Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Food Microbiol ; 99: 103797, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34119092

RESUMEN

Postharvest treatments with sanitizers and fungicides are applied to increase the quality, safety and shelf life of fresh produce including cantaloupes (also known as rockmelons). The primary role of sanitizers during cantaloupe washing is to prevent cross contamination of potentially pathogenic bacteria in washwater. Postharvest fungicide sprays or dips are employed to inhibit spoilage-causing fungi. While assessing the compatibility of these antimicrobials based on the measurement of active ingredients levels provides some indication of antimicrobial capacity, there is limited data on whether the interaction between these chemicals in wash water modifies their overall efficacy against relevant microorganisms. The aim of this research was to determine how chlorine- and peroxyacetic acid-based sanitizers interact with commercial guazatine- and imazalil-based fungicide formulations used on cantaloupes, and whether mixing these augments or suppresses anti-microbial activity against relevant human pathogens and spoilage fungi in wash water. The results were unpredictable: while most combinations were antimicrobial, the chlorine-based sanitizer when mixed with the guazatine-based fungicide had significantly reduced efficacy against pathogenic Salmonella spp. (~2.7 log) and the fungal spoilage organisms, Trichothecium roseum and Rhizopus stolonifera. Mixing the chlorine-based sanitizer with an imazalil-based fungicide produced a range of outcomes with antagonistic, indifferent and synergistic interactions observed for the fungal species tested. The peroxyacetic acid-based sanitizer led to indifferent interactions with the guazatine-based fungicide, while antagonism and synergy were observed when mixed with the imazalil-based fungicide. This study demonstrates that mixing postharvest agrichemicals used in the cantaloupe industry may increase the risk of microbial contamination and thereby potentially compromise food safety and quality.


Asunto(s)
Cucumis melo/microbiología , Desinfectantes/farmacología , Conservación de Alimentos/métodos , Fungicidas Industriales/farmacología , Cloro/química , Cloro/farmacología , Desinfectantes/química , Interacciones Farmacológicas , Contaminación de Alimentos/prevención & control , Conservación de Alimentos/instrumentación , Frutas/microbiología , Hongos/efectos de los fármacos , Hongos/crecimiento & desarrollo , Fungicidas Industriales/química , Guanidinas/química , Guanidinas/farmacología , Viabilidad Microbiana/efectos de los fármacos , Ácido Peracético/química , Ácido Peracético/farmacología , Salmonella/efectos de los fármacos , Salmonella/crecimiento & desarrollo
2.
J Food Sci Technol ; 57(6): 2206-2221, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32431347

RESUMEN

This study was to investigate the effects of optimised alginate coating combined with repetitive pulsed light (RPL) on cell wall composition of fresh-cut cantaloupes during chilled storage. Fresh-cut cantaloupes were coated with alginate (1.86%, w/v) followed by RPL treatment (0.9 J cm-2 at every 48 h up to 26 days) during storage of 36 days. Cell wall composition of fresh-cut cantaloupes was determined at every 12 days while microscopic analysis was conducted on day 2 and day 36. Alginate was effective in maintaining high pectin fractions of fresh-cut cantaloupes while RPL showed greater contribution in maintaining hemicellulose fraction. However, the combination of alginate and RPL was the most effective treatment to maintain the overall cell wall fractions that contributed to the cell wall integrity of fresh-cut cantaloupes during storage. The alginate + RPL samples also had the greatest cell turgidity and shape with well-defined cell walls at the end of storage.

3.
J Food Sci Technol ; 56(5): 2563-2575, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31168138

RESUMEN

Fresh-cut fruits are popular due to the convenience provided. However, fresh-cut processes damage fruit tissues and reduce the shelf life of products. Pulsed light (PL) treatment is a decontamination method of foods. PL treatment given repetitively at a certain interval during storage could further extend the shelf life of fresh-cut fruits. Edible coating preserves fresh-cut fruits by providing mechanical strength and reducing respiration and water loss. This study was to evaluate the effects of alginate coating combined with repetitive pulsed light (RPL) on sensory quality and flavour of fresh-cut cantaloupes during storage. Cantaloupes were treated with alginate (1.86%, w/v) and RPL (0.9 J/cm2 at every 48 h up to 26 days) alone or in combination. Flavour analysis of fresh-cut cantaloupes was carried out every 12 days during storage at 4 ± 1 °C while sensory analysis was performed on day 32. Alginate coating and/or RPL retained sugar contents (17.92-20.01 g/kg FW for fructose, 18.77-19.98 g/kg FW for glucose and 23.02-29.41 g/kg FW for sucrose) in fresh-cut cantaloupes during storage. Combination of alginate with RPL reduced accumulation of lactic acid although alginate coating was more effective to minimise changes of other organic acids in fresh-cut cantaloupes. The combined treatment was also more effective than individual treatment in retaining total aroma compound concentration of fresh-cut cantaloupes during storage with the highest relative concentration, i.e. 3.174 on day 36. Overall, the combined alginate coating and RPL was effective to maintain the fresh-like sensory quality of fresh-cut cantaloupes with insignificant overall acceptability compared to the control.

4.
Food Microbiol ; 58: 121-7, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27217367

RESUMEN

The efficacy of a new generation disinfectant, octenidine dihydrochloride (OH), as wash and coating treatments for reducing Listeria monocytogenes (LM), Salmonella spp. (SAL), and Escherichia coli O157:H7 (EC) on cantaloupe was investigated. Cantaloupe rind plugs inoculated separately with the three bacterial species (∼8 log CFU/cm(2)) were washed for 1, 3, 5 min at 25 °C in water, or chlorine (200 ppm), ethanol (1%), OH (0.01, 0.05, 0.1%) and surviving populations were measured after treatment. Additionally, inoculated cantaloupe rind plugs were coated with 2% chitosan or chitosan containing OH (0.01, 0.05, 0.1%) and sampled for surviving pathogens. Subsequently, the antimicrobial efficacy of OH wash and coating (0.1, 0.2%) on whole cantaloupes was determined. All OH wash reduced LM, SAL, and EC on cantaloupe rinds by > 5 log CFU/cm(2) by 2 min, and reduced populations to undetectable levels (below 2 log CFU/cm(2)) by 5 min (P < 0.05). Similarly, OH coating on cantaloupe rinds reduced the pathogens by 3-5 log /cm(2) (P < 0.05). Washing and coating whole cantaloupes with OH reduced the three pathogens by at least 5 log and 2 log CFU/cm(2), respectively (P < 0.05). Results suggest that OH could be used as antimicrobial wash and coating to reduce LM, SAL, and EC on cantaloupes.


Asunto(s)
Cucumis melo/microbiología , Desinfectantes/farmacología , Escherichia coli O157/efectos de los fármacos , Microbiología de Alimentos , Listeria monocytogenes/efectos de los fármacos , Piridinas/farmacología , Salmonella/efectos de los fármacos , Recuento de Colonia Microbiana , Escherichia coli O157/crecimiento & desarrollo , Iminas , Listeria monocytogenes/crecimiento & desarrollo , Salmonella/crecimiento & desarrollo
5.
Foodborne Pathog Dis ; 13(11): 587-591, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27548768

RESUMEN

Cantaloupes, marketed as "Rocky Ford," were implicated in the U.S. multistate outbreak of listeriosis in 2011, which caused multiple fatalities. Listeria monocytogenes can survive on whole cantaloupes and can be transferred to the flesh of melons. The growth of L. monocytogenes on fresh-cut "Athena" and "Rocky Ford" cantaloupe cultivars during refrigerated storage was evaluated. Fresh-cut cubes (16.4 cm3) from field-grown cantaloupes were each inoculated with 5 log10 CFU/mL of a multi-strain mixture of L. monocytogenes and stored at 4°C or 10°C. Inoculated fresh-cut cubes were also: (1) continuously stored at 4°C for 3 days; (2) temperature-abused (TA: 25°C for 4 h) on day 0; or (3) stored at 4°C for 24 h, exposed to TA on day 1, and subsequently stored at 4°C until day 3. L. monocytogenes populations on fresh-cut melons continuously stored at 4°C or 10°C were enumerated on selected days for up to 15 days and after each TA event. Brix values for each cantaloupe variety were determined. L. monocytogenes populations on fresh-cut cantaloupe cubes stored at 4°C increased by 1.0 and 3.0 log10 CFU/cube by day 7 and 15, respectively, whereas those stored at 10°C increased by 3.0 log10 CFU/cube by day 7. Populations of L. monocytogenes on fresh-cut cantaloupes stored at 10°C were significantly (p < 0.05) greater than those stored at 4°C during the study. L. monocytogenes showed similar growth on fresh-cut "Athena" and "Rocky Ford" cubes, even though "Athena" cubes had significantly higher Brix values than the "Rocky Ford" fruit. L. monocytogenes populations on fresh-cut cantaloupes exposed to TA on day 1 and then refrigerated were significantly greater (0.74 log10 CFU) than those stored continuously at 4°C for 3 days. Storage at 10°C or exposure to TA events promoted growth of L. monocytogenes on fresh-cut cantaloupe during refrigerated storage.


Asunto(s)
Productos Agrícolas/microbiología , Cucumis melo/microbiología , Comida Rápida/microbiología , Contaminación de Alimentos , Almacenamiento de Alimentos , Frutas/microbiología , Listeria monocytogenes/crecimiento & desarrollo , Recuento de Colonia Microbiana , Productos Agrícolas/química , Cucumis melo/química , Carbohidratos de la Dieta/análisis , Comida Rápida/análisis , Contaminación de Alimentos/prevención & control , Manipulación de Alimentos/normas , Almacenamiento de Alimentos/normas , Frutas/química , Adhesión a Directriz , Guías como Asunto , Listeria monocytogenes/aislamiento & purificación , Viabilidad Microbiana , Refrigeración , Especificidad de la Especie
6.
Food Microbiol ; 52: 138-45, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26338127

RESUMEN

Poor hygiene and improper food preparation practices in consumers' homes have previously been demonstrated as contributing to foodborne diseases. To address potential cross-contamination by kitchen utensils in the home, a series of studies was conducted to determine the extent to which the use of a knife or grater on fresh produce would lead to the utensil's contamination with Escherichia coli O157:H7 or Salmonella enterica. When shredding inoculated carrots (ca. 5.3 log CFU/carrot), all graters became contaminated and the number of E. coli O157:H7 present on the utensil was significantly greater than Salmonella (p < 0.05). Contamination of knives after slicing inoculated produce (4.9-5.4 log CFU/produce item) could only be detected by enrichment culture. After slicing tomatoes, honeydew melons, strawberries, cucumbers, and cantaloupes, the average prevalence of knife contamination by the two pathogens was 43%, 17%, 15%, 7%, and 3%, respectively. No significant increase in the incidence or level of contamination occurred on the utensils when residues were present (p > 0.05); however, subsequent contamination of 7 produce items processed with the contaminated utensils did occur. These results highlight the necessity of proper sanitization of these utensils when used in preparation of raw produce.


Asunto(s)
Contaminación de Equipos , Escherichia coli O157/crecimiento & desarrollo , Contaminación de Alimentos/análisis , Manipulación de Alimentos/instrumentación , Enfermedades Transmitidas por los Alimentos/microbiología , Salmonella enterica/crecimiento & desarrollo , Seguridad de Productos para el Consumidor , Utensilios de Comida y Culinaria , Escherichia coli O157/aislamiento & purificación , Manipulación de Alimentos/métodos , Frutas/microbiología , Humanos , Salmonella enterica/aislamiento & purificación , Verduras/microbiología
7.
Food Microbiol ; 44: 47-53, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25084644

RESUMEN

The efficacy of four plant-derived antimicrobials (PDAs), namely carvacrol, thymol, ß-resorcylic acid, and caprylic acid, with or without hydrogen peroxide (HP), as antimicrobial wash and chitosan based coating for reducing Listeria monocytogenes (LM) on cantaloupes was investigated. Cantaloupe rind plugs inoculated with LM (10(7) CFU/cm(2)) were washed for 3, 6, 10 min at 25 °C or 1, 3, 5 min at 55 or 65 °C in water, or water containing 2% PDAs with or without 2% HP. Additionally, inoculated cantaloupes (10(8) CFU/fruit) washed with 2% PDA-HP combinations at 55 or 65 °C (5 min) were cut into rindless cubical pieces, stored at 4 °C for 7 days and sampled for LM. Furthermore, inoculated plugs coated with 2% PDAs were stored for 7 days and sampled for surviving LM. Individual PDA washes reduced LM on rinds by ≥2.5 log CFU/cm(2) by 3 min (P < 0.05). PDA-HP combinations decreased LM to undetectable levels by 5 min at 55, 65 °C, and 10 min at 25 °C (P < 0.05) and reduced LM transfer from cantaloupe surface to interior (P < 0.0001). All PDA coating treatments reduced LM on cantaloupe to undetectable levels by 5 days (P < 0.05). Results indicate that PDAs alone, or with HP could be used to reduce LM on cantaloupes.


Asunto(s)
Antibacterianos/farmacología , Cucumis melo/microbiología , Desinfectantes/farmacología , Manipulación de Alimentos/métodos , Conservación de Alimentos/métodos , Peróxido de Hidrógeno/farmacología , Listeria monocytogenes/efectos de los fármacos , Extractos Vegetales/farmacología , Quitosano/química , Cucumis melo/química , Frutas/química , Frutas/microbiología , Listeria monocytogenes/crecimiento & desarrollo
8.
J Food Prot ; 81(4): 534-541, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29513104

RESUMEN

Fresh-cut cantaloupes have been implicated in numerous foodborne outbreaks of salmonellosis. Commercial aqueous wash treatments are limited in their ability to inactivate Salmonella enterica. Our objective was to evaluate the efficacy of hot water, gaseous chlorine dioxide, and chlorine on enhancing microbial safety and sensory qualities of fresh-cut cantaloupes. Cantaloupes were inoculated with an S. enterica cocktail (serovars Michigan, Mbandaka, and Poona) and treated with chlorine (200 ppm of free chlorine) for 40 min, 5 mg/L gaseous chlorine dioxide for 4.5 h, and hot water (76.1°C) for 3 min. Fresh-cut cantaloupes were prepared from treated whole cantaloupes and divided into two sets; one set of samples was treated with NatureSeal to evaluate its effect on shelf life and sensory quality and the second set (control) was packed without further treatment. Fresh-cut samples were stored at 4°C for up to 21 days. For the sensory quality parameters analyzed (color, water loss, and texture), the samples treated with NatureSeal had significantly better quality ( P < 0.05) than did the control samples. All treatments significantly reduced ( P < 0.05) the pathogen populations on the rind of the whole melons and on the fresh-cut samples prepared from the treated melons. All fresh-cut samples prepared from melons treated with hot water were negative for Salmonella throughout the storage period except for the samples treated with hot water and NatureSeal and evaluated on day 7. The fresh-cut samples prepared from melons treated with chlorine dioxide and chlorine were negative for Salmonella after 21 days of storage. These results provide a framework to producers of fresh-cut cantaloupes for the potential use of hot water as an intervention treatment in combination with NatureSeal for enhancing the microbiological safety and quality of this commodity.


Asunto(s)
Compuestos de Cloro/farmacología , Cloro/farmacología , Cucumis melo/microbiología , Microbiología de Alimentos , Óxidos/farmacología , Cucumis melo/efectos de los fármacos , Manipulación de Alimentos/métodos , Inocuidad de los Alimentos , Calor , Salmonella/aislamiento & purificación , Agua
9.
Pest Manag Sci ; 73(7): 1462-1472, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27862891

RESUMEN

BACKGROUND: Cucurbit yellow stunting disorder virus (CYSDV) is a cosmopolitan viral disease transmitted by Bemisia tabaci that infects cucurbit crops. Cantaloupe production in the southwestern USA has been confronted by epidemics of CYSDV since 2006 when it was first identified in Arizona and California. As a phloem-limited virus that is vectored in a semi-persistent manner by B. tabaci, CYSDV has transmission characteristics that may be suppressed by select insecticide applications. RESULTS: Eight active ingredients formulated as foliar and/or soil-applied insecticides were tested to determine the suppressive effect on transmission and incidence of CYSDV in greenhouse and field studies. Many compounds limited virus transmission to <10% infected plants even when challenged by 30 viruliferous whiteflies. Foliar formulations had greater knockdown activity than their soil-applied analogs and resulted in lower virus transmission. Insecticides that had the greatest effect on reducing virus transmission in the greenhouse also showed the lowest incidence of CYSDV in field trials. CONCLUSIONS: Select insecticides can significantly reduce transmission of CYSDV. However, insecticide management of CYSDV incidence in cantaloupes has limitations in chronically high infestation areas such as the southwestern USA, and is often only able to delay disease onset rather than prevent its occurrence. © 2016 Society of Chemical Industry.


Asunto(s)
Crinivirus , Cucumis melo/virología , Hemípteros/efectos de los fármacos , Control de Insectos/métodos , Insecticidas , Animales , Hemípteros/virología , Insectos Vectores/efectos de los fármacos , Insectos Vectores/virología , Enfermedades de las Plantas/virología
10.
Int J Food Microbiol ; 234: 65-70, 2016 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-27376678

RESUMEN

Whole cantaloupes (Cucumis melo L.), marketed as 'Rocky Ford', were implicated in a large multi-state outbreak of listeriosis in the United States in 2011; however, survival and growth of Listeria monocytogenes on whole cantaloupes remains relatively unexplored. The research presented here evaluated three different storage temperatures, two sites of contamination of cantaloupes, and two cantaloupe varieties to determine their effect on the survival of L. monocytogenes. 'Athena' and 'Rocky Ford' cantaloupe cultivars were grown in soil and harvested, and individual melons subsequently received a multi-strain inoculum of L. monocytogenes (6 log CFU/melon), which were then stored at 4°C, 10°C, and 25°C. Changes in L. monocytogenes populations on the rinds and stem scars of cantaloupes stored at each temperature were determined at selected times for up to 15days. An analysis of variance revealed that inoculation site and storage temperature significantly affected survival of L. monocytogenes on cantaloupes during storage (p<0.05), but cultivar did not influence L. monocytogenes (p>0.05). Populations of L. monocytogenes on stem scars of cantaloupes stored at 25°C increased by 1-2 log CFU/melon on day 1, and were significantly greater than those on cantaloupes stored at 4°C or 10°C (p<0.05), which remained constant or increased by approximately 0.3 log CFU/melon, respectively, over the same time period. A decrease of 2-5 log CFU/melon of L. monocytogenes occurred on the rinds of cantaloupes during storage by day 7, and were not significantly different at the three different storage temperatures (p>0.05). In trials performed in rind juice extracts, populations of L. monocytogenes decreased by 3 log CFU/mL when stored at 25°C by day 3, but grew by 3-4 log CFU/mL when stored at 4°C over 7days. Overall, site of contamination and storage temperature influenced the survival of L. monocytogenes on cantaloupes more than cantaloupe cultivar type.


Asunto(s)
Cucumis melo/microbiología , Microbiología de Alimentos , Conservación de Alimentos/métodos , Almacenamiento de Alimentos/métodos , Listeria monocytogenes/crecimiento & desarrollo , Listeria monocytogenes/aislamiento & purificación , Recuento de Colonia Microbiana , Seguridad de Productos para el Consumidor , Cucumis melo/clasificación , Brotes de Enfermedades , Humanos , Listeriosis/microbiología , Temperatura , Factores de Tiempo , Estados Unidos
11.
Int J Food Microbiol ; 207: 71-6, 2015 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-26001062

RESUMEN

Freshly harvested Eastern variety cantaloupes (Cucumis melo L. var. reticulatus cv. Athena) were subjected to three different harvest and wash treatments to examine conditions under which the efficacy of the sanitizer, levulinic acid (LV) plus sodium dodecyl sulfate (SDS), could be enhanced to reduce Salmonella contamination. In treatment set one, cantaloupes were spot inoculated with Salmonella enterica serovar Poona (prepared from solid or liquid media cultures) before or after a 1-min dip treatment in LV (2.5, 5.0, 7.5, or 10%) and 2.5% SDS. S. Poona initial populations on rind tissue (4.26-5.04 log CFU/sample) were reduced to detection by enrichment culture when cantaloupes were subsequently exposed to any of the LV/SDS solutions. When S. Poona was introduced after cantaloupes had been dip-treated, greater decreases in pathogen populations at the stem scar were observed when cantaloupes were treated with increasing concentrations of LV. In treatment set two, the response of S. Poona dip-treated with 5% LV/2.5% SDS was compared to a simulated commercial dump tank treatment incorporating 200 ppm chlorine as well as a two-stage treatment employing both the chlorine tank and LV/SDS dip treatments. S. Poona levels (log CFU/sample or # positive by enrichment culture/# analyzed) after treatments were 5.25, 3.07, 7/10, 5/10 (stem scar) and 3.90, 25/40, 28/40, 20/40 (rind) for non-treated, chlorine tank, LV/SDS dip, and tank plus dip treatments, respectively. In treatment set three, freshly harvested cantaloupes were first treated in the field using a needle-free stem scar injection (200 µl, 7.5% LV/1.0% SDS, 60 psi) and a cantaloupe spray (30 ml, 7.5% LV/0.5% SDS). Cantaloupe stem scar and rind tissue were then spot-inoculated with S. Poona using either a liquid or soil-based medium followed by a simulated dump tank treatment incorporating either 200 ppm chlorine or 5% LV/2% SDS. S. Poona inoculated on field-treated cantaloupe rind decreased by 4.7 and 5.31 (liquid) and 3.27 and 3.36 (soil) log CFU/sample after simulated chlorine and LV/SDS tank treatments, respectively. In the case of stem scar tissue, S. Poona populations exhibited a 1.0 log greater reduction when cantaloupes were treated with LV/SDS compared to chlorine in the dump tank (P<0.05). Based on this study, application of multiple hurdles is warranted, as additional decreases in S. Poona populations were obtained when cantaloupes were subjected to a chlorine dump tank followed by a LV/SDS dip treatment.


Asunto(s)
Cucumis melo/microbiología , Manipulación de Alimentos/métodos , Microbiología de Alimentos/métodos , Ácidos Levulínicos/farmacología , Salmonella enterica/efectos de los fármacos , Dodecil Sulfato de Sodio/farmacología , Antibacterianos/farmacología , Recuento de Colonia Microbiana , Manipulación de Alimentos/normas
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda