Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(43)2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34675073

RESUMEN

Neutrophils sense and migrate through an enormous range of chemoattractant gradients through adaptation. Here, we reveal that in human neutrophils, calcium-promoted Ras inactivator (CAPRI) locally controls the GPCR-stimulated Ras adaptation. Human neutrophils lacking CAPRI (caprikd ) exhibit chemoattractant-induced, nonadaptive Ras activation; significantly increased phosphorylation of AKT, GSK-3α/3ß, and cofilin; and excessive actin polymerization. caprikd cells display defective chemotaxis in response to high-concentration gradients but exhibit improved chemotaxis in low- or subsensitive-concentration gradients of various chemoattractants, as a result of their enhanced sensitivity. Taken together, our data reveal that CAPRI controls GPCR activation-mediated Ras adaptation and lowers the sensitivity of human neutrophils so that they are able to chemotax through a higher-concentration range of chemoattractant gradients.


Asunto(s)
Quimiotaxis de Leucocito/inmunología , Neutrófilos/inmunología , Proteínas Activadoras de ras GTPasa/inmunología , Proteínas ras/antagonistas & inhibidores , Actinas/inmunología , Movimiento Celular , Polaridad Celular , Técnicas de Silenciamiento del Gen , Células HL-60 , Humanos , N-Formilmetionina Leucil-Fenilalanina/farmacología , Activación Neutrófila/efectos de los fármacos , Activación Neutrófila/genética , Activación Neutrófila/inmunología , Neutrófilos/efectos de los fármacos , Neutrófilos/fisiología , Receptores Acoplados a Proteínas G/inmunología , Complejo Shelterina/inmunología , Transducción de Señal , Proteínas de Unión a Telómeros/inmunología , Proteínas Activadoras de ras GTPasa/deficiencia , Proteínas Activadoras de ras GTPasa/genética , Proteínas ras/inmunología
2.
Proteins ; 91(12): 1658-1683, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37905971

RESUMEN

We present the results for CAPRI Round 54, the 5th joint CASP-CAPRI protein assembly prediction challenge. The Round offered 37 targets, including 14 homodimers, 3 homo-trimers, 13 heterodimers including 3 antibody-antigen complexes, and 7 large assemblies. On average ~70 CASP and CAPRI predictor groups, including more than 20 automatics servers, submitted models for each target. A total of 21 941 models submitted by these groups and by 15 CAPRI scorer groups were evaluated using the CAPRI model quality measures and the DockQ score consolidating these measures. The prediction performance was quantified by a weighted score based on the number of models of acceptable quality or higher submitted by each group among their five best models. Results show substantial progress achieved across a significant fraction of the 60+ participating groups. High-quality models were produced for about 40% of the targets compared to 8% two years earlier. This remarkable improvement is due to the wide use of the AlphaFold2 and AlphaFold2-Multimer software and the confidence metrics they provide. Notably, expanded sampling of candidate solutions by manipulating these deep learning inference engines, enriching multiple sequence alignments, or integration of advanced modeling tools, enabled top performing groups to exceed the performance of a standard AlphaFold2-Multimer version used as a yard stick. This notwithstanding, performance remained poor for complexes with antibodies and nanobodies, where evolutionary relationships between the binding partners are lacking, and for complexes featuring conformational flexibility, clearly indicating that the prediction of protein complexes remains a challenging problem.


Asunto(s)
Algoritmos , Mapeo de Interacción de Proteínas , Mapeo de Interacción de Proteínas/métodos , Conformación Proteica , Unión Proteica , Simulación del Acoplamiento Molecular , Biología Computacional/métodos , Programas Informáticos
3.
Brief Bioinform ; 22(6)2021 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-33959764

RESUMEN

Diseases caused by bacterial infections become a critical problem in public heath. Antibiotic, the traditional treatment, gradually loses their effectiveness due to the resistance. Meanwhile, antibacterial proteins attract more attention because of broad spectrum and little harm to host cells. Therefore, exploring new effective antibacterial proteins is urgent and necessary. In this paper, we are committed to evaluating the effectiveness of ab-initio docking methods in antibacterial protein-protein docking. For this purpose, we constructed a three-dimensional (3D) structure dataset of antibacterial protein complex, called APCset, which contained $19$ protein complexes whose receptors or ligands are homologous to antibacterial peptides from Antimicrobial Peptide Database. Then we selected five representative ab-initio protein-protein docking tools including ZDOCK3.0.2, FRODOCK3.0, ATTRACT, PatchDock and Rosetta to identify these complexes' structure, whose performance differences were obtained by analyzing from five aspects, including top/best pose, first hit, success rate, average hit count and running time. Finally, according to different requirements, we assessed and recommended relatively efficient protein-protein docking tools. In terms of computational efficiency and performance, ZDOCK was more suitable as preferred computational tool, with average running time of $6.144$ minutes, average Fnat of best pose of $0.953$ and average rank of best pose of $4.158$. Meanwhile, ZDOCK still yielded better performance on Benchmark 5.0, which proved ZDOCK was effective in performing docking on large-scale dataset. Our survey can offer insights into the research on the treatment of bacterial infections by utilizing the appropriate docking methods.


Asunto(s)
Algoritmos , Péptidos Antimicrobianos/química , Biología Computacional , Bases de Datos de Proteínas , Simulación del Acoplamiento Molecular , Programas Informáticos
4.
Proteins ; 90(1): 83-95, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34309909

RESUMEN

Protein structure docking is the process in which the quaternary structure of a protein complex is predicted from individual tertiary structures of the protein subunits. Protein docking is typically performed in two main steps. The subunits are first docked while keeping them rigid to form the complex, which is then followed by structure refinement. Structure refinement is crucial for a practical use of computational protein docking models, as it is aimed for correcting conformations of interacting residues and atoms at the interface. Here, we benchmarked the performance of eight existing protein structure refinement methods in refinement of protein complex models. We show that the fraction of native contacts between subunits is by far the most straightforward metric to improve. However, backbone dependent metrics, based on the Root Mean Square Deviation proved more difficult to improve via refinement.


Asunto(s)
Biología Computacional/métodos , Simulación del Acoplamiento Molecular/métodos , Conformación Proteica , Proteínas/química , Algoritmos , Benchmarking , Bases de Datos de Proteínas , Proteínas/genética , Proteínas/metabolismo
5.
Proteins ; 89(12): 1800-1823, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34453465

RESUMEN

We present the results for CAPRI Round 50, the fourth joint CASP-CAPRI protein assembly prediction challenge. The Round comprised a total of twelve targets, including six dimers, three trimers, and three higher-order oligomers. Four of these were easy targets, for which good structural templates were available either for the full assembly, or for the main interfaces (of the higher-order oligomers). Eight were difficult targets for which only distantly related templates were found for the individual subunits. Twenty-five CAPRI groups including eight automatic servers submitted ~1250 models per target. Twenty groups including six servers participated in the CAPRI scoring challenge submitted ~190 models per target. The accuracy of the predicted models was evaluated using the classical CAPRI criteria. The prediction performance was measured by a weighted scoring scheme that takes into account the number of models of acceptable quality or higher submitted by each group as part of their five top-ranking models. Compared to the previous CASP-CAPRI challenge, top performing groups submitted such models for a larger fraction (70-75%) of the targets in this Round, but fewer of these models were of high accuracy. Scorer groups achieved stronger performance with more groups submitting correct models for 70-80% of the targets or achieving high accuracy predictions. Servers performed less well in general, except for the MDOCKPP and LZERD servers, who performed on par with human groups. In addition to these results, major advances in methodology are discussed, providing an informative overview of where the prediction of protein assemblies currently stands.


Asunto(s)
Biología Computacional/métodos , Modelos Moleculares , Proteínas , Programas Informáticos , Sitios de Unión , Simulación del Acoplamiento Molecular , Dominios y Motivos de Interacción de Proteínas , Proteínas/química , Proteínas/metabolismo , Análisis de Secuencia de Proteína
6.
Arch Microbiol ; 203(3): 1149-1157, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33211173

RESUMEN

Mycoplasma mycoides subsp. capri (Mmc) typically causes pneumonia, mastitis, arthritis, keratitis and septicaemia in goats. Mortality associated with Mmc in goat flocks is lower compared to Mycoplasma capricolum subsp. capripneumoniae-associated respiratory infections. Case fatality rates associated with Mmc ranged from 9.8 to 26.8% among several states in India. Molecular epidemiology approaches aimed at genotyping help to identify the diversity of isolates involved in a disease. Ten clinical pathogenic Mmc isolates were analysed by multilocus sequence typing (MLST) for studying genotypic relationships with 50 isolates available from public databases. The MLST analysis indicates high genetic diversity among Mmc isolates. From a total number of 60 isolates, 43 six sequence types (STs) were recognized comprising of six STs from India and 37 STs from other geographical regions. MLST profiles of isolates revealed none of the STs observed in Indian isolates were shared with global isolates. Some of the STs representing Indian isolates (four STs) were clustered into a novel clonal complex 1 (CC1). Maintenance of genetically related STs forming CCs among the goat population in India for longer periods indicates disease causing potentiality of these isolates. Based on various recombination analysis, weak clonal relationship among Mmc isolates were identified. The present study has enlightened further steps in disease investigations and to design future control measures by employing prevalent genotypes as vaccine candidates against Mmc infections.


Asunto(s)
Enfermedades de las Cabras/microbiología , Tipificación de Secuencias Multilocus , Infecciones por Mycoplasma/veterinaria , Mycoplasma/clasificación , Mycoplasma/genética , Animales , Femenino , Variación Genética , Genotipo , Enfermedades de las Cabras/epidemiología , Enfermedades de las Cabras/mortalidad , Cabras , India/epidemiología , Epidemiología Molecular , Infecciones por Mycoplasma/epidemiología , Infecciones por Mycoplasma/microbiología , Infecciones por Mycoplasma/mortalidad , Mycoplasma mycoides/genética , Mycoplasma mycoides/aislamiento & purificación
7.
Agric Water Manag ; 251: 106872, 2021 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-34079159

RESUMEN

The use of reclaimed or treated water from urban wastewater treatment plants for irrigation has been proposed as an alternative water source to address water scarcity issues in Europe. In this paper using agro-economic modelling, we analyse if treated water available for agriculture has the potential to reduce freshwater abstraction and, consequently, water stress. Implementing exogenous treated water quantities as an additional water supply at NUTS 2 level in the CAPRI model, we found that treated water reuse is a possible alternative supply source to address water shortages with a very negligible effect on farmers' income and food production in the EU. However, the actual water reuse and water stress reduction is very limited due to high costs. Even climate change effects on water availability and precipitation failed to induce higher use. The one-size-fits-all approach modelled via a flat rate water price only encourages the reuse of treated water in a limited number of EU member states. Thus, in order to maximise the potential of reused water to address water scarcity, different rates should be used so as to ensure higher treated water volumes at lower costs.

8.
Proteins ; 88(8): 1100-1109, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32181952

RESUMEN

Integration of template-based modeling, global sampling and precise scoring is crucial for the development of molecular docking programs with improved accuracy. We combined template-based modeling and ab-initio docking protocol as hybrid docking strategy called CoDock for the docking and scoring experiments of the seventh CAPRI edition. For CAPRI rounds 38-45, we obtained acceptable or better models in the top 10 submissions for eight out of the 16 evaluated targets as predictors, nine out of the 16 targets as scorers. Especially, we submitted acceptable models for all of the evaluated protein-oligosaccharide targets. For the CASP13-CAPRI experiment (round 46), we obtained acceptable or better models in the top 5 submissions for 10 out of the 20 evaluated targets as predictors, 11 out of the 20 targets as scorers. The failed cases for our group were mainly the difficult targets and the protein-peptide systems in CAPRI and CASP13-CAPRI experiments. In summary, this CAPRI edition showed that our hybrid docking strategy can be efficiently adapted to the increasing variety of challenges in the field of molecular interactions.


Asunto(s)
Simulación del Acoplamiento Molecular , Oligosacáridos/química , Péptidos/química , Proteínas/química , Programas Informáticos , Secuencia de Aminoácidos , Sitios de Unión , Helicobacter pylori/química , Helicobacter pylori/metabolismo , Humanos , Ligandos , Oligosacáridos/metabolismo , Péptidos/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Mapeo de Interacción de Proteínas , Multimerización de Proteína , Proteínas/metabolismo , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/metabolismo , Proyectos de Investigación , Homología Estructural de Proteína , Termodinámica
9.
Proteins ; 88(8): 1121-1128, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32506478

RESUMEN

Protein docking algorithms aim to predict the 3D structure of a protein complex from the structures of its separated components. In the past, most docking algorithms focused on docking pairs of proteins to form dimeric complexes. However, attention is now turning towards the more difficult problem of using docking methods to predict the structures of multicomponent complexes. In both cases, however, the constituent proteins often change conformation upon complex formation, and this can cause many algorithms to fail to detect near-native binding orientations due to the high number of atomic steric clashes in the list of candidate solutions. An increasingly popular way to retain more near-native orientations is to define one or more restraints that serve to modulate or override the effect of steric clashes. Here, we present an updated version of our "EROS-DOCK" docking algorithm which has been extended to dock arbitrary dimeric and trimeric complexes, and to allow the user to define residue-residue or atom-atom interaction restraints. Our results show that using even just one residue-residue restraint in each interaction interface is sufficient to increase the number of cases with acceptable solutions within the top 10 from 51 to 121 out of 173 pairwise docking cases, and to successfully dock 8 out of 11 trimeric complexes.


Asunto(s)
Algoritmos , Simulación del Acoplamiento Molecular , Péptidos/química , Proteínas/química , Programas Informáticos , Secuencia de Aminoácidos , Sitios de Unión , Humanos , Ligandos , Péptidos/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Mapeo de Interacción de Proteínas , Multimerización de Proteína , Proteínas/metabolismo , Proyectos de Investigación , Homología Estructural de Proteína , Termodinámica
10.
Proteins ; 88(8): 973-985, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-31742764

RESUMEN

Critical Assessment of PRediction of Interactions (CAPRI) rounds 37 through 45 introduced larger complexes, new macromolecules, and multistage assemblies. For these rounds, we used and expanded docking methods in Rosetta to model 23 target complexes. We successfully predicted 14 target complexes and recognized and refined near-native models generated by other groups for two further targets. Notably, for targets T110 and T136, we achieved the closest prediction of any CAPRI participant. We created several innovative approaches during these rounds. Since round 39 (target 122), we have used the new RosettaDock 4.0, which has a revamped coarse-grained energy function and the ability to perform conformer selection during docking with hundreds of pregenerated protein backbones. Ten of the complexes had some degree of symmetry in their interactions, so we tested Rosetta SymDock, realized its shortcomings, and developed the next-generation symmetric docking protocol, SymDock2, which includes docking of multiple backbones and induced-fit refinement. Since the last CAPRI assessment, we also developed methods for modeling and designing carbohydrates in Rosetta, and we used them to successfully model oligosaccharide-protein complexes in round 41. Although the results were broadly encouraging, they also highlighted the pressing need to invest in (a) flexible docking algorithms with the ability to model loop and linker motions and in (b) new sampling and scoring methods for oligosaccharide-protein interactions.


Asunto(s)
Simulación del Acoplamiento Molecular , Oligosacáridos/química , Péptidos/química , Proteínas/química , Programas Informáticos , Secuencia de Aminoácidos , Sitios de Unión , Humanos , Ligandos , Oligosacáridos/metabolismo , Péptidos/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Mapeo de Interacción de Proteínas , Multimerización de Proteína , Proteínas/metabolismo , Proyectos de Investigación , Homología Estructural de Proteína
11.
Proteins ; 88(8): 1055-1069, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-31994779

RESUMEN

Protein-protein docking plays an important role in the computational prediction of the complex structure between two proteins. For years, a variety of docking algorithms have been developed, as witnessed by the critical assessment of prediction interactions (CAPRI) experiments. However, despite their successes, many docking algorithms often require a series of manual operations like modeling structures from sequences, incorporating biological information, and selecting final models. The difficulties in these manual steps have significantly limited the applications of protein-protein docking, as most of the users in the community are nonexperts in docking. Therefore, automated docking like a web server, which can give a comparable performance to human docking protocol, is pressingly needed. As such, we have participated in the blind CAPRI experiments for Rounds 38-45 and CASP13-CAPRI challenge for Round 46 with both our HDOCK automated docking web server and human docking protocol. It was shown that our HDOCK server achieved an "acceptable" or higher CAPRI-rated model in the top 10 submitted predictions for 65.5% and 59.1% of the targets in the docking experiments of CAPRI and CASP13-CAPRI, respectively, which are comparable to 66.7% and 54.5% for human docking protocol. Similar trends can also be observed in the scoring experiments. These results validated our HDOCK server as an efficient automated docking protocol for nonexpert users. Challenges and opportunities of automated docking are also discussed.


Asunto(s)
Simulación del Acoplamiento Molecular , Oligosacáridos/química , Péptidos/química , Proteínas/química , Programas Informáticos , Secuencia de Aminoácidos , Sitios de Unión , Humanos , Ligandos , Oligosacáridos/metabolismo , Péptidos/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Mapeo de Interacción de Proteínas , Multimerización de Proteína , Proteínas/metabolismo , Proyectos de Investigación , Homología Estructural de Proteína , Termodinámica
12.
Proteins ; 88(8): 999-1008, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-31746039

RESUMEN

The seventh CAPRI edition imposed new challenges to the modeling of protein-protein complexes, such as multimeric oligomerization, protein-peptide, and protein-oligosaccharide interactions. Many of the proposed targets needed the efficient integration of rigid-body docking, template-based modeling, flexible optimization, multiparametric scoring, and experimental restraints. This was especially relevant for the multimolecular assemblies proposed in the CASP12-CAPRI37 and CASP13-CAPRI46 joint rounds, which were described and evaluated elsewhere. Focusing on the purely CAPRI targets of this edition (rounds 38-45), we have participated in all 17 assessed targets (considering heteromeric and homomeric interfaces in T125 as two separate targets) both as predictors and as scorers, by using integrative modeling based on our docking and scoring approaches: pyDock, IRaPPA, and LightDock. In the protein-protein and protein-peptide targets, we have also participated with our webserver (pyDockWeb). On these 17 CAPRI targets, we submitted acceptable models (or better) within our top 10 models for 10 targets as predictors, 13 targets as scorers, and 4 targets as servers. In summary, our participation in this CAPRI edition confirmed the capabilities of pyDock for the scoring of docking models, increasingly used within the context of integrative modeling of protein interactions and multimeric assemblies.


Asunto(s)
Simulación del Acoplamiento Molecular , Oligosacáridos/química , Péptidos/química , Proteínas/química , Programas Informáticos , Secuencia de Aminoácidos , Sitios de Unión , Humanos , Ligandos , Oligosacáridos/metabolismo , Péptidos/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Mapeo de Interacción de Proteínas , Multimerización de Proteína , Proteínas/metabolismo , Proyectos de Investigación , Homología Estructural de Proteína
13.
Proteins ; 88(8): 948-961, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-31697428

RESUMEN

We report the performance of the protein docking prediction pipeline of our group and the results for Critical Assessment of Prediction of Interactions (CAPRI) rounds 38-46. The pipeline integrates programs developed in our group as well as other existing scoring functions. The core of the pipeline is the LZerD protein-protein docking algorithm. If templates of the target complex are not found in PDB, the first step of our docking prediction pipeline is to run LZerD for a query protein pair. Meanwhile, in the case of human group prediction, we survey the literature to find information that can guide the modeling, such as protein-protein interface information. In addition to any literature information and binding residue prediction, generated docking decoys were selected by a rank aggregation of statistical scoring functions. The top 10 decoys were relaxed by a short molecular dynamics simulation before submission to remove atom clashes and improve side-chain conformations. In these CAPRI rounds, our group, particularly the LZerD server, showed robust performance. On the other hand, there are failed cases where some other groups were successful. To understand weaknesses of our pipeline, we analyzed sources of errors for failed targets. Since we noted that structure refinement is a step that needs improvement, we newly performed a comparative study of several refinement approaches. Finally, we show several examples that illustrate successful and unsuccessful cases by our group.


Asunto(s)
Simulación del Acoplamiento Molecular , Péptidos/química , Proteínas/química , Programas Informáticos , Algoritmos , Secuencia de Aminoácidos , Sitios de Unión , Humanos , Ligandos , Péptidos/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Mapeo de Interacción de Proteínas , Proteínas/metabolismo , Proyectos de Investigación , Homología Estructural de Proteína
14.
Proteins ; 88(8): 1037-1049, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-31891416

RESUMEN

Peptide-protein docking is challenging due to the considerable conformational freedom of the peptide. CAPRI rounds 38-45 included two peptide-protein interactions, both characterized by a peptide forming an additional beta strand of a beta sheet in the receptor. Using the Rosetta FlexPepDock peptide docking protocol we generated top-performing, high-accuracy models for targets 134 and 135, involving an interaction between a peptide derived from L-MAG with DLC8. In addition, we were able to generate the only medium-accuracy models for a particularly challenging target, T121. In contrast to the classical peptide-mediated interaction, in which receptor side chains contact both peptide backbone and side chains, beta-sheet complementation involves a major contribution to binding by hydrogen bonds between main chain atoms. To establish how binding affinity and specificity are established in this special class of peptide-protein interactions, we extracted PeptiDBeta, a benchmark of solved structures of different protein domains that are bound by peptides via beta-sheet complementation, and tested our protocol for global peptide-docking PIPER-FlexPepDock on this dataset. We find that the beta-strand part of the peptide is sufficient to generate approximate and even high resolution models of many interactions, but inclusion of adjacent motif residues often provides additional information necessary to achieve high resolution model quality.


Asunto(s)
Dineínas/química , Simulación del Acoplamiento Molecular , Glicoproteína Asociada a Mielina/química , Péptidos/química , Proteínas/química , Programas Informáticos , Secuencia de Aminoácidos , Animales , Sitios de Unión , Dineínas/metabolismo , Humanos , Enlace de Hidrógeno , Ligandos , Ratones , Glicoproteína Asociada a Mielina/metabolismo , Péptidos/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Mapeo de Interacción de Proteínas , Multimerización de Proteína , Proteínas/metabolismo , Proyectos de Investigación , Homología Estructural de Proteína , Termodinámica
15.
Proteins ; 88(8): 986-998, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-31746034

RESUMEN

Computational structural prediction of macromolecular interactions is a fundamental tool toward the global understanding of cellular processes. The Critical Assessment of PRediction of Interactions (CAPRI) community-wide experiment provides excellent opportunities for blind testing computational docking methods and includes original targets, thus widening the range of docking applications. Our participation in CAPRI rounds 38 to 45 enabled us to expand the way we include evolutionary information in structural predictions beyond our standard free docking InterEvDock pipeline. InterEvDock integrates a coarse-grained potential that accounts for interface coevolution based on joint multiple sequence alignments of two protein partners (co-alignments). However, even though such co-alignments could be built for none of the CAPRI targets in rounds 38 to 45, including host-pathogen and protein-oligosaccharide complexes and a redesigned interface, we identified multiple strategies that can be used to incorporate evolutionary constraints, which helped us to identify the most likely macromolecular binding modes. These strategies include template-based modeling where only local adjustments should be applied when query-template sequence identity is above 30% and larger perturbations are needed below this threshold; covariation-based structure prediction for individual protein partners; and the identification of evolutionarily conserved and structurally recurrent anchoring interface motifs. Overall, we submitted correct predictions among the top 5 models for 12 out of 19 interface challenges, including four High- and five Medium-quality predictions. Our top 20 models included correct predictions for three out of the five targets we missed in the top 5, including two targets for which misleading biological data led us to downgrade correct free docking models.


Asunto(s)
Simulación del Acoplamiento Molecular , Oligosacáridos/química , Péptidos/química , Proteínas/química , Programas Informáticos , Secuencia de Aminoácidos , Sitios de Unión , Humanos , Ligandos , Oligosacáridos/metabolismo , Péptidos/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Mapeo de Interacción de Proteínas , Multimerización de Proteína , Proteínas/metabolismo , Proyectos de Investigación , Homología Estructural de Proteína
16.
Proteins ; 88(8): 916-938, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-31886916

RESUMEN

We present the seventh report on the performance of methods for predicting the atomic resolution structures of protein complexes offered as targets to the community-wide initiative on the Critical Assessment of Predicted Interactions. Performance was evaluated on the basis of 36 114 models of protein complexes submitted by 57 groups-including 13 automatic servers-in prediction rounds held during the years 2016 to 2019 for eight protein-protein, three protein-peptide, and five protein-oligosaccharide targets with different length ligands. Six of the protein-protein targets represented challenging hetero-complexes, due to factors such as availability of distantly related templates for the individual subunits, or for the full complex, inter-domain flexibility, conformational adjustments at the binding region, or the multi-component nature of the complex. The main challenge for the protein-peptide and protein-oligosaccharide complexes was to accurately model the ligand conformation and its interactions at the interface. Encouragingly, models of acceptable quality, or better, were obtained for a total of six protein-protein complexes, which included four of the challenging hetero-complexes and a homo-decamer. But fewer of these targets were predicted with medium or higher accuracy. High accuracy models were obtained for two of the three protein-peptide targets, and for one of the protein-oligosaccharide targets. The remaining protein-sugar targets were predicted with medium accuracy. Our analysis indicates that progress in predicting increasingly challenging and diverse types of targets is due to closer integration of template-based modeling techniques with docking, scoring, and model refinement procedures, and to significant incremental improvements in the underlying methodologies.


Asunto(s)
Simulación del Acoplamiento Molecular , Oligosacáridos/química , Péptidos/química , Proteínas/química , Programas Informáticos , Secuencia de Aminoácidos , Sitios de Unión , Humanos , Ligandos , Oligosacáridos/metabolismo , Péptidos/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Mapeo de Interacción de Proteínas , Proteínas/metabolismo , Proyectos de Investigación , Homología Estructural de Proteína
17.
Proteins ; 88(8): 962-972, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-31697436

RESUMEN

The formation of specific protein-protein interactions is often a key to a protein's function. During complex formation, each protein component will undergo a change in the conformational state, for some these changes are relatively small and reside primarily at the sidechain level; however, others may display notable backbone adjustments. One of the classic problems in the protein-docking field is to be able to a priori predict the extent of such conformational changes. In this work, we investigated three protocols to find the most suitable input structure conformations for cross-docking, including a robust sampling approach in normal mode space. Counterintuitively, knowledge of the theoretically best combination of normal modes for unbound-bound transitions does not always lead to the best results. We used a novel spatial partitioning library, Aether Engine (see Supplementary Materials), to efficiently search the conformational states of 56 receptor/ligand pairs, including a recent CAPRI target, in a systematic manner and selected diverse conformations as input to our automated docking server, SwarmDock, a server that allows moderate conformational adjustments during the docking process. In essence, here we present a dynamic cross-docking protocol, which when benchmarked against the simpler approach of just docking the unbound components shows a 10% uplift in the quality of the top docking pose.


Asunto(s)
Simulación del Acoplamiento Molecular , Receptores de Superficie Celular/química , Programas Informáticos , Secuencia de Aminoácidos , Benchmarking , Sitios de Unión , Humanos , Ligandos , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Receptores de Superficie Celular/metabolismo , Proyectos de Investigación , Homología Estructural de Proteína
18.
J Infect Dis ; 219(10): 1559-1563, 2019 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-30541131

RESUMEN

Capsular polysaccharides have been confirmed to be an important virulence trait in many gram-positive and gram-negative bacteria. Similarly, they are proposed to be virulence traits in minimal Mycoplasma that cause disease in humans and animals. In the current study, goats were infected with the caprine pathogen Mycoplasma mycoides subsp. capri or an engineered mutant lacking the capsular polysaccharide, galactofuranose. Goats infected with the mutant strain showed only transient fever. In contrast, 5 of 8 goats infected with the parental strain reached end-point criteria after infection. These findings confirm that galactofuranose is a virulence factor in M. mycoides.


Asunto(s)
Enfermedades de las Cabras/microbiología , Infecciones por Mycoplasma/veterinaria , Mycoplasma mycoides/metabolismo , Mycoplasma mycoides/patogenicidad , Polisacáridos Bacterianos/genética , Animales , Enfermedades de las Cabras/metabolismo , Cabras , Masculino , Mutación , Infecciones por Mycoplasma/metabolismo , Infecciones por Mycoplasma/microbiología , Mycoplasma mycoides/química , Mycoplasma mycoides/genética , Polisacáridos Bacterianos/metabolismo
19.
BMC Bioinformatics ; 19(Suppl 13): 426, 2019 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-30717654

RESUMEN

BACKGROUND: Molecular docking studies on protein-peptide interactions are a challenging and time-consuming task because peptides are generally more flexible than proteins and tend to adopt numerous conformations. There are several benchmarking studies on protein-protein, protein-ligand and nucleic acid-ligand docking interactions. However, a series of docking methods is not rigorously validated for protein-peptide complexes in the literature. Considering the importance and wide application of peptide docking, we describe benchmarking of 6 docking methods on 133 protein-peptide complexes having peptide length between 9 to 15 residues. The performance of docking methods was evaluated using CAPRI parameters like FNAT, I-RMSD, L-RMSD