RESUMEN
Soil fertility (SF) is a crucial factor that directly impacts the performance and quality of crop production. To investigate the SF status in agricultural lands of winter wheat in Khuzestan province, 811 samples were collected from the soil surface (0-25 cm). Eleven soil properties, i.e., electrical conductivity (EC), soil organic carbon (SOC), total nitrogen (TN), calcium carbonate equivalent (CCE), available phosphorus (Pav), exchangeable potassium (Kex), iron (Fe), copper (Cu), zinc (Zn), manganese (Mn), and soil pH, were measured in the samples. The Nutrient Index Value (NIV) was calculated based on wheat nutritional requirements. The results indicated that 100%, 93%, and 74% of the study areas for CCE, pH, and EC fell into the low, moderate, and moderate to high NIV classes, respectively. Also, 25% of the area is classified as low fertility (NIV < 1.67), 75% falls under medium fertility (1.67 < NIV value < 2.33), and none in high fertility (NIV value > 2.33). Assessment of the mean wheat yield (AWY) and its comparison with NIV showed that the highest yield was in the Ramhormoz region (5200 kg.ha-1), while the lowest yield was in the Hendijan region (3000 kg.ha-1) with the lowest EC rate in the study area. Elevated levels of salinity and CCE in soils had the most negative impact on irrigated WY, while Pav, TN, and Mn availability showed significant effects on crop production. Therefore, implementing SF management practices is essential for both quantitative and qualitative improvement in irrigated wheat production in Khuzestan province.
Asunto(s)
Monitoreo del Ambiente , Nitrógeno , Fósforo , Suelo , Triticum , Suelo/química , Nitrógeno/análisis , Fósforo/análisis , Fertilizantes/análisis , Agricultura/métodos , Nutrientes/análisis , Carbono/análisisRESUMEN
PREMISE: The possibility of fine-scale intraspecific adaptive divergence under gene flow is established by theoretical models and has been confirmed empirically in tree populations distributed along steep altitudinal clines or across extreme edaphic discontinuities. However, the possibility of microgeographic adaptive divergence due to less severe but more frequent kinds of soil variation is unclear. METHODS: In this study, we looked for evidence of local adaptation to calcareous versus siliceous soil types in two nearby Mediterranean Pinus sylvestris populations connected via pollen flow. Using a greenhouse experiment, we tested for variation in early (up to three years of age) seedling performance among open-pollinated maternal families originating from each edaphic provenance when experimentally grown on both types of natural local substrate. RESULTS: Although seedlings were clearly affected by the edaphic environment, exhibiting lower and slower emergence as well as higher mortality on the calcareous than in the siliceous substrate, neither the performance on each substrate nor the plasticity among substrates varied significantly with seedling edaphic provenance. CONCLUSIONS: We found no evidence of local adaptation to a non-extreme edaphic discontinuity over a small spatial scale, at least during early stages of seedling establishment. Future studies on microgeographic soil-driven adaptation should consider long-term experiments to minimize maternal effects and allow a potentially delayed expression of edaphic adaptive divergence.
Asunto(s)
Pinus sylvestris , Pinus , Suelo , Pinus sylvestris/genética , Fenotipo , Adaptación Fisiológica , Aclimatación , Plantones/genética , Pinus/genéticaRESUMEN
The study was designed to quantify the contents of Pi fractions and correlate them with the P capacity factor of soils in the Brazilian semiarid region. We also evaluated the effect of soil P doses contact time and P availability for maize plants in alkaline soils of the Brazilian semiarid region. Soil samples were collected between the Piranhas-Açu (RN) and Jaguaribe (CE) rivers valleys. The maximum phosphate sorption capacity was highly correlated with the values of remaining P, indicating that it can be used as a measure to estimate the P capacity factor of these soils. Maximum P sorption capacity correlated with Fe2O3 and Ca2+ contents and pH values. These results demonstrate that P sorption is explained by P adsorption on the surface of iron oxides and by its precipitation with Ca2+ in alkaline soils. The contact time increases promote plant P contents decreased substantially in the first 30 to 60 days after fertilization and decreased until 120 days of incubation but then tended to stabilize at the longest soil P contact times.
The clay content and P-remnant estimate the P capacity factor in alkaline soils.In alkaline soils, there is a predominance of PCa and PFe.The availability of P stabilizes after 120 days.The largest corn biomass occurs between the P doses of 256288 mg dm−3.
Asunto(s)
Fósforo , Suelo , Fósforo/química , Suelo/química , Brasil , Biodegradación Ambiental , Fosfatos , AdsorciónRESUMEN
Greenhouse vegetable production systems use excessive phosphorus (P) fertilizer. This study is set out to look into the P fractionation, mobility, and risk of P leaching in ten greenhouse soils. The mean P concentrations in leachates varied from 0.4 to 1.6 mg l-1 (mean of 30 days of soil leaching). Between 5.7 and 31.0 mg kg-1 of P was leached from soils during 30 days of column leaching. Organic matter (OM) and Olsen-extractable P (Olsen P) correlated strongly with cumulative P leached after 5, 10, 15, 20, 25, and 30 days of leaching. The high correlation between OM and Olsen P with cumulative P leached at 5 days of leaching suggests that in future leaching experiments, the leaching period should be extended to 5 days of leaching. The first two P fractions correlated significantly with the total P leached in the primary days of leaching. The pH had little effect on P leaching but had a significant impact on soluble and exchangeable P fraction, suggesting that P mobility would increase in these calcareous greenhouse vegetable soils as pH rose. The calculated change point (194 mg kg-1) was high, indicating that a high percentage (40%) of the studied greenhouse soils had exceeded the change point. In conclusion, due to the high degree of P saturation and change point in greenhouse vegetable soils, P mobilization is a significant risk, and the findings can be used to provide future direction for fertilizing greenhouse vegetable soils.
Asunto(s)
Fósforo , Contaminantes del Suelo , Fósforo/análisis , Suelo , Verduras , Monitoreo del Ambiente , Fertilizantes , Contaminantes del Suelo/análisisRESUMEN
Phosphorus (P) inputs are essential for maximizing agronomic potential, yet high P inputs and subsequent P losses can cause eutrophication of water bodies. There is a need to evaluate P contents in agricultural soils globally both from an agronomic and environmental perspective. This systematic review and meta-analysis estimated the pooled mean levels of P contents of Iran. In this study, data on available and total P contents of Iran's calcareous soils was compiled (main focus on Olsen P) and compared to (i) estimated Iranian background and global agricultural soil P contents, and (ii) agronomic and (iii) environmentally critical Olsen P values. The pooled mean estimate from the meta-analysis indicates that the levels of Olsen P across 425 soil samples (27 studies) were 21.3 mg kg-1 and total P across 190 soil samples (12 studies) 805.5 mg kg-1. Using 26 mg kg-1 as the agronomic critical Olsen P value above which no increase in crop yield occurs, crops grown on 61% of the soil samples in the investigated region would respond to P fertilizer and 20% of soils are currently in the optimum category (26-45 mg kg-1 Olsen P). The environmentally critical Olsen P value (~ 63 mg kg-1), defined as the amount above which P leaches from soil rapidly, was exceeded by 11% of soils with a further 4% of soils with elevated eutrophication risk. To maximize crop yields while maintaining a minimal risk of P leaching in Iran's calcareous soils, we suggest an ideal Olsen P of 26 mg kg-1. The outcomes from this study inform about the P status of Iranian soils and could help update recommendations for P fertilizer applications in calcareous soils globally. The framework presented here could further be adopted to evaluate the P status in other soil types.
Asunto(s)
Fósforo , Suelo , Fósforo/análisis , Irán , Fertilizantes/análisis , Monitoreo del AmbienteRESUMEN
Significant progress has been made in understanding Strategy I iron (Fe) acquisition using crop/model plants under controlled conditions in laboratories. However, plant species native to calcareous soils may have evolved unique strategies for adaptation to high carbonate/pH-induced Fe deficiency. Until now, little information is available on the Fe acquisition mechanisms in these plants. Here, we explored the Fe acquisition mechanisms in wild dicot species native to calcareous grasslands, by monitoring the Fe nutrition-related rhizosphere processes in field and greenhouse conditions. Most of these wild species displayed comparable shoot Fe concentration to those of crops, and some dicots actually accumulated very high shoot Fe. However, these species did not exhibit ferric reductase oxidase (FRO)-dependent Strategy I responses to Fe deficiency, including visual rhizosphere acidification and increased Fe3+ reduction. In contrast, chemical reductants exuded by roots of dicots were responsible for Fe3+ reduction in these wild plants. These features were not observed in the FRO-dependent Strategy I crop plant cucumber. Neither leaf chlorophyll nor shoot/root Fe was depressed by 10% CaCO3 application in all the examined wild species. Furthermore, their root exudation was significantly activated by CaCO3, leading to an increased Fe3+ reduction. We show that chemical reductant-mediated Fe3+ reduction occurs preferentially in these wild dicots and that these mechanisms are not sensitive to high soil carbonate/pH. Our findings support that Fe acquisition in Strategy I wild plants native to calcareous soils is substantially different from the enzyme-dependent system of Strategy I plants.
Asunto(s)
Pradera , Sustancias Reductoras , Carbonato de Calcio , Carbonatos , Hierro , Raíces de Plantas , Plantas , SueloRESUMEN
BACKGROUND: In Egypt, calcareous soils represent a large part of desert soils suffering from a shortage of nutrients and organic matter, affecting production and biological diversity in agroecosystems. Organic wastes, negatively affect the environment, recycling it as a promising technology in different farming systems, and its impact on crop productivity and soil fauna is largely unknown. In this study, the effects of integrating poultry manure (PM) alone or combined with vinasse (V) at rates of 4.2 g kg- 1 and 6.3 g kg- 1 in pots, on improving soil fauna diversity, soil fertility, soil consistency and yield of barley (Hordeum aestivum L.) grown in a calcareous soil were investigated. RESULTS: The results showed that the addition of PM alone or combined with V at different rates led to a significant increase in the microbial biomass carbon (MBC), organic matter (OM), NPK soil availability and yield of barley. The addition of 6.3 g PM and 4.2 g V kg- 1 soil have the best results in OM with 65.0% compared to control, and V contributes more than 16% of them. Prostigmata and Collembola were the dominant groups and accounted for 43.3% and 50.0% in the PM1 and 50.0% and 20.0% in the PM2 of the total individuals, respectively. Shannon and Evenness indices increased significantly with the soil amended by PM alone or combined with V. Soil fauna plays a key role in soil consistency because of a significant relationship between soil fauna and soil OM, MBC and soil fertility index. The addition of 6.3 g PM and 4.2 g V kg- 1 soil gave the best results in grain yield by 76.90% compared to the control. CONCLUSION: In conclusion, the interaction between PM and V can be used as a promising organic amendments to increase barley yield and improve efficiency of a recycled PM and V on soil fauna and soil fertility of calcareous soil.
Asunto(s)
Hordeum , Estiércol , Animales , Suelo , Aves de Corral , Carbono , FertilizantesRESUMEN
The most effective agricultural practice to prevent iron deficiency in calcareous soils is fertilizing with synthetic chelates. These compounds are non-biodegradable, and persistent in the environment; hence, there is a risk of leaching metals into the soil horizon. To tackle iron deficiency-induced chlorosis (IDC) in crops grown on calcareous soils, environmentally friendly solutions are needed rather than chemical application as it affects the soil health further. Hence, the present work focused on isolating and screening calcareous soil-specific bacteria capable of producing iron-chelating siderophores. Siderophore-producing bacteria (SPB) was isolated from the groundnut (Arachis hypogea L.) rhizosphere region, collected from Coimbatore district, Tamil Nadu, of which 17 bacterial isolates were positive for siderophore production assayed by chrome azurol sulphonate. The performance of SPB isolates was compared for siderophore kinetics, level of siderophore production, type of siderophore produced and iron-chelating capacity under 15 mM KHCO3. Four best performing isolates were screened, with average siderophores yield ranging â¼60-80% under pH 8, with sucrose as carbon source and NH2SO4 as nitrogen source at 37 °C. The four efficient SPB were molecularly identified as B. licheniformis, B. subtilis, B. licheniformis, and O. grignonense based on 16S rDNA sequencing. The simultaneous inhibition method showed T.viride has the highest antagonistic effect against S.rolfsii, and M.phaseolina with a reduction of mycelial growth by 69.3 and 65.1%, respectively, compared to control. Our results indicate that the optimized conditions enhanced siderophores chelation by suppressing the stem and root rot fungi, which could help in a cost-effective and environmentally friendly manner.
Asunto(s)
Sideróforos , Suelo , India , Bacterias/genética , Quelantes del HierroRESUMEN
Phosphorus (P) leaching from agricultural soils, in consequence of long-term utilization of P fertilizers, decreases the water quality and leads to eutrophication. The effect of monopotassium phosphate (MKP) at the rates of 0, 50, 200, 400, and 800 mg P kg-1 on P and certain cations leaching from two agricultural soils (loam and sandy loam soils) was investigated in a laboratory study. Soil treatments were packed in columns with 5 cm in diameter, up to 10 cm. Soil columns were leached using distilled water solution for 20 pore volumes, and the leachates were analyzed for pH, electrical conductivity (EC), calcium (Ca), sodium (Na), potassium (K), and P. To simulate the concentrations of K and P in leachates, the PHREEQC model was utilized. In addition, the P vertical distribution in different depths of the soil columns after the leaching experiment was investigated using Olsen-extractable P (Olsen-P). Generally, as the MKP rates increased, the mean (mean of 20 pore volumes) value of pH and Ca concentration in leachates decreased, but the mean value of EC, Na, and K concentrations in leachates increased. In early pore volumes, the P concentration in all treatments begins to rise, then begins to fall. The application of different rates of MKP fertilizer increased the cumulative amount of P leached in both studied soils. Significant relations were obtained for the rates of MKP application and the cumulative amount of P leached. Overall, the model did a good job of simulating K and P concentrations in leachates, as well as the trend of K and P leaching. In both treated soils with increasing of fertilizer rates, the Olsen-P status in all depths increased, and the P content increased with depth. The Olsen-P contents before the leaching experiment for each treatment were predicted, and power equations significantly described its relation with mean P concentration in leachates. Higher application rates of MKP (400 and 800 mg P kg-1) resulted in much higher P concentrations in leachates than the threshold value (0.1 mg l-1), and these rates should not be used in agricultural soils, whereas applying 50 mg P kg-1 to agricultural soil could be a reasonable rate for preventing P losses.
Asunto(s)
Contaminantes del Suelo , Suelo , Monitoreo del Ambiente , Fertilizantes/análisis , Fósforo/análisis , Contaminantes del Suelo/análisisRESUMEN
In this study, we aimed to assess the current state of forest ecosystems on the Black Sea coast of the Caucasus after the mass mortality of boxwoods. Soil and geobotanical studies were carried out in the Khosta Yew-Boxwood Grove, a convenient proving ground for assessment of the consequences of Cydalima perspectalis expansion. Hierarchical cluster analysis (nearest-neighbour and Euclidean distance methods), One-way ANOVA, and correlation analysis (Euclidean distance matrices for standardised data) were applied to process the soil and vegetation data. An increase in the illumination of the lower forest tiers due to the Buxus colchica destruction resulted in an intensive growth of vegetation cover and the formation of a soddy horizon in soils. These processes contributed to the accumulation of organic matter and high biological activity of the soils. The number of Buxus colchica seedlings was negatively correlated with the vegetation coverage and the number of grass and shrub species, as well as with some biological parameters of the soils. The most intensive seed regeneration of Buxus colchica was observed in forest plots with high crown density in the upper tier, undeveloped vegetation cover, and soddy soil horizon.
Asunto(s)
Buxus , Ecosistema , Monitoreo del AmbienteRESUMEN
A comprehensive investigation has been carried out into the concentrations of a range of REEs (neodymium Nd, cerium Ce, lanthanum La, yttrium Y, scandium Sc) in soils of vineyards belonging to the protected denomination of origin (PDO) Valdepeñas (Central Spain). The mean concentrations (expressed in mg kg-1) are Ce 70.6, Nd 32.9, La 36.2, Y 21.6, and Sc 13.7 in surface horizons (Ap), while in subsurface horizons (Bt or Bw and some Ck), the values are Ce 67.6, Nd 31.8, La 34.4, Y 19.6, and Sc 13.9. The relative abundance in these soils is Ce > La > Nd > Y > Sc in both the surface and subsurface horizons. These values are close to, or slightly higher than, the regional levels but similar to national and global averages, although relatively high values have been detected at certain sampling points. Another aim was to explain the spatial variations in these elements within the territory under study. It was found that the spatial variations are due to the nature of the parent materials and the pedogenetic processes, although the sparse spatial distribution patterns with prominent anomalies are interpreted arising from anthropogenic sources (fertilization). However, these anomalies did not present any environmental risk in the studied zone.
Asunto(s)
Cerio , Metales de Tierras Raras , Monitoreo del Ambiente , Granjas , Metales de Tierras Raras/análisis , SueloRESUMEN
Chromate is considered as a serious environmental problem due its toxicity. Iron nanoparticles produced by green tea polyphenols (GT-nZVI) is a powerful reductant, which can effectively reduce Cr(VI) to Cr(III). Nano ZVI suspension was initially conceived ideal for direct injection in the contaminated aquifers. However GT-nZVI presents limited mobility in calcareous aquifers. For this reason the incorporation of nanoiron in a permeable reactive barrier was investigated as an alternative mode of GT-nZVI application. Namely an amount of soil was loaded with nZVI (0.40 mmol/g of soil) and was evaluated for Cr(VI) removal by conducting batch and column tests. Batch tests were carried out by mixing soil samples, loaded with different levels of nZVI from 0.04 to 0.40 mmol per gram, with contaminated groundwater (GW) containing 1300 ppb Cr(VI). Cr(VI) concentration dropped below detection limit within 1 day using the highest nZVI dose. Soil pre-loaded with nZVI (S-nZVI) presented also high efficiency for chromates remediation, when tested under flow conditions by conducting column tests.
Asunto(s)
Restauración y Remediación Ambiental , Nanopartículas , Contaminantes Químicos del Agua , Cromo , Hierro , Suelo , Contaminantes Químicos del Agua/análisisRESUMEN
BACKGROUND: The calcicole or calcifuge behavior of wild plants has been related to element deficiency or toxicity. For fern species, however, knowledge about their adaptive differences and responses to soil environmental changes is virtually absent. In the karst regions of southern China, most Adiantum species favor calcareous soils, but A. flabellulatum prefers acidic soils. Such contrasting preferences for soil types in the same genus are interesting and risky because their preferred soils may "pollute" each other due to extreme precipitation events. We mixed calcareous and acidic soils at 1:1 (v/v) to simulate the "polluted" soils and grew three Adiantum species (the calcicole A. capillus-veneris f. dissectum and A. malesianum and the calcifuge A. flabellulatum) on the calcareous, acidic and mixed soils for 120 d and assessed their growth performance and element concentrations. RESULTS: The calcareous soil showed the highest pH, Ca, Mg and P concentrations but the lowest K concentration, followed by the mixed soil, and the acidic soil. After 120 d of growth, the calcifuge A. flabellulatum on the calcareous and mixed soils exhibited lower SPAD and relative growth rate (RGR) than those on the acidic soil, and its leaf and root Ca, Mg and Fe concentrations were higher and K was lower on the calcareous soil than on the acidic soil. The calcicole A. capillus-veneris f. dissectum on the calcareous soil had similar leaf element concentrations and RGR with those on the mixed soil, but their leaf Ca, Fe and Al were lower and leaf P and K concentrations, SPAD and RGR were higher than those on the acidic soil. For the calcicole A. malesianum, leaf Ca, Fe and Al were lowest and leaf P and RGR were highest when grown on the mixed soil, intermediated on the calcareous soil, and on the acidic soil. Compared with A. malesianum, A. capillus-veneris f. dissectum had lower leaf Ca, Fe and Al but higher leaf Mg concentration when grown on the same calcareous or mixed soils. CONCLUSIONS: A. capillus-veneris f. dissectum is a low leaf Ca calcicole species while A. malesianum is an Al accumulating calcicole species. They can effectively take up P and K to leaves and hence can thrive on calcareous soils. In contrast, the calcifuge A. flabellulatum grown on calcareous soils is stunted. Such growth performance may be attributed to the increased leaf Ca and decreased leaf K concentration. If their preferred soils are "polluted", A. flabellulatum can grow worse, A. capillus-veneris f. dissectum can remain almost unaffected while A. malesianum will perform better.
Asunto(s)
Adiantum/crecimiento & desarrollo , Suelo/química , Adaptación Fisiológica , Adiantum/fisiología , Calcio/análisis , Carbonato de Calcio/análisis , Concentración de Iones de Hidrógeno , Magnesio/análisis , Fósforo/análisis , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/fisiología , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/fisiologíaRESUMEN
Modeling agriculture land suitability at a regional scale plays an important role in designing the best sustainable management systems. The aim of this study was to derive a land suitability map for wheat farming by combining the Geostatistics and analytic hierarchy (AHP)-Fuzzy algorithm in geographic information system (GIS) in calcareous and saline-sodic soils, southern Iran. The local expert's opinions were used to make a decision on the weighting of climate, terrain, and soil data by applying an AHP method. The input data were transformed to a fuzzy-set data. The Spherical and Gaussian semi-variogram models had the best performance for fitting the soil parameters. The results revealed that soil texture (w = 0.207), pH (w = 0.121), slope (w = 0.120), electrical conductivity (w = 0.113), and exchangeable sodium percentage (w = 0.111) had the highest specific weighting for wheat production, respectively. The land suitability map indicated that 25.65% (48306.6 ha) of the studied area was for highly suitable, 38.2% (71939.7 ha) was moderately suitable, and 27.63% (52017.2 ha) was marginally suitable. Only 8.52% (16042.4 ha) of the studied area was not suitable for wheat farming. In conclusion, a combination of AHP, Fuzzy, and GIS could be a potential approach for site-specific soil management, land-use planning, and protection of the environment.
Asunto(s)
Monitoreo del Ambiente , Sistemas de Información Geográfica , Agricultura , Irán , SueloRESUMEN
The study of trace and major elements in the biosphere has traditionally focused on the transition and basic metals; the rare earth (REMs), alkaline earth (AEMs) and alkali metals (AMs) that equally constitute environmental contaminants are rarely considered especially in the tropics. The levels and spatial variation of some REMs, AEMs and AMs in the 0-50-cm layer of agricultural soils of Ikwo in southeastern Nigeria typing a humid tropical environment were studied. Soil sampling was undertaken at five zones namely north, south, east, west and centre (covering over 60% of the land area) in the 2017 dry season. Four soil samples were collected from each of the four cardinal points (with evidence of mining and agricultural activities), and two from the centre (serving as reference zone), totalling 18. Metal concentrations were determined using inductively coupled plasma atomic emission spectroscopy. The metals were grouped into REMs (Ce, La, Sm), AEMs (Ba, Ca, Mg, Sr) and AMs (Cs, K, Na, Rb). All metals increased in concentration from the north, or the south (for Ce and Sm only), towards the centre. Overall, they were reasonably similar in distribution pattern among the five zones. Cationic ratios did not vary markedly, reflecting the greater role of pedogenesis than anthropogenic activities in the area. Nevertheless, their variations showed more K, Ca, Sr and La enrichments over the other metals. Enrichment factor and pollution index of the REMs showed healthy levels of these elements in the soils. The data from this preliminary study may add to the data pool on levels and occurrence of REMs, AEMs and AMs in largely disturbed ecosystems of the humid tropics.
Asunto(s)
Metales Alcalinos , Metales Pesados/análisis , Contaminantes del Suelo/análisis , Ecosistema , Monitoreo del Ambiente , Nigeria , Rizosfera , SueloRESUMEN
The most important properties affecting the soil loss and runoff were investigated, and the effects of land use on the soil properties, together with the erodibility indices in a semiarid zone, central Iran, were evaluated. The locations of 100 positions were acquired by cLHS and 0-5-cm surface soil layer samples were used for laboratory analyses from the Borujen Region, Chaharmahal-Va-Bakhtiari Province, central Iran. To measure in situ runoff and soil erodibility of three different land uses comprising dryland, irrigated farming, and rangeland, a portable rainfall simulator was used. The results showed that the high variations (coefficient of variation, CV) were obtained for electrical conductivity (EC), mean weight diameter (MWD), soil organic carbon (SOC), and soil erodibility indices including runoff volume, soil loss, and sediment concentration (CV ~ 43.6-77.4%). Soil erodibility indices showed positive and significant correlations with bulk density and negative correlations with SOC, MWD, clay content, and soil shear strength in the area under investigation. The values of runoff in the dryland, irrigated farming, and rangeland were found 1.5, 28.9, and 58.7 cm3; soil loss in the dryland, irrigated farming, and rangeland were observed 0.25, 2.96, and 76.8 g; and the amount of sediment concentration in the dryland, irrigated farming, and rangeland were found 0.01, 0.11, and 0.15 g cm-3. It is suggested that further investigations should be carried out on soil erodibility and the potential of sediment yield in various land uses with varying topography and soil properties in semiarid regions of Iran facing the high risk of soil loss.
Asunto(s)
Riego Agrícola , Agricultura , Carbonato de Calcio/química , Monitoreo del Ambiente/métodos , Suelo/química , Suelo/normas , Silicatos de Aluminio/análisis , Arcilla , Clima Desértico , Conductividad Eléctrica , Irán , LluviaRESUMEN
In many parts of the world, soil acidification and heavy metal contamination has become a serious concern due to the adverse effects on chemical properties of soil and crop yield. The aim of this study was to investigate the effect of pH (in the range of 1 to 3 units above and below the native pH of soils) on calcium (Ca), magnesium (Mg), potassium (K), and phosphorus (P) solubility in non-spiked and heavy metal-spiked soil samples. Spiked samples were prepared by cadmium (Cd), copper (Cu), nickel (Ni), and zinc (Zn) as chloride salts and incubating soils for 40 days. The pH buffering capacity (pHBC) of each sample was determined by plotting the amount of H(+) or OH(-) added (mmol kg(-1)) versus the related pH value. The pHBC of soils ranged from 47.1 to 1302.5 mmol kg(-1) for non-spiked samples and from 45.0 to 1187.4 mmol kg(-1) for spiked soil samples. The pHBC values were higher in soil 2 (non-spiked and spiked) which had higher calcium carbonate content. The results indicated the presence of heavy metals in soils generally decreased the solution pH and pHBC values in spiked samples. In general, solubility of Ca, Mg, and K decreased with increasing equilibrium pH of non-spiked and spiked soil samples. In the case of P, increasing the pH to about 7, decreased the solubility in all soils but further increase of pH from 7, enhanced P solubility. The solubility trends and values for Ca, Mg, and K did not differed significantly in non-spiked and spiked samples. But in the case of P, a reduction in solubility was observed in heavy metal-spiked soils. The information obtained in this study can be useful to make better estimation of the effects of soil pollutants on anion and cation solubility from agricultural and environmental viewpoints.
Asunto(s)
Metales/química , Contaminantes del Suelo/química , Agricultura , Carbonato de Calcio/química , Monitoreo del Ambiente , Concentración de Iones de Hidrógeno , SolubilidadRESUMEN
Calcareous sands often display wide ring grain configurations, high intragranular porosity, a complex structure, and low grain hardness. These attributes typically do not meet the strength criteria necessary to sustain overlying infrastructure in civil engineering applications. This study investigates gel stabilization techniques, blending gel material with calcareous sand at concentrations ranging from 5% to 22%, followed by curing periods of 3 to 28 days to evaluate the load-bearing capacity. Subsequently, an unconfined compressive test is performed to determine the gel material content in stabilized specimens and investigate the influence of gel material types. The gel material-to-sand ratios employed are set at 5%, 10%, and 16% for Portland cement and 13%, 16%, and 22% for gypsum. After that, a triaxial consolidated undrained test is conducted to assess mechanical behavior, pore water pressure, and mechanical properties. The findings reveal increased dilation, stress-strain hardening, and softening post-yield, regardless of gel material type. Principal stress ratios, secant modulus, and cohesion show a positive correlation with maintenance duration and binder content, with implications for improved load-bearing capacity. The study also elucidates the qualitative relationship between secant modulus E50 and confining pressure.
RESUMEN
We grew three yellow Camellia species (the calcifuge C. nitidissima and C. tunghinensis, and the calcicole C. pubipetala) in acidic and calcareous soils for 7 months and assessed their photosynthetic physiological characteristics, growth performance, and element concentrations in this developmental context. The calcifuge C. nitidissima and C. tunghinensis species exhibited poor growth with leaf chlorosis, growth stagnation, and root disintegration in calcareous soils, and with their P n, G s, T r, F v/F m, ΦPSII, ETR, qP, leaf Chla, Chlb, and Chl(a + b) concentrations, and root, stem, leaf, and total biomass being significantly lower when grown in calcareous soils relative to in acidic soils. In contrast, the calcicole C. pubipetala grew well in both acidic and calcareous soils, with few differences in the above parameters between these two soil substrates. The absorption and/or transportation of nutrient elements such as N, K, Ca, Mg, and Fe by the two calcifuge Camellia species plants grown in calcareous soils were restrained. Soil type plays a major role in the failure of the two calcifuge Camellia species to establish themselves in calcareous soils, whereas other factors such as competition and human activity are likely more important limiting factors in the reverse case. This study furthers our understanding of the factors influencing the distribution of these rare and endangered yellow Camellia species, allowing for improved management of these species in conservation projects and horticultural production.
RESUMEN
Finger millet, an important 'Nutri-Cereal' and climate-resilient crop, is cultivated as a marginal crop in calcareous soils. Calcareous soils have low organic carbon content, high pH levels, and poor structure. Such a situation leads to poor productivity of the crop. Site-specific nutrient management (SSNM), which focuses on supplying optimum nutrients when a crop is needed, can ensure optimum production and improve the nutrient and energy use efficiency of crops. Moreover, developing an appropriate SSNM technique for this crop could offer new insights into nutrient management practices, particularly for calcareous soils. A field experiment was conducted during the rainy seasons of 2020 and 2021 in calcareous soil at Dr. Rajendra Prasad Central Agricultural University, Pusa, India. The experiment consisted of 8 treatments, viz. control, nitrogen (N)/phosphorus (P)/potassium (K)-omission, 75 %, 100 %, and 125 % recommended fertilizer dose (RFD), and 100 % recommended P and K + 30 kg ha-1 N as basal + rest N as per GreenSeeker readings. From this study, it was observed that the GreenSeeker-based SSNM resulted in the maximum grain yield (2873 kg ha-1), net output energy (96.3 GJ ha-1), and agronomic efficiency of N (30.6 kg kg-1), P (68.9 kg kg-1), and K (68.9 kg kg-1). The application of 125 % RFD resulted in â¼7 % lower yield than that under GreenSeeker-based nutrient management. Approximately 12 % greater energy use efficiency and 21-36 % greater nutrient use efficiency were recorded under GreenSeeker-based nutrient management than under 125 % RDF. The indigenous supplies of N, P, and K were found to be 14.31, 3.00, and 18.51 kg ha-1, respectively. Thus, 100 % of the recommended P and K + 30 kg ha-1 N as basal + rest N according to GreenSeeker readings can improve the yield, nutrient use efficiency, and energy balance of finger millet in calcareous soils.