Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
J Integr Plant Biol ; 56(9): 902-15, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24942088

RESUMEN

Carotene hydroxylases catalyze the hydroxylation of α- and ß-carotene hydrocarbons into xanthophylls. In red algae, ß-carotene is a ubiquitously distributed carotenoid, and hydroxylated carotenoids such as zeaxanthin and lutein are also found. However, no enzyme with carotene hydroxylase activity had been previously identified in red algae. Here, we report the isolation of a gene encoding a cytochrome P450-type carotene hydroxylase (PuCHY1) from Porphyra umbilicalis, a red alga with an ancient origin. Sequence comparisons found PuCHY1 belongs to the CYP97B subfamily, which has members from different photosynthetic organisms ranging from red algae to land plants. Functional complementation in Escherichia coli suggested that PuCHY1 catalyzed the conversion from ß-carotene to zeaxanthin. When we overexpressed PuCHY1 in the Arabidopsis thaliana chy2 mutant, pigment analysis showed a significant accumulation of hydroxylated carotenoids, including neoxanthin, violaxanthin, and lutein in the leaves of transgenic plants. These results confirmed a ß-hydroxylation activity of PuCHY1, and also suggested a possible ϵ-hydroxylation function. The pigment profile and gene expression analyses of the algal thallus under high-light stress suggested that P. umbilicalis is unlikely to operate a partial xanthophyll cycle for photoprotection.


Asunto(s)
Carotenoides/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Evolución Molecular , Porphyra/enzimología , Rhodophyta/metabolismo , Secuencia de Bases , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/aislamiento & purificación , Cartilla de ADN , Rhodophyta/genética
2.
Plant Commun ; 5(6): 100847, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38379285

RESUMEN

Carotenoids in plant foods provide health benefits by functioning as provitamin A. One of the vital provitamin A carotenoids, ß-cryptoxanthin, is typically plentiful in citrus fruit. However, little is known about the genetic basis of ß-cryptoxanthin accumulation in citrus. Here, we performed a widely targeted metabolomic analysis of 65 major carotenoids and carotenoid derivatives to characterize carotenoid accumulation in Citrus and determine the taxonomic profile of ß-cryptoxanthin. We used data from 81 newly sequenced representative accessions and 69 previously sequenced Citrus cultivars to reveal the genetic basis of ß-cryptoxanthin accumulation through a genome-wide association study. We identified a causal gene, CitCYP97B, which encodes a cytochrome P450 protein whose substrate and metabolic pathways in land plants were undetermined. We subsequently demonstrated that CitCYP97B functions as a novel monooxygenase that specifically hydroxylates the ß-ring of ß-cryptoxanthin in a heterologous expression system. In planta experiments provided further evidence that CitCYP97B negatively regulates ß-cryptoxanthin content. Using the sequenced Citrus accessions, we found that two critical structural cis-element variations contribute to increased expression of CitCYP97B, thereby altering ß-cryptoxanthin accumulation in fruit. Hybridization/introgression appear to have contributed to the prevalence of two cis-element variations in different Citrus types during citrus evolution. Overall, these findings extend our understanding of the regulation and diversity of carotenoid metabolism in fruit crops and provide a genetic target for production of ß-cryptoxanthin-biofortified products.


Asunto(s)
beta-Criptoxantina , Carotenoides , Citrus , Sistema Enzimático del Citocromo P-450 , Citrus/genética , Citrus/metabolismo , beta-Criptoxantina/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Carotenoides/metabolismo , Hidroxilación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Estudio de Asociación del Genoma Completo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda