RESUMEN
Nitrogen (N) deposition affects ecosystem functions crucial to human health and well-being. However, the consequences of this scenario for soil ecosystem multifunctionality (SMF) in forests are poorly understood. Here, we conducted a long-term field experiment in a temperate forest in China, where N deposition was simulated by adding N above and under the canopies. We discover that canopy N addition promotes SMF expression, whereas understory N addition suppresses it. SMF was regulated by fungal diversity in canopy N addition treatments, which is largely due to the strong resistance to soil acidification and efficient resource utilization characteristics of fungi. While in understory N addition treatments, SMF is regulated by bacterial diversity, which is mainly because of the strong resilience to disturbances and fast turnover of bacteria. Furthermore, rare microbial taxa may play a more important role in the maintenance of the SMF. This study provides the first evidence that N deposition enhanced SMF in temperate forests and enriches the knowledge on enhanced N deposition affecting forest ecosystems. Given the divergent results from two N addition approaches, an innovative perspective of canopy N addition on soil microbial diversity-multifunctionality relationships is crucial to policy-making for the conservation of soil microbial diversity and sustainable ecosystem management under enhanced N deposition. In future research, the consideration of canopy N processes is essential for more realistic assessments of the effects of atmospheric N deposition in forests.
Asunto(s)
Ecosistema , Nitrógeno , Humanos , Nitrógeno/análisis , Suelo , Microbiología del Suelo , Bosques , Bacterias/metabolismoRESUMEN
Subtropical Chinese fir plantations have been experiencing increased nitrogen deposition and understory management because of human activities. Nevertheless, effect of increased nitrogen deposition and understory removal in the plantations on microbial community stability and the resulting consequences for ecosystem functioning is still unclear. We carried out a 5-year experiment of canopy nitrogen addition (2.5 g N m-2 year-1), understory removal, and their combination to assess their influences on microbial community stability and functional potentials in a subtropical Chinese fir plantation. Nitrogen addition, understory removal, and their combination reduced soil bacterial diversity (OUT richness, Inverse Simpson index, Shannon index, and phylogenetic diversity) by 11-18%, 15-24%, and 19-31%; reduced fungal diversity indexes by 3-5%, 5-6%, and 5-7%, respectively. We found that environmental filtering and interspecific interactions together determined changes in bacterial community stability, while changes in fungal community stability were mainly caused by environmental filtering. Fungi were more stable than bacteria under disturbances, possibly from having a more stable network structure. Furthermore, we found that microbial community stability was linked to changes in microbial community functional potentials. Importantly, we observed synergistic interactions between understory removal and nitrogen addition on bacterial diversity, network structure, and community stability. These findings suggest that understory plants play a significant role in promoting soil microbial community stability in subtropical Chinese fir plantations and help to mitigate the negative impacts of nitrogen addition. Hence, it is crucial to retain understory vegetation as important components of subtropical plantations.
Asunto(s)
Cunninghamia , Microbiota , Humanos , Ecosistema , Bosques , Nitrógeno/análisis , Filogenia , Microbiología del Suelo , Suelo/química , Bacterias , ChinaRESUMEN
Canopies play an important role in nitrogen (N) redistribution in forest ecosystems, and ignoring the canopy's role might bias estimates of the ecological consequences of anthropogenic atmospheric N deposition. We investigated the effects of the approach of N addition (Canopy addition vs. Understory addition) and level of N addition (25 kg N ha-1yr-1 vs. 50 kg N ha-1yr-1) on microbial residual carbon (MRC) accumulation in topsoil and subsoil. We found that the response of MRC to both approach and level of N addition varied greatly with soil depth in a tropical forest over eight years of continuous N addition. Specifically, N addition enhanced the accumulation of fungal and total MRC and their contribution to soil organic C (SOC) pools in the topsoil, whereas it decreased the contribution of fungal and total MRC to SOC in the subsoil. The contrasting effects of N addition on MRC contribution at varying soil depths were associated with the distinct response of microbial residues production. Understory N addition showed overall greater effects on MRC accumulation than canopy N addition did. Our results suggest that the canopy plays an important role in buffering the impacts of anthropogenic atmospheric N deposition on soil C cycling in tropical forests. The depth-dependent response of microbial residues to N addition also highlights the urgent need for further studies of different response mechanisms at different soil depths.
Asunto(s)
Ecosistema , Nitrógeno , Nitrógeno/análisis , Carbono , Bosques , Suelo/química , ÁrbolesRESUMEN
Atmospheric nitrogen (N) deposition is known to alter soil microbial communities, but how canopy and understory N addition affects soil bacterial and fungal communities in different soil layers remains poorly understood. Conducting a 6-year canopy and understory N addition experiment in a temperate forest, we showed that soil bacterial and fungal communities in the organic layer exhibited different responses to N addition. The main effect of N addition decreased soil bacterial diversity and altered bacterial community composition in the organic layer, but not changed fungal diversity and community composition in all layers. Soil pH was the main factor that regulated the responses of soil bacterial diversity and community composition to N addition, whereas soil fungal diversity and community composition were mainly controlled by soil moisture and nutrient availability. In addition, compared with canopy N addition, the understory N addition had stronger effects on soil bacterial Shannon diversity and community composition but had a weaker effect on soil bacteria richness in the organic soil layer. Our study demonstrates that the bacterial communities in the organic soil layer were more sensitive than the fungal communities to canopy and understory N addition, and the conventional method of understory N addition might have skewed the effects of natural atmospheric N deposition on soil bacterial communities. This further emphasizes the importance of considering canopy processes in future N addition studies and simultaneously evaluating soil bacterial and fungal communities in response to global environmental changes.
RESUMEN
Fine roots connect belowground and aboveground systems and help regulate the carbon balance of terrestrial ecosystems by providing nutrients and water for plants. To evaluate the effects of atmospheric nitrogen (N) deposition and increased precipitation on fine root production and standing biomass in a temperate deciduous forest in central China, we conducted a 6-year experiment. From 2013 to 2018, we applied N (25 kg N ha-1 yr-1) and water (336 mm, 30% of the ambient annual precipitation) above the forest canopy, and we quantified fine root production and biomass in 2017 and 2018. At 0-10 cm soil depth, the statistical interaction between addition of N and water was not significant in terms of fine root production or biomass. At 0-10 cm soil depth, N addition significantly increased fine root production by 18.1%, but did not affect fine root biomass. Water addition significantly increased fine root production and biomass by 13.6 and 17.0%, respectively. Both N and water addition had significant direct positive effects on fine root production, and water addition had indirect positive effects on fine root biomass through decreasing soil NO3- concentration. At 10-30 cm soil depth, the statistical interaction between N addition and water addition was significant in terms of both fine root production and biomass, i.e., the positive effect of N addition was reduced by water addition, and vice versa. These findings indicate that fine roots and therefore belowground carbon storage may have complex responses to increases in atmospheric N deposition and changes in precipitation predicted for the future. The findings also suggest that results obtained from experiments that consider only one independent variable (e.g., N input or water input) and only one soil depth should be interpreted with caution.
Asunto(s)
Ecosistema , Nitrógeno , Biomasa , Carbono , China , Bosques , Nitrógeno/análisis , Raíces de Plantas/química , SueloRESUMEN
Increasing atmospheric nitrogen (N) deposition could profoundly impact structure and functioning of forest ecosystems. Therefore, we conducted a two-year (2014-2015) experiment to assess the responses of tree sap flux density (Js) and intrinsic water use efficiency (WUEi) of dominant tree species (Liquidambar formosana, Quercus acutissima and Quercus variabilis) to increased N deposition at a manipulative experiment with canopy and understory N addition in a deciduous broadleaved forest. Five treatments were administered including N addition of 25â¯kgâ¯ha-1â¯year-1 and 50â¯kgâ¯ha-1â¯year-1 onto canopy (C25 and C50) and understory (U25 and U50), and control treatment (CK, without N addition). Our results showed neither canopy nor understory N addition had an impact on leaf N content and C:N ratio (Pâ¯>â¯0.05). Due to the distinct influencing ways, canopy and understory N addition generated different impacts on Js and WUEi of the dominant tree species. Canopy N addition increased WUEi of Q. variabilis, whereas understory addition treatment had a minimal impact on WUEi. Both N additions did not exert impacts on WUEi of L. formosana and Q. acutissima. Canopy N addition exerted negative impacts on Js and its sensitivity to micrometeorological factors of Q. acutissima and Q. variabilis in 2014, while understory addition showed no effect. Neither canopy nor understory N addition had an influence on Js of L. formosana in 2014. Probably owing to the increased soil acidification as the experiment proceeded, Js of L. formosana and Q. variabilis was decreased by understory N addition while canopy addition had a minimal effect in 2015. Thus, the traditional understory addition approach could not fully reflect the effects of increased N deposition on the canopy-associated transpiration process indicated by the different responses of Js and WUEi to canopy and understory N addition, and exaggerated its influences induced by the variation of soil chemical properties.
RESUMEN
Tree xylem anatomy is associated with carbon accumulation and wood quality. Increasing nitrogen (N) deposition can cause a significant effect on xylem anatomy, but related information is limited for subtropical broadleaf tree species. A 3-year field N addition experiment, with different N addition approaches (canopy and understory) and addition rates (0, 25, and 50â¯kgâ¯Nâ¯ha-1â¯yr-1), was performed beginning in 2013 in a subtropical forest of China. N addition effects on xylem tracheid (wall and lumen) size, vessel, and growth of dominant broadleaf species (Schima superba Gardn. et Champ. and Castanopsis chinensis (Sprengel) Hance) were investigated. The results showed that The effect of N addition on tracheid size was dependent on the tree species and addition approaches. Canopy N addition did not affect the tracheid size of C. chinensis, while both addition approaches increased the tracheid size of S. superba. The vessel size of both species was not affected by N addition. There was no difference in radial growth or other growth-related variables between the control and N-treated trees. These findings indicated that short-term N addition could significantly affect xylem anatomy, but might not influence tree growth. Meanwhile, understory N addition may pose challenges for mechanistic understanding and forest dynamics projection.