Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Appl Environ Microbiol ; 90(1): e0195123, 2024 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-38131671

RESUMEN

The platform chemical 2,3-butanediol (2,3-BDO) is used to derive products, such as 1,3-butadiene and methyl ethyl ketone, for the chemical and fuel production industries. Efficient microbial 2,3-BDO production at industrial scales has not been achieved yet for various reasons, including product inhibition to host organisms, mixed stereospecificity in product formation, and dependence on expensive substrates (i.e., glucose). In this study, we explore engineering of a 2,3-BDO pathway in Caldicellulosiruptor bescii, an extremely thermophilic (optimal growth temperature = 78°C) and anaerobic bacterium that can break down crystalline cellulose and hemicellulose into fermentable C5 and C6 sugars. In addition, C. bescii grows on unpretreated plant biomass, such as switchgrass. Biosynthesis of 2,3-BDO involves three steps: two molecules of pyruvate are condensed into acetolactate; acetolactate is decarboxylated to acetoin, and finally, acetoin is reduced to 2,3-BDO. C. bescii natively produces acetoin; therefore, in order to complete the 2,3-BDO biosynthetic pathway, C. bescii was engineered to produce a secondary alcohol dehydrogenase (sADH) to catalyze the final step. Two previously characterized, thermostable sADH enzymes with high affinity for acetoin, one from a bacterium and one from an archaeon, were tested independently. When either sADH was present in C. bescii, the recombinant strains were able to produce up to 2.5-mM 2,3-BDO from crystalline cellulose and xylan and 0.2-mM 2,3-BDO directly from unpretreated switchgrass. This serves as the basis for higher yields and productivities, and to this end, limiting factors and potential genetic targets for further optimization were assessed using the genome-scale metabolic model of C. bescii.IMPORTANCELignocellulosic plant biomass as the substrate for microbial synthesis of 2,3-butanediol is one of the major keys toward cost-effective bio-based production of this chemical at an industrial scale. However, deconstruction of biomass to release the sugars for microbial growth currently requires expensive thermochemical and enzymatic pretreatments. In this study, the thermo-cellulolytic bacterium Caldicellulosiruptor bescii was successfully engineered to produce 2,3-butanediol from cellulose, xylan, and directly from unpretreated switchgrass. Genome-scale metabolic modeling of C. bescii was applied to adjust carbon and redox fluxes to maximize productivity of 2,3-butanediol, thereby revealing bottlenecks that require genetic modifications.


Asunto(s)
Butileno Glicoles , Caldicellulosiruptor , Lactatos , Ingeniería Metabólica , Xilanos , Biomasa , Acetoína , Composición de Base , Filogenia , ARN Ribosómico 16S , Análisis de Secuencia de ADN , Celulosa/metabolismo , Clostridiales/metabolismo , Bacterias/metabolismo , Plantas/metabolismo , Azúcares
2.
Appl Microbiol Biotechnol ; 108(1): 65, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38194138

RESUMEN

Hydrogen is an alternative fuel for transportation vehicles because it is clean, sustainable, and highly flammable. However, the production of hydrogen from lignocellulosic biomass by microorganisms presents challenges. This microbial process involves multiple complex steps, including thermal, chemical, and mechanical treatment of biomass to remove hemicellulose and lignin, as well as enzymatic hydrolysis to solubilize the plant cell walls. These steps not only incur costs but also result in the production of toxic hydrolysates, which inhibit microbial growth. A hyper-thermophilic bacterium of Caldicellulosiruptor bescii can produce hydrogen by decomposing and fermenting plant biomass without the need for conventional pretreatment. It is considered as a consolidated bioprocessing (CBP) microorganism. This review summarizes the basic scientific knowledge and hydrogen-producing capacity of C. bescii. Its genetic system and metabolic engineering strategies to improve hydrogen production are also discussed. KEY POINTS: • Hydrogen is an alternative and eco-friendly fuel. • Caldicellulosiruptor bescii produces hydrogen with a high yield in nature. • Metabolic engineering can make C. bescii to improve hydrogen production.


Asunto(s)
Clostridiales , Ingeniería Metabólica , Biomasa , Hidrógeno
3.
Extremophiles ; 27(1): 6, 2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36802247

RESUMEN

Caldicellulosiruptor species are proficient at solubilizing carbohydrates in lignocellulosic biomass through surface (S)-layer bound and secretomic glycoside hydrolases. Tapirins, surface-associated, non-catalytic binding proteins in Caldicellulosiruptor species, bind tightly to microcrystalline cellulose, and likely play a key role in natural environments for scavenging scarce carbohydrates in hot springs. However, the question arises: If tapirin concentration on Caldicellulosiruptor cell walls increased above native levels, would this offer any benefit to lignocellulose carbohydrate hydrolysis and, hence, biomass solubilization? This question was addressed by engineering the genes for tight-binding, non-native tapirins into C. bescii. The engineered C. bescii strains bound more tightly to microcrystalline cellulose (Avicel) and biomass compared to the parent. However, tapirin overexpression did not significantly improve solubilization or conversion for wheat straw or sugarcane bagasse. When incubated with poplar, the tapirin-engineered strains increased solubilization by 10% compared to the parent, and corresponding acetate production, a measure of carbohydrate fermentation intensity, was 28% higher for the Calkr_0826 expression strain and 18.5% higher for the Calhy_0908 expression strain. These results show that enhanced binding to the substrate, beyond the native capability, did not improve C. bescii solubilization of plant biomass, but in some cases may improve conversion of released lignocellulose carbohydrates to fermentation products.


Asunto(s)
Celulosa , Saccharum , Celulosa/metabolismo , Biomasa , Saccharum/metabolismo , Caldicellulosiruptor/metabolismo , Clostridiales/metabolismo , Plantas , Archaea/metabolismo
4.
Appl Microbiol Biotechnol ; 107(5-6): 1751-1764, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36800030

RESUMEN

Lam16A is a novel GH16 ß-1,3-1,4-lichenase isolated from the genus Caldicellulosiruptor which can utilize untreated carbohydrate components of plant cell walls. Its catalytic module has been characterized that the six carbohydrate-binding modules (CBMs) were queued in the C-terminus, but their roles were still unclear. Here, full-length and CBM-truncated mutants of Lam16A were purified and characterized through heterologous expression in Escherichia coli. The profiles of these proteins, including the enzyme activity, degrading efficiency, substrate-binding affinity, and thermostability, were explored. Full-length Lam16A with six CBMs showed excellent thermostability and the highest activity against barley ß-glucan and laminarin with optimum pH of 6.5. The CBMs stimulated degrading ability of the catalytic module, especially against ß-1,3(4)-glucan-based polysaccharides. The released products from ß-1,3-1,4-glucan by Lam16A or its truncated mutants revealed an endo-type glycoside hydrolase. Lam16As exhibited strong binding affinities to the insoluble polysaccharides, especially Lam16A-1CBM. The degradation of yeast cell walls by Lam16A enzyme solution relative to the control reduced the absorbance values at OD800 by ~ 85% ± 1.2, enabling the release of up to ~ 0.057 ± 0.0039 µg/mL of the cytoplasmic protein into the supernatant, lowering the viability of the cells by ~ 70.3% ± 6.9, thus causing significant damage in the cell wall structure. Taken together, CBMs could influence the substrate specificity, thermal stability, and binding affinity of ß-1,3-1,4-glucanase. These results demonstrate the great potential of these enzymes to promote the bioavailability of ß-1,3-glucan oligosaccharides for health benefits. KEY POINTS: • Carbohydrate-binding modules strongly influenced the enzyme activity and binding affinity, and further impacted glycoside hydrolase activity. • Lam16A enzymes have sufficient ability to hydrolyze ß-1,3-1,4-glucan-based polysaccharides. • Lam16As provide a powerful tool to promote the bioavailability of ß-1,3-glucan oligosaccharides.


Asunto(s)
Polisacáridos , beta-Glucanos , Polisacáridos/metabolismo , beta-Glucanos/metabolismo , Glicósido Hidrolasas/metabolismo , Oligosacáridos , Especificidad por Sustrato
5.
Appl Environ Microbiol ; 88(21): e0130222, 2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36218355

RESUMEN

Caldicellulosiruptor species scavenge carbohydrates from runoff containing plant biomass that enters hot springs and from grasses that grow in more moderate parts of thermal features. While only a few Caldicellulosiruptor species can degrade cellulose, all known species are hemicellulolytic. The most well-characterized species, Caldicellulosiruptor bescii, decentralizes its hemicellulase inventory across five different genomic loci and two isolated genes. Transcriptomic analyses, comparative genomics, and enzymatic characterization were utilized to assign functional roles and determine the relative importance of its six putative endoxylanases (five glycoside hydrolase family 10 [GH10] enzymes and one GH11 enzyme) and two putative exoxylanases (one GH39 and one GH3) in C. bescii. Two genus-wide conserved xylanases, C. bescii XynA (GH10) and C. bescii Xyl3A (GH3), had the highest levels of sugar release on oat spelt xylan, were in the top 10% of all genes transcribed by C. bescii, and were highly induced on xylan compared to cellulose. This indicates that a minimal set of enzymes are used to drive xylan degradation in the genus Caldicellulosiruptor, complemented by hemicellulolytic inventories that are tuned to specific forms of hemicellulose in available plant biomasses. To this point, synergism studies revealed that the pairing of specific GH family proteins (GH3, -11, and -39) with C. bescii GH10 proteins released more sugar in vitro than mixtures containing five different GH10 proteins. Overall, this work demonstrates the essential requirements for Caldicellulosiruptor to degrade various forms of xylan and the differences in species genomic inventories that are tuned for survival in unique biotopes with variable lignocellulosic substrates. IMPORTANCE Microbial deconstruction of lignocellulose for the production of biofuels and chemicals requires the hydrolysis of heterogeneous hemicelluloses to access the microcrystalline cellulose portion. This work extends previous in vivo and in vitro efforts to characterize hemicellulose utilization by integrating genomic reconstruction, transcriptomic data, operon structures, and biochemical characteristics of key enzymes to understand the deployment and functionality of hemicellulases by the extreme thermophile Caldicellulosiruptor bescii. Furthermore, comparative genomics of the genus revealed both conserved and divergent mechanisms for hemicellulose utilization across the 15 sequenced species, thereby paving the way to connecting functional enzyme characterization with metabolic engineering efforts to enhance lignocellulose conversion.


Asunto(s)
Regulón , Xilanos , Celulosa/metabolismo , Clostridiales/metabolismo , Azúcares
6.
Appl Environ Microbiol ; 88(20): e0127422, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36169328

RESUMEN

Extremely thermophilic Caldicellulosiruptor species solubilize carbohydrates from lignocellulose through glycoside hydrolases (GHs) that can be extracellular, intracellular, or cell surface layer (S-layer) associated. Caldicellulosiruptor genomes sequenced so far encode at least one surface layer homology domain glycoside hydrolase (SLH-GH), representing six different classes of these enzymes; these can have multiple binding and catalytic domains. Biochemical characterization of a representative from each class was done to determine their biocatalytic features: four SLH-GHs from Caldicellulosiruptor kronotskyensis (Calkro_0111, Calkro_0402, Calkro_0072, and Calkro_2036) and two from Caldicellulosiruptor hydrothermalis (Calhy_1629 and Calhy_2383). Calkro_0111, Calkro_0072, and Calhy_2383 exhibited ß-1,3-glucanase activity, Calkro_0402 was active on both ß-1,3/1,4-glucan and ß-1,4-xylan, Calkro_2036 exhibited activity on both ß-1,3/1,4-glucan and ß-1,4-glucan, and Calhy_1629 was active only on arabinan. Caldicellulosiruptor bescii, the only species with molecular genetic tools as well as already a strong cellulose degrader, contains only one SLH-GH, Athe_0594, a glucanase that is a homolog of Calkro_2036; the other 5 classes of SLH-GHs are absent in C. bescii. The C. bescii secretome, supplemented with individual enzymes or cocktails of SLH-GHs, increased in vitro sugar release from sugar cane bagasse and poplar. Expression of non-native SLH-GHs in vivo, either associated with the S-layer or as freely secreted enzymes, improved total carbohydrate solubilization of sugar cane bagasse and poplar by up to 45% and 23%, respectively. Most notably, expression of Calkro_0402, a xylanase/glucanase, improved xylose solubilization from poplar and bagasse by over 70% by C. bescii. While Caldicellulosiruptor species are already prolific lignocellulose degraders, they can be further improved by the strategy described here. IMPORTANCE Caldicellulosiruptor species hold promise as microorganisms that can solubilize the carbohydrate portion of lignocellulose and subsequently convert fermentable sugars into bio-based chemicals and fuels. Members of the genus have surface layer (S-layer) homology domain-associated glycoside hydrolases (SLH-GHs) that mediate attachment to biomass as well as hydrolysis of carbohydrates. Caldicellulosiruptor bescii, the most studied member of the genus, has only one SLH-GH. Expression of SLH-GHs from other Caldicellulosiruptor species in C. bescii significantly improved degradation of sugar cane bagasse and poplar. This suggests that this extremely thermophilic bacterium can be engineered to further improve its ability to degrade specific plant biomasses by inserting genes encoding SLH-GHs recruited from other Caldicellulosiruptor species.


Asunto(s)
Glicósido Hidrolasas , Populus , Glicósido Hidrolasas/metabolismo , Biomasa , Xilanos/metabolismo , Xilosa , Clostridiales/metabolismo , Celulosa/metabolismo , Plantas/microbiología
7.
J Sci Food Agric ; 102(1): 85-94, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34031874

RESUMEN

BACKGROUND: Epilactose, a potential prebiotics, was derived from lactose through enzymatic catalysis. However, production and purification of epilactose are currently difficult due to powerless enzymes and inefficient downstream processing steps. RESULTS: The encoding gene of cellobiose 2-epimerase (CE) from Caldicellulosiruptor sp. Rt8.B8 was cloned and expressed in Escherichia coli BL21(DE3). The enzyme was purified and it was suitable for industrial production of epilactose from lactose without by-products, because of high kcat (197.6 s-1 ) and preferable thermostability. The Rt8-CE gene was further expressed in the Bacillus subtilis strain. We successfully produced epilactose from 700 g L-1 lactose in 30.4% yield by using the recombinant Bacillus subtilis whole cells. By screening of a ß-galactosidase from Bacillus stearothermophilus (BsGal), a process for separating epilactose and lactose was established, which showed a purity of over 95% in a total yield of 69.2%. In addition, a mixed rare sugar syrup composed of epilactose and d-tagatose was successfully produced from lactose through the co-expression of l-arabinose isomerase and ß-galactosidase. CONCLUSION: Our study shed light on the efficient production of epilactose using a food-grade host expressing a novel CE enzyme. Moreover, an efficient and low-cost process was attempted to obtain high purity epilactose. In order to improve the utilization of raw materials, the production process of mixed syrup containing epilactose and d-tagatose with prebiotic properties produced from lactose was also established for the first time. © 2021 Society of Chemical Industry.


Asunto(s)
Bacillus subtilis/metabolismo , Proteínas Bacterianas/química , Caldicellulosiruptor/enzimología , Celobiosa/metabolismo , Disacáridos/biosíntesis , Racemasas y Epimerasas/química , Bacillus subtilis/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Caldicellulosiruptor/genética , Estabilidad de Enzimas , Expresión Génica , Calor , Lactosa/metabolismo , Racemasas y Epimerasas/genética , Racemasas y Epimerasas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
8.
Appl Environ Microbiol ; 87(14): e0052421, 2021 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-33990300

RESUMEN

Caldicellulosiruptor species are hyperthermophilic, Gram-positive anaerobes and the most thermophilic cellulolytic bacteria so far described. They have been engineered to convert switchgrass to ethanol without pretreatment and represent a promising platform for the production of fuels, chemicals, and materials from plant biomass. Xylooligomers, such as xylobiose and xylotriose, that result from the breakdown of plant biomass more strongly inhibit cellulase activity than do glucose or cellobiose. High concentrations of xylobiose and xylotriose are present in C. bescii fermentations after 90 h of incubation, and removal or breakdown of these types of xylooligomers is crucial to achieving high conversion of plant biomass to product. In previous studies, the addition of exogenous ß-d-xylosidase substantially improved the performance of glucanases and xylanases in vitro. ß-d-Xylosidases are, in fact, essential enzymes in commercial preparations for efficient deconstruction of plant biomass. In addition, the combination of xylanase and ß-d-xylosidase is known to exhibit synergistic action on xylan degradation. In spite of its ability to grow efficiently on xylan substrates, no extracellular ß-d-xylosidase was identified in the C. bescii genome. Here, we report that the coexpression of a thermal stable ß-d-xylosidase from Thermotoga maritima and a xylanase from Acidothermus cellulolyticus in a C. bescii strain containing the A. cellulolyticus E1 endoglucanase significantly increased the activity of the exoproteome as well as growth on xylan substrates. The combination of these enzymes also resulted in increased growth on crystalline cellulose in the presence of exogenous xylan. IMPORTANCECaldicellulosiruptor species are bacteria that grow at extremely high temperature, more than 75°C, and are the most thermophilic bacteria so far described that are capable of growth on plant biomass. This native ability allows the use of unpretreated biomass as a growth substrate, eliminating the prohibitive cost of preprocessing/pretreatment of the biomass. They only grow under strictly anaerobic conditions, and the combination of high temperature and the lack of oxygen reduces the cost of fermentation and contamination by other microbes. They have been genetically engineered to convert switchgrass to ethanol without pretreatment and represent a promising platform for the production of fuels, chemicals, and materials from plant biomass. In this study, we introduced genes from other cellulolytic bacteria and identified a combination of enzymes that improves growth on plant biomass. An important feature of this study is that it measures growth, validating predictions made from adding enzyme mixtures to biomass.


Asunto(s)
Actinobacteria/enzimología , Caldicellulosiruptor/metabolismo , Proteoma/metabolismo , Thermotoga maritima/enzimología , Xilanos/metabolismo , Xilosidasas/metabolismo , Actinobacteria/genética , Celobiosa/metabolismo , Escherichia coli/genética , Thermotoga maritima/genética , Xilosidasas/genética
9.
Artículo en Inglés | MEDLINE | ID: mdl-34424833

RESUMEN

The present study was carried out to re-clarify the taxonomic relationship of Caldicellulosiruptor acetigenus, Caldicellulosiruptor lactoaceticus and Caldicellulosiruptor kristjanssonii. The 16S rRNA sequence similarities between these species of the genus Caldicellulosiruptor were above the threshold values (98.65%) for bacterial species delineation. Similarly, the digital DNA-DNA hybridization and average nucleotide and amino acid identity values were greater than the thresholds for bacterial species delineation. In phylogenetic (based on 16S rRNA gene sequences) and phylogenomic trees Caldicellulosiruptor acetigenus, Caldicellulosiruptor lactoaceticus and Caldicellulosiruptor kristjanssonii clade together. The results of our analysis indicated that these three taxa are conspecific. Therefore, Caldicellulosiruptor lactoaceticus Mladenovska et al. 1997 and Caldicellulosiruptor kristjanssonii Bredholt et al. 1999 should be reclassified as later heterotypic synonyms of Caldicellulosiruptor acetigenus (Nielsen et al. 1994) Onyenwoke et al. 2006.


Asunto(s)
Caldicellulosiruptor , Filogenia , Técnicas de Tipificación Bacteriana , Caldicellulosiruptor/clasificación , ADN Bacteriano/genética , Hibridación de Ácido Nucleico , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
10.
Artículo en Inglés | MEDLINE | ID: mdl-34542397

RESUMEN

A novel nitrogen-fixing fermentative bacterium, designated as YA01T, was isolated from Nakabusa hot springs in Japan. The short-rod cells of strain YA01T were Gram-positive and non-sporulating. Phylogenetic trees of the 16S rRNA gene sequence and concatenated sequences of 40 single-copy ribosomal genes revealed that strain YA01T belonged to the genus Caldicellulosiruptor and was closely related to Caldicellulosiruptor hydrothermalis 108T, Caldicellulosiruptor bescii DSM 6725T and Caldicellulosiruptor kronotskyensis 2002T. The 16S rRNA gene sequence of strain YA01T shares less than 98.1 % identity to the known Caldicellulosiruptor species. The G+C content of the genomic DNA was 34.8 mol%. Strain YA01T shares low genome-wide average nucleotide identity (90.31-91.10 %), average amino acid identity (91.45-92.10 %) and <70 % digital DNA-DNA hybridization value (41.8-44.2 %) with the three related species of the genus Caldicellulosiruptor. Strain YA01T grew at 50-78 °C (optimum, 70 °C) and at pH 5.0-9.5 (optimum, pH 6.5). Strain YA01T mainly produced acetate by consuming d(+)-glucose as a carbon source. The main cellular fatty acids were iso-C17 : 0 (35.7 %), C16 : 0 (33.3 %), DMA16 : 0 (6.6 %) and iso-C15 : 0 (5.9 %). Based on its distinct phylogenetic position, biochemical and physiological characteristics, and the major cellular fatty acids, strain YA01T is considered to represent a novel species of the genus Caldicellulosiruptor for which the name Caldicellulosiruptor diazotrophicus sp. nov. is proposed (type strain YA01T=DSM 112098T=JCM 34253T).


Asunto(s)
Manantiales de Aguas Termales , Técnicas de Tipificación Bacteriana , Composición de Base , Caldicellulosiruptor , ADN Bacteriano/genética , Ácidos Grasos/química , Japón , Nitrógeno , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
11.
Appl Microbiol Biotechnol ; 105(21-22): 8109-8127, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34611726

RESUMEN

Our current understanding of enzymatic polysaccharide degradation has come from a huge number of in vitro studies with purified enzymes. While this vast body of work has been invaluable in identifying and characterizing novel mechanisms of action and engineering desirable traits into these enzymes, a comprehensive picture of how these enzymes work as part of a native in vivo system is less clear. Recently, several model bacteria have emerged with genetic systems that allow for a more nuanced study of carbohydrate active enzymes (CAZymes) and how their activity affects bacterial carbon metabolism. With these bacterial model systems, it is now possible to not only study a single nutrient system in isolation (i.e., carbohydrate degradation and carbon metabolism), but also how multiple systems are integrated. Given that most environmental polysaccharides are carbon rich but nitrogen poor (e.g., lignocellulose), the interplay between carbon and nitrogen metabolism in polysaccharide-degrading bacteria can now be studied in a physiologically relevant manner. Therefore, in this review, we have summarized what has been experimentally determined for CAZyme regulation, production, and export in relation to nitrogen metabolism for two Gram-positive (Caldicellulosiruptor bescii and Clostridium thermocellum) and two Gram-negative (Bacteroides thetaiotaomicron and Cellvibrio japonicus) polysaccharide-degrading bacteria. By comparing and contrasting these four bacteria, we have highlighted the shared and unique features of each, with a focus on in vivo studies, in regard to carbon and nitrogen assimilation. We conclude with what we believe are two important questions that can act as guideposts for future work to better understand the integration of carbon and nitrogen metabolism in polysaccharide-degrading bacteria. KEY POINTS: • Regardless of CAZyme deployment system, the generation of a local pool of oligosaccharides is a common strategy among Gram-negative and Gram-positive polysaccharide degraders as a means to maximally recoup the energy expenditure of CAZyme production and export. • Due to the nitrogen deficiency of insoluble polysaccharide-containing substrates, Gram-negative and Gram-positive polysaccharide degraders have a diverse set of strategies for supplementation and assimilation. • Future work needs to precisely characterize the energetic expenditures of CAZyme deployment and bolster our understanding of how carbon and nitrogen metabolism are integrated in both Gram-negative and Gram-positive polysaccharide-degrading bacteria, as both of these will significantly influence a given bacterium's suitability for biotechnology applications.


Asunto(s)
Carbono , Nitrógeno , Bacterias , Cellvibrio , Polisacáridos
12.
Appl Environ Microbiol ; 86(9)2020 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-32086304

RESUMEN

Biological hydrolysis of cellulose above 70°C involves microorganisms that secrete free enzymes and deploy separate protein systems to adhere to their substrate. Strongly cellulolytic Caldicellulosiruptor bescii is one such extreme thermophile, which deploys modular, multifunctional carbohydrate-acting enzymes to deconstruct plant biomass. Additionally, C. bescii also encodes noncatalytic carbohydrate binding proteins, which likely evolved as a mechanism to compete against other heterotrophs in carbon-limited biotopes that these bacteria inhabit. Analysis of the Caldicellulosiruptor pangenome identified a type IV pilus (T4P) locus encoded upstream of the tapirins, that is encoded by all Caldicellulosiruptor species. In this study, we sought to determine if the C. bescii T4P plays a role in attachment to plant polysaccharides. The major C. bescii pilin (CbPilA) was identified by the presence of pilin-like protein domains, paired with transcriptomics and proteomics data. Using immuno-dot blots, we determined that the plant polysaccharide xylan induced production of CbPilA 10- to 14-fold higher than glucomannan or xylose. Furthermore, we are able to demonstrate that recombinant CbPilA directly interacts with xylan and cellulose at elevated temperatures. Localization of CbPilA at the cell surface was confirmed by immunofluorescence microscopy. Lastly, a direct role for CbPilA in cell adhesion was demonstrated using recombinant CbPilA or anti-CbPilA antibodies to reduce C. bescii cell adhesion to xylan and crystalline cellulose up to 4.5- and 2-fold, respectively. Based on these observations, we propose that CbPilA and, by extension, the T4P play a role in Caldicellulosiruptor cell attachment to plant biomass.IMPORTANCE Most microorganisms are capable of attaching to surfaces in order to persist in their environment. Type IV (T4) pili produced by certain mesophilic Firmicutes promote adherence; however, a role for T4 pili encoded by thermophilic members of this phylum has yet to be demonstrated. Prior comparative genomics analyses identified a T4 pilus locus possessed by an extremely thermophilic genus within the Firmicutes Here, we demonstrate that attachment to plant biomass-related carbohydrates by strongly cellulolytic Caldicellulosiruptor bescii is mediated by T4 pilins. Surprisingly, xylan but not cellulose induced expression of the major T4 pilin. Regardless, the C. bescii T4 pilin interacts with both polysaccharides at high temperatures and is located to the cell surface, where it is directly involved in C. bescii attachment. Adherence to polysaccharides is likely key to survival in environments where carbon sources are limiting, allowing C. bescii to compete against other plant-degrading microorganisms.


Asunto(s)
Adhesión Bacteriana , Proteínas Fimbrias/metabolismo , Firmicutes/fisiología , Polisacáridos Bacterianos/metabolismo , Caldicellulosiruptor , Firmicutes/metabolismo
13.
Appl Environ Microbiol ; 86(16)2020 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-32532871

RESUMEN

Pectin deconstruction is the initial step in breaking the recalcitrance of plant biomass by using selected microorganisms that encode pectinolytic enzymes. Pectate lyases that cleave the α-1,4-galacturonosidic linkage of pectin are widely used in industries such as papermaking and fruit softening. However, there are few reports on pectate lyases with good thermostability. Here, two pectate lyases (CbPL3 and CbPL9) from a hyperthermophilic bacterium, Caldicellulosiruptor bescii, belonging to family 3 and family 9 polysaccharide lyases, respectively, were investigated. The biochemical properties of the two CbPLs were shown to be similar under optimized conditions of 80°C to 85°C and pH 8 to 9. However, the degradation products from pectin and polygalacturonic acids (pGAs) were different. A family 66 carbohydrate-binding module (CbCBM66) located in the N terminus of the two CbPLs shares 100% amino acid identity. A CbCBM66-truncated mutant of CbPL9 showed lower activities than the wild type, whereas CbPL3 with a CbCBM66 knockout portion was reported to have enhanced activities, thereby revealing the different effect of CbCBM66. Prediction by the I-TASSER server revealed that CbCBM66 is structurally close to BsCBM66 from Bacillus subtilis; however, the COFACTOR and COACH programs indicated that the substrate-binding sites between CbCBM66 and BsCBM66 are different. Furthermore, a substrate-binding assay indicated that the catalytic domains in the two CbPLs had strong affinities for pectate-related substrates, but CbCBM66 showed a weak interaction with a number of lignocellulosic carbohydrates. Finally, scanning electron microscopy (SEM) analysis and a total reducing sugar assay showed that the two enzymes could improve the saccharification of switchgrass. The two CbPLs are impressive sources for the degradation of plant biomass.IMPORTANCE Thermophilic proteins could be implemented in diverse industrial applications. We sought to characterize two pectate lyases, CbPL3 and CbPL9, from a thermophilic bacterium, Caldicellulosiruptor bescii The two enzymes share a high optimum temperature, a low optimum pH, and good thermostability at the evaluated temperature. A family 66 carbohydrate-binding module (CbCBM66) was identified in the two CbPLs, sharing 100% amino acid identity. The deletion of CbCBM66 dramatically decreased the activity of CbPL9 but increased the activity and thermostability of CbPL3, suggesting different roles of CbCBM66 in the two enzymes. Moreover, the degradation products of the two CbPLs were different. These results revealed that these enzymes could represent potential pectate lyases for applications in the paper and textile industries.


Asunto(s)
Proteínas Bacterianas/genética , Firmicutes/genética , Pectinas/metabolismo , Polisacárido Liasas/genética , Proteínas Bacterianas/metabolismo , Biomasa , Caldicellulosiruptor , Escherichia coli/enzimología , Escherichia coli/genética , Firmicutes/enzimología , Microorganismos Modificados Genéticamente/enzimología , Microorganismos Modificados Genéticamente/genética , Polisacárido Liasas/metabolismo
14.
Biotechnol Bioeng ; 117(12): 3799-3808, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32770740

RESUMEN

The production of volatile industrial chemicals utilizing metabolically engineered extreme thermophiles offers the potential for processes with simultaneous fermentation and product separation. An excellent target chemical for such a process is acetone (Tb = 56°C), ideally produced from lignocellulosic biomass. Caldicellulosiruptor bescii (Topt 78°C), an extremely thermophilic fermentative bacterium naturally capable of deconstructing and fermenting lignocellulose, was metabolically engineered to produce acetone. When the acetone pathway construct was integrated into a parent strain containing the bifunctional alcohol dehydrogenase from Clostridium thermocellum, acetone was produced at 9.1 mM (0.53 g/L), in addition to minimal ethanol 3.3 mM (0.15 g/L), along with net acetate consumption. This demonstrates that C. bescii can be engineered with balanced pathways in which renewable carbohydrate sources are converted to useful metabolites, primarily acetone and H2 , without net production of its native fermentation products, acetate and lactate.


Asunto(s)
Acetona/metabolismo , Biomasa , Caldicellulosiruptor/metabolismo , Hidrógeno/metabolismo , Lignina/metabolismo , Ingeniería Metabólica , Caldicellulosiruptor/genética
15.
Extremophiles ; 24(1): 1-15, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31359136

RESUMEN

Terrestrial hot springs near neutral pH harbor extremely thermophilic bacteria from the genus Caldicellulosiruptor, which utilize the carbohydrates of lignocellulose for growth. These bacteria are technologically important because they produce novel, multi-domain glycoside hydrolases that are prolific at deconstructing microcrystalline cellulose and hemicelluloses found in plant biomass. Among other interesting features, Caldicellulosiruptor species have successfully adapted to bind specifically to lignocellulosic substrates via surface layer homology (SLH) domains associated with glycoside hydrolases and unique binding proteins (tapirins) present only in these bacteria. They also utilize a parallel pathway for conversion of glyceraldehyde-3-phosphate into 3-phosphoglycerate via a ferredoxin-dependent oxidoreductase that is conserved across the genus. Advances in the genetic tools for Caldicellulosiruptor bescii, including the development of a high-temperature kanamycin-resistance marker and xylose-inducible promoter, have opened the door for metabolic engineering applications and some progress along these lines has been reported. While several species of Caldicellulosiruptor can readily deconstruct lignocellulose, improvements in the amount of carbohydrate released and in the production of bio-based chemicals are required to successfully realize the biotechnological potential of these organisms.


Asunto(s)
Clostridiales , Biomasa , Biotecnología , Glicósido Hidrolasas , Manantiales de Aguas Termales
16.
J Ind Microbiol Biotechnol ; 47(8): 585-597, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32783103

RESUMEN

Caldicellulosiruptor bescii is the most thermophilic cellulolytic organism yet identified (Topt 78 °C). It grows on untreated plant biomass and has an established genetic system thereby making it a promising microbial platform for lignocellulose conversion to bio-products. Here, we investigated the ability of engineered C. bescii to generate alcohols from carboxylic acids. Expression of aldehyde ferredoxin oxidoreductase (aor from Pyrococcus furiosus) and alcohol dehydrogenase (adhA from Thermoanaerobacter sp. X514) enabled C. bescii to generate ethanol from crystalline cellulose and from biomass by reducing the acetate produced by fermentation. Deletion of lactate dehydrogenase in a strain expressing the AOR-Adh pathway increased ethanol production. Engineered strains also converted exogenously supplied organic acids (isobutyrate and n-caproate) to the corresponding alcohol (isobutanol and hexanol) using both crystalline cellulose and switchgrass as sources of reductant for alcohol production. This is the first instance of an acid to alcohol conversion pathway in a cellulolytic microbe.


Asunto(s)
Caldicellulosiruptor/genética , Ácidos Carboxílicos/metabolismo , Etanol/metabolismo , Lignina/metabolismo , Microorganismos Modificados Genéticamente , Panicum/metabolismo , Alcohol Deshidrogenasa/genética , Alcohol Deshidrogenasa/metabolismo , Aldehído Oxidorreductasas/genética , Aldehído Oxidorreductasas/metabolismo , Biocombustibles/análisis , Biomasa , Fermentación , Oxidación-Reducción , Panicum/microbiología , Pyrococcus furiosus/enzimología , Thermoanaerobacter/enzimología
17.
Appl Environ Microbiol ; 85(3)2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30478233

RESUMEN

Genomes of extremely thermophilic Caldicellulosiruptor species encode novel cellulose binding proteins, called tapirins, located proximate to the type IV pilus locus. The C-terminal domain of Caldicellulosiruptor kronotskyensis tapirin 0844 (Calkro_0844) is structurally unique and has a cellulose binding affinity akin to that seen with family 3 carbohydrate binding modules (CBM3s). Here, full-length and C-terminal versions of tapirins from Caldicellulosiruptor bescii (Athe_1870), Caldicellulosiruptor hydrothermalis (Calhy_0908), Caldicellulosiruptor kristjanssonii (Calkr_0826), and Caldicellulosiruptor naganoensis (NA10_0869) were produced recombinantly in Escherichia coli and compared to Calkro_0844. All five tapirins bound to microcrystalline cellulose, switchgrass, poplar, and filter paper but not to xylan. Densitometry analysis of bound protein fractions visualized by SDS-PAGE revealed that Calhy_0908 and Calkr_0826 (from weakly cellulolytic species) associated with the cellulose substrates to a greater extent than Athe_1870, Calkro_0844, and NA10_0869 (from strongly cellulolytic species). Perhaps this relates to their specific needs to capture glucans released from lignocellulose by cellulases produced in Caldicellulosiruptor communities. Calkro_0844 and NA10_0869 share a higher degree of amino acid sequence identity (>80% identity) with each other than either does with Athe_1870 (∼50%). The levels of amino acid sequence identity of Calhy_0908 and Calkr_0826 to Calkro_0844 were only 16% and 36%, respectively, although the three-dimensional structures of their C-terminal binding regions were closely related. Unlike the parent strain, C. bescii mutants lacking the tapirin genes did not bind to cellulose following short-term incubation, suggesting a role in cell association with plant biomass. Given the scarcity of carbohydrates in neutral terrestrial hot springs, tapirins likely help scavenge carbohydrates from lignocellulose to support growth and survival of Caldicellulosiruptor species.IMPORTANCE The mechanisms by which microorganisms attach to and degrade lignocellulose are important to understand if effective approaches for conversion of plant biomass into fuels and chemicals are to be developed. Caldicellulosiruptor species grow on carbohydrates from lignocellulose at elevated temperatures and have biotechnological significance for that reason. Novel cellulose binding proteins, called tapirins, are involved in the way that Caldicellulosiruptor species interact with microcrystalline cellulose, and additional information about the diversity of these proteins across the genus, including binding affinity and three-dimensional structural comparisons, is provided here.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Celulosa/metabolismo , Firmicutes/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Portadoras/genética , Celulosa/química , Firmicutes/química , Firmicutes/genética , Genoma Bacteriano , Manantiales de Aguas Termales/microbiología , Calor , Dominios Proteicos
18.
Biotechnol Bioeng ; 116(8): 1901-1908, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30982956

RESUMEN

The extreme thermophile Caldicellulosiruptor bescii solubilizes and metabolizes the carbohydrate content of lignocellulose, a process that ultimately ceases because of biomass recalcitrance, accumulation of fermentation products, inhibition by lignin moieties, and reduction of metabolic activity. Deconstruction of low loadings of lignocellulose (5 g/L), either natural or transgenic, whether unpretreated or subjected to hydrothermal processing, by C. bescii typically results in less than 40% carbohydrate solubilization. Mild alkali pretreatment (up to 0.09 g NaOH/g biomass) improved switchgrass carbohydrate solubilization by C. bescii to over 70% compared to less than 30% for no pretreatment, with two-thirds of the carbohydrate content in the treated switchgrass converted to acetate and lactate. C. bescii grown on high loadings of unpretreated switchgrass (50 g/L) retained in a pH-controlled bioreactor slowly purged (τ = 80 hr) with growth media without a carbon source improved carbohydrate solubilization to over 40% compared to batch culture at 29%. But more significant was the doubling of solubilized carbohydrate conversion to fermentation products, which increased from 40% in batch to over 80% in the purged system, an improvement attributed to maintaining the bioreactor culture in a metabolically active state. This strategy should be considered for optimizing solubilization and conversion of lignocellulose by C. bescii and other lignocellulolytic microorganisms.


Asunto(s)
Firmicutes/metabolismo , Lignina/metabolismo , Biocombustibles/microbiología , Reactores Biológicos , Caldicellulosiruptor , Fermentación , Firmicutes/crecimiento & desarrollo , Panicum/metabolismo , Solubilidad
19.
J Ind Microbiol Biotechnol ; 46(9-10): 1251-1263, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31392469

RESUMEN

The genus Caldicellulosiruptor is comprised of extremely thermophilic, heterotrophic anaerobes that degrade plant biomass using modular, multifunctional enzymes. Prior pangenome analyses determined that this genus is genetically diverse, with the current pangenome remaining open, meaning that new genes are expected with each additional genome sequence added. Given the high biodiversity observed among the genus Caldicellulosiruptor, we have sequenced and added a 14th species, Caldicellulosiruptor changbaiensis, to the pangenome. The pangenome now includes 3791 ortholog clusters, 120 of which are unique to C. changbaiensis and may be involved in plant biomass degradation. Comparisons between C. changbaiensis and Caldicellulosiruptor bescii on the basis of growth kinetics, cellulose solubilization and cell attachment to polysaccharides highlighted physiological differences between the two species which are supported by their respective gene inventories. Most significantly, these comparisons indicated that C. changbaiensis possesses uncommon cellulose attachment mechanisms not observed among the other strongly cellulolytic members of the genus Caldicellulosiruptor.


Asunto(s)
Celulosa/metabolismo , Clostridiales/metabolismo , Adhesión Bacteriana , Biomasa , Clostridiales/genética , Genoma Bacteriano , Genómica
20.
J Ind Microbiol Biotechnol ; 46(5): 687-695, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30783893

RESUMEN

The ability to deconstruct plant biomass without conventional pretreatment has made members of the genus Caldicellulosiruptor the target of investigation for the consolidated processing of plant lignocellulosic biomass to biofuels and bioproducts. To investigate the synergy of enzymes involved and to further improve the ability of C. bescii to degrade cellulose, we introduced CAZymes that act synergistically with the C. bescii exoproteome in vivo and in vitro. We recently demonstrated that the Acidothermus cellulolyticus E1 endo-1,4-ß-D-glucanase (GH5) with a family 2 carbohydrate-binding module (CBM) increased the activity of C. bescii exoproteome on biomass, presumably acting in concert with CelA. The ß-glucanase, GuxA, from A. cellulolyticus is a multi-domain enzyme with strong processive exoglucanase activity, and the cellobiose phosphorylase from Thermotoga maritima catalyzes cellulose degradation acting synergistically with cellobiohydrolases and endoglucanases. We identified new chromosomal insertion sites to co-express these enzymes and the resulting strain showed a significant increase in the enzymatic activity of the exoproteome.


Asunto(s)
Celulosa/química , Glucosiltransferasas/biosíntesis , Glicósido Hidrolasas/biosíntesis , Thermoanaerobacterium/enzimología , beta-Glucanos/química , Actinomycetales/metabolismo , Biomasa , Celobiosa , Celulasa/metabolismo , Clostridiales/metabolismo , Ingeniería Genética , Técnicas Genéticas , Hidrólisis , Microbiología Industrial , Plantas/microbiología , Proteoma , Proteómica , Azúcares/química
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda