce the release of neutrophil chemokines. The prevalence of chorioamnionitis is a function of gestational age at birth, and present in 3-5% of term placentas and in 94% of placentas delivered at 21-24 weeks of gestation. The frequency is higher in patients with spontaneous labor, preterm labor, clinical chorioamnionitis (preterm or term), or ruptured membranes. Funisitis and chorionic vasculitis are the hallmarks of the fetal inflammatory response syndrome, a condition characterized by an elevation in the fetal plasma concentration of interleukin-6, and associated with the impending onset of preterm labor, a higher rate of neonatal morbidity (after adjustment for gestational age), and multiorgan fetal involvement. This syndrome is the counterpart of the systemic inflammatory response syndrome in adults: a risk factor for short- and long-term complications (ie, sterile inflammation in fetuses, neonatal sepsis, bronchopulmonary dysplasia, periventricular leukomalacia, and cerebral palsy). This article reviews the definition, pathogenesis, grading and staging, and clinical significance of the most common lesions in placental disease. Illustrations of the lesions and diagrams of the mechanisms of disease are provided.


Asunto(s)
Infecciones Bacterianas/complicaciones , Quimiocinas/metabolismo , Corioamnionitis/microbiología , Corioamnionitis/patología , Neutrófilos/metabolismo , Enfermedad Aguda , Candidiasis/complicaciones , Corioamnionitis/epidemiología , Corioamnionitis/metabolismo , Femenino , Edad Gestacional , Humanos , Embarazo , Nacimiento Prematuro/epidemiología , Prevalencia , Nacimiento a Término , Terminología como Asunto
10.
Front Med (Lausanne) ; 11: 1387210, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38882664

RESUMEN

Background: Variations in circulatory cytokine levels have been observed during the onset and course of palmoplantar pustulosis (PPP); however, whether these changes are due to etiological or secondary factors is unclear. To clarify the causal relationship, we conducted a summarized-level bidirectional Mendelian randomization (MR) analysis in this study. Methods: A FinnGen biobank genome-wide association study (GWAS) of 212,766 individuals (524 PPP patients and 212,242 controls) provided summary data for PPP, whereas genetic instrumental variables (IVs) linked to circulation cytokine levels were gathered from a GWAS of 14,824 European individuals. The inverse-variance weighted (IVW), weighted median (WME), simple mode, and MR-Egger methods were used to ascertain the changes in PPP pathogenic cytokine taxa. Sensitivity analysis, which included horizontal pleiotropy analysis, was then conducted. The reliability of the results was assessed using the leave-one-out approach and the MR Steiger test, which evaluated the strength of a causal relationship. To evaluate the reverse causality between PPP and circulating cytokine levels, a reverse MR analysis was carried out. Results: Our study demonstrated positive associations between C-X-C motif chemokine 6 (CXCL6) and PPP (odds ratio, OR 1.257, 95%CI: 1.001-1.570, p = 0.043). C-C motif chemokine 19 (CCL19) and interleukin-6 (IL-6) were suggested to be protectively associated with the development of PPP (OR: 0.698,95% CI: 0.516-0.944, p = 0.020; OR: 0.656, 95%CI:0.437-0.985, p = 0.042). The results were steady after sensitivity and heterogeneity analyses. Conclusion: At the genetic prediction level, we identified causally connected inflammation-related variables that contributed to the onset and development of PPP. The therapeutic options for some refractory PPP have expanded due to tailored cytokine therapy, generating fresh concepts for PPP diagnostics and mechanism investigation.

11.
Discov Oncol ; 15(1): 411, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39237807

RESUMEN

BACKGROUND: As the most common primary bone cancer, osteosarcoma (OS) still lacks satisfactory therapeutic outcomes. Therefore, it is crucial to further evaluate OS at different risk levels and identify new intervention targets. Many evidences suggest the important role of angiogenesis in OS, but further exploration is needed. METHODS: We utilized public databases TARGET and GEO and employed bioinformatics algorithms such as LASSO, univariate and multivariate Cox regression analyses, and unsupervised consensus clustering to explore the role of angiogenesis-related genes (AGRGs) in OS. By calculating AGRG scores, we further analyzed OS molecular subtypes based on AGRGs. The correlation between AGRG scores and immune infiltration was subsequently examined. In vitro experiments, including WB, PCR, siRNA, migration, and invasion assays, were used to determine the value of the selected targets for OS. RESULTS: Ultimately, we established an OS prognosis model based on five AGRGs (COL5A2, CXCL6, FSTL1, NRP1, and TNFRSF21) that can independently validate prognosis levels. In vitro experiments confirmed the aberrant expression of CXCL6 in OS and its potential role in migration and invasion. CONCLUSION: Our study reveals the impact of angiogenesis on OS from a novel perspective and provides potential intervention targets.

12.
Hum Reprod ; 28(9): 2350-62, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23814098

RESUMEN

STUDY QUESTION: Can the chemokine CXCL6 affect trophoblast cell migration and invasion in human first-trimester placenta? SUMMARY ANSWER: Chemokine CXCL6 inhibits trophoblast cell migration and invasion by suppressing matrix metalloproteinase (MMP)-2 activity in human first-trimester placenta. WHAT IS KNOWN ALREADY: Several chemokines including CXCL8, CXCL12, CXCL14, CXCL16, CX3CL1, CCL14 and CCL4 can promote or inhibit trophoblast cell migration and invasion in human first-trimester placenta. STUDY DESIGN, SIZE, DURATION: We used the trophoblast cell line HTR8/SVneo cells, primary trophoblast cells and villi explants to investigate the effect of rhCXCL6 on trophoblast cell migration and invasion. PARTICIPANTS/MATERIALS, SETTING, METHODS: First, the CXCL6 RNA transcript level was detected in HTR8/SVneo cells derived from human first-trimester, second-trimester and third-trimester placenta by RT-PCR. Protein expression of CXCL6 and its receptors was tested in first-trimester placenta by immunohistochemistry. Secreted CXCL6 protein was detected in HTR8/SVneo cell supernatants by enzyme-linked immunosorbent assay. Secondly, the effect of rhCXCL6 on HTR8/SVneo cell proliferation was assessed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Thirdly, the effect of rhCXCL6 on cell migration and invasion of HTR8/SVneo cells, primary trophoblast cells and villi explants was tested by transwell migration and invasion assays, respectively. Last, MMP-2 and MMP-9 activity in the supernatants of HTR8/SVneo and primary trophoblast cells treated by rhCXCL6 in the invasion assay was assessed by gelatin zymography. MAIN RESULTS AND THE ROLE OF CHANCE: Abundance of the CXCL6 RNA transcript increased with pregnancy development. CXCL6 and its receptor were expressed in several cells at the human maternal-fetal interface. RhCXCL6 inhibited trophoblast cell migration and invasion by suppressing MMP-2 activity. LIMITATIONS, REASONS FOR CAUTION: These experiments are only in vitro. WIDER IMPLICATIONS OF THE FINDINGS: According to the literature, CXCL6 could promote tumour cell migration and invasion by accelerating MMP-9 activity. However, CXCL6 inhibited trophoblast cell migration and invasion by suppressing MMP-2 activity in human first-trimester interface. These data suggest that strict regulation of CXCL6 is required for normal migration and invasion of cells, such as those involved at the maternal-fetal interface.


Asunto(s)
Quimiocina CXCL6/metabolismo , Regulación hacia Abajo , Regulación del Desarrollo de la Expresión Génica , Metaloproteinasa 2 de la Matriz/metabolismo , Placentación , Trofoblastos/metabolismo , Línea Celular , Movimiento Celular , Células Cultivadas , Quimiocina CXCL6/genética , Femenino , Humanos , Metaloproteinasa 2 de la Matriz/química , Placenta/citología , Placenta/metabolismo , Embarazo , Primer Trimestre del Embarazo , Segundo Trimestre del Embarazo , Tercer Trimestre del Embarazo , ARN Mensajero/metabolismo , Proteínas Recombinantes/metabolismo , Técnicas de Cultivo de Tejidos , Trofoblastos/citología , Regulación hacia Arriba
13.
EMBO Mol Med ; 15(1): e16218, 2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-36507558

RESUMEN

We showed that the chemokine receptor C-X-C Motif Chemokine Receptor 2 (CXCR2) is essential for cartilage homeostasis. Here, we reveal that the CXCR2 ligand granulocyte chemotactic protein 2 (GCP-2) was expressed, during embryonic development, within the prospective permanent articular cartilage, but not in the epiphyseal cartilage destined to be replaced by bone. GCP-2 expression was retained in adult articular cartilage. GCP-2 loss-of-function inhibited extracellular matrix production. GCP-2 treatment promoted chondrogenesis in vitro and in human cartilage organoids implanted in nude mice in vivo. To exploit the chondrogenic activity of GCP-2, we disrupted its chemotactic activity, by mutagenizing a glycosaminoglycan binding sequence, which we hypothesized to be required for the formation of a GCP-2 haptotactic gradient on endothelia. This mutated version (GCP-2-T) had reduced capacity to induce transendothelial migration in vitro and in vivo, without affecting downstream receptor signaling through AKT, and chondrogenic activity. Intra-articular adenoviral overexpression of GCP-2-T, but not wild-type GCP-2, reduced pain and cartilage loss in instability-induced osteoarthritis in mice. We suggest that GCP-2-T may be used for disease modification in osteoarthritis.


Asunto(s)
Quimiocina CXCL6 , Osteoartritis , Humanos , Animales , Ratones , Quimiocinas CXC/metabolismo , Quimiocinas CXC/farmacología , Ratones Desnudos , Estudios Prospectivos , Receptores de Quimiocina , Condrogénesis
14.
Clin Exp Med ; 23(8): 4413-4427, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37612429

RESUMEN

Chemokines were originally defined as cytokines that affect the movement of immune cells. In recent years, due to the increasing importance of immune cells in the tumor microenvironment (TME), the role of chemokines has changed from a single "chemotactic agent" to a key factor that can regulate TME and affect the tumor phenotype. CXCL6, also known as granulocyte chemoattractant protein-2 (GCP-2), can recruit neutrophils to complete non-specific immunity in the process of inflammation. Cancer-related genes and interleukin family can promote the abnormal secretion of CXCL6, which promotes tumor growth, metastasis, epithelial mesenchymal transformation (EMT) and angiogenesis in the TME. CXCL6 also has a role in promoting fibrosis and tissue damage repair. In this review, we focus on the regulatory network affecting CXCL6 expression, its role in the progress of inflammation and how it affects tumorigenesis and progression based on the TME, in an attempt to provide a potential target for the treatment of diseases such as inflammation and cancer.


Asunto(s)
Quimiocinas , Neoplasias , Humanos , Quimiocinas/genética , Citocinas , Neoplasias/tratamiento farmacológico , Neutrófilos , Inflamación , Microambiente Tumoral , Quimiocina CXCL6
15.
Protein Pept Lett ; 30(4): 314-324, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36892025

RESUMEN

BACKGROUND: Gastric cancer (GC) is the most common cancer globally. Recent research has suggested that circular RNAs (circRNAs) play crucial roles in GC tumorigenesis and progression. The present study is performed to clarify the possible mechanism of circRNA has_circ_0006089 (circ_0006089) in GC. METHODS: The differentially expressed circRNAs were screened out by analyzing the dataset GSE83- 521. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to detect circ_0006089, miR-515-5p and CXCL6 expression levels in GC tissues and cell lines. CCK-8, BrdU and Transwell assays were adopted to examine the biological function of circ_0006089 in GC cells. The interaction between miR-515-5p and circ_0006089, as well as between CXCL6 and miR-515-5p, was confirmed through bioinformatics, RNA immunoprecipitation (RIP) assay, dual-luciferase reporter gene assay and RNA pull-down assay. RESULTS: Circ_0006089 was significantly upregulated in GC tissues and cells, and miR-515-5p was remarkably downregulated. After knocking down circ_0006089 or overexpressing miR-515-5p, the growth, migration and invasion of GC cells were markedly reduced. In terms of mechanism, miR-515- 5p was verified to be the target of circ_0006089, and CXCL6 was validated as miR-515-5p's downstream target gene. Inhibiting miR-515-5p reversed the inhibitory effect knocking down circ_0006089 had on GC cell proliferation, migration and invasion. CONCLUSION: Circ_0006089 facilitates the malignant biological behaviors of GC cells via the miR-515- 5p/CXCL6 axis. Circ_0006089 can probably act as one of the important biomarkers and therapeutic targets in GC treatment strategies.


Asunto(s)
MicroARNs , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , ARN Circular/genética , Carcinogénesis , MicroARNs/genética , Proliferación Celular/genética , Línea Celular Tumoral , Quimiocina CXCL6
16.
Front Endocrinol (Lausanne) ; 14: 1173079, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37635970

RESUMEN

Background: Angiogenesis in folliculogenesis contributes to oocyte developmental competence in natural and in vitro fertilization (IVF) cycles. Therefore, the identification of key angiogenic factors in follicular fluid (FF) during folliculogenesis is clinically significant and important for in vitro fertilization. This study aims to identify the key angiogenic factors in FF for predicting oocyte maturity during in vitro fertilization. Materials and methods: Forty participants who received ovarian stimulation using a GnRH antagonist protocol in their first in vitro fertilization treatment were recruited. From each patient, two follicular samples (one preovulatory follicle, > 18 mm; one mid-antral follicle, < 14 mm) were collected without flushing during oocyte retrieval. In total, 80 FF samples were collected from 40 patients. The expression profiles of angiogenesis-related proteins in FF were analyzed via Luminex high-performance assays. Recorded patient data included antral follicle count, anti-müllerian hormone, age, and BMI. Serum samples were collected on menstrual cycle day 2, the trigger day, and the day of oocyte retrieval. Hormone concentrations including day 2 FSH/LH/E2/P4, trigger day E2/LH/P4, and retrieval day E2/LH/P4 were measured by chemiluminescence assay. Results: Ten angiogenic factors were highly expressed in FF: eotaxin, Gro-α, IL-8, IP-10, MCP-1, MIG, PAI-1 (Serpin), VEGF-A, CXCL-6, and HGF. The concentrations of eotaxin, IL-8, MCP1, PAI-1, and VEGF-A were significantly higher in preovulatory follicles than those in mid-antral follicles, while the Gro-α and CXCL-6 expressional levels were lower in preovulatory than in mid-antral follicles (p < 0.05). Logistic regression and receiver operating characteristic (ROC) analysis revealed that VEGF-A, eotaxin, and CXCL-6 were the three strongest predictors of oocyte maturity. The combination of VEGF-A and CXCL-6 predicted oocyte maturity with a higher sensitivity (91.7%) and specificity (72.7%) than other combinations. Conclusion: Our findings suggest that VEGF-A, eotaxin, and CXCL-6 concentrations in FF strongly correlate with oocyte maturity from the mid-antral to preovulatory stage. The combination of VEGF-A and CXCL-6 exhibits a relatively good prediction rate of oocyte maturity during in vitro fertilization.


Asunto(s)
Líquido Folicular , Interleucina-8 , Femenino , Humanos , Inhibidor 1 de Activador Plasminogénico , Factor A de Crecimiento Endotelial Vascular , Biomarcadores , Oocitos
17.
Int Immunopharmacol ; 113(Pt A): 109329, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36252470

RESUMEN

Myeloid-derived suppressor cells (MDSCs), a population derived from immature myeloid progenitors, are present in the tumors of patients and highly protumorigenic. However, the molecular mechanisms regulating MDSC infiltration remain unclear. Neddylation pathway is overactivated in multiple cancers and has a significant role in tumor progression. We established a subcutaneous transplantation model of Lewis lung cancer in mice and showed that inactivation of neddylation pathway inhibits MDSC infiltration and impairs lung cancer growth. A high expression level of neuronal precursor cell-expressed developmentally downregulated protein 8 (NEDD8) is positively correlated with MDSC infiltration in human lung adenocarcinomas (LUADs). Moreover, inactivation of neddylation pathway inhibits the expression of murine CXCL5 (mCXCL5; human homolog CXCL6, hCXCL6), an important cytokine implicated in MDSC recruitment. Mechanistically, inactivation of neddylation pathway inhibits activity of Cullin-RING ligase 1, a typical neddylation substrate, and induces accumulation of phosphorylated IκBα and subsequent blockage of NF-κB translocation, thus suppressing transcriptional activation of mCxcl5 or hCXCL6. Collectively, our data suggest that neddylation-NF-κB-mCXCL5 axis is involved in MDSC recruitment to the tumor sites and demonstrate that neddylation pathway is a good therapeutic target for patients with LUAD, particularly those receiving anti-MDSC therapy.


Asunto(s)
Neoplasias Pulmonares , Células Supresoras de Origen Mieloide , Humanos , Ratones , Animales , FN-kappa B/metabolismo , Células Supresoras de Origen Mieloide/metabolismo , Línea Celular Tumoral , Neoplasias Pulmonares/tratamiento farmacológico , Transducción de Señal
18.
Bioengineered ; 13(3): 4688-4701, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35156518

RESUMEN

Alcoholic liver disease (ALD) denotes a series of liver diseases caused by ethanol. Recently, immune-related genes (IRGs) play increasingly crucial role in diseases. However, it's unclear the role of IRGs in ALD. Bioinformatic analysis was used to discern the core immune-related differential genes (IRDGs) in the present study. Subsequently, Cell Counting Kit-8 say, oil red O staining, and triglyceride detection were employed to explore optimal experimental conditions of establishing hepatocellular models of early ALD. Ultimately, real-time reverse transcription-PCR and immunohistochemistry/immunocytochemistry methods were adopted to verify the expressions of mRNA and proteins of core IRDGs, respectively. C-X-C Motif Chemokine Ligand 1 (Cxcl1) and Cxcl6 were regarded as core IRDGs via integrated bioinformatics analysis. Besides, Lieber Decarli Ethanol feeding and 200 mM and 300 mM ethanol stimulating L02 cells for 36 h can both successfully hepatocellular model. In ethanol groups, the levels of CXCL1 and CXCL6 mRNA were significantly upregulated than pair-fed groups (P < 0.0001). Also, immunohistochemistry revealed that positive particles of CXCL1 and CXCL6 in mice model of early ALD were obviously more than control groups (P < 0.0001). Besides, in L02 hepatocytes stimulated by ethanol, CXCL1 and CXCL6 mRNA were over-expressed, compared with normal L02 cells (P < 0.0001). Meanwhile, immunocytochemistry indicated that CXCL1 and CXCL6 proteins in hepatocellular model of early ALD were higher than normal L02 hepatocytes stimulus (P < 0.0001). Ethanol promoted the upregulation of Cxcl1 and Cxcl6 mRNA and proteins in models of early ALD, denoting their potentiality of acting as biomarkers of ALD.


Asunto(s)
Etanol , Hepatopatías Alcohólicas , Animales , Ligandos , Hígado/metabolismo , Hepatopatías Alcohólicas/genética , Hepatopatías Alcohólicas/metabolismo , Ratones , Ratones Endogámicos C57BL , ARN Mensajero/genética , Regulación hacia Arriba/genética
19.
Front Med (Lausanne) ; 8: 683506, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34336890

RESUMEN

Bromodomain-containing protein 4 (BRD4) has been implicated to play a regulatory role in fibrogenic gene expression in animal models of liver fibrosis. The potential role of BRD4 in liver fibrosis in humans remains unclear. We sought to investigate the expression and cellular localization of BRD4 in fibrotic liver tissues. Human liver tissues were collected from healthy individuals and patients with liver fibrosis of various etiologies. RNA-seq showed that hepatic BRD4 mRNA was elevated in patients with liver fibrosis compared with that in healthy controls. Subsequent multiple manipulations such as western blotting, real-time quantitative polymerase chain reaction, and dual immunofluorescence analysis confirmed the abnormal elevation of the BRD4 expression in liver fibrosis of various etiologies compared to healthy controls. BRD4 expression was positively correlated with the severity of liver fibrosis, and also correlated with the serum levels of aspartate aminotransferase and total bilirubin. Moreover, the expression of C-X-C motif chemokine ligand 6 (CXCL6), a factor interplayed with BRD4, was increased in hepatic tissues of the patients with liver fibrosis. Its expression level was positively correlated with BRD4 level. BRD4 is up-regulated in liver fibrosis, regardless of etiology, and its increased expression is positively correlated with higher degrees of liver fibrosis. Our data indicate that BRD4 play a critical role in the progress of liver fibrosis, and it holds promise as a potential target for intervention of liver fibrosis.

20.
Bioengineered ; 12(1): 8872-8884, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34637697

RESUMEN

Hypoxia, a strong and selective pressure, has been involved in invasion, metastasis, and angiogenesis of tumor cells. Our study performed the transcriptome profiles of 666 non-small-cell lung cancer (NSCLC) patients. Various bioinformatic approaches were combined to evaluate the immune cell infiltration in the high hypoxia risk patients. In addition, in vitro experiments were performed to assess the effects of tumor-associated neutrophils (TANs) on NSCLC cells proliferation, migration and invasion and to reveal the underlying mechanisms. We divided NSCLC into two groups (Cluster1/2) based on the expression profiles of hypoxia-associated genes. Compared with the Cluster1 subgroup, the Cluster2 had a worse prognosis. Significant enrichment analysis revealed that PI3K/AKT/mTOR signaling pathway and TANs were highly related to hypoxia microenvironment. Eleven hypoxia-related genes (FBP1, NDST2, ADM, LDHA, DDIT4, EXT1, BCAN, IGFBP1, PDGFB, AKAP12, and CDKN3) were scored by LASSO COX regression to yield risk scores, and we revealed a significant difference in overall survival (OS) between the low- and high-risk groups. Mechanistically, CXCL6 in hypoxic cancer cells promoted the migration of TANs in vitro, and in turn promote NSCLC cells proliferation, migration and invasion. In summary, this study revealed a 11-hypoxia gene signature that predicted OS of NSCLC patients, and improved our understanding of the role of TANs in hypoxia microenvironment.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Regulación Neoplásica de la Expresión Génica , Hipoxia/fisiopatología , Neoplasias Pulmonares/patología , Neutrófilos/inmunología , Microambiente Tumoral , Apoptosis , Biomarcadores de Tumor/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Movimiento Celular , Proliferación Celular , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/metabolismo , Transducción de Señal , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda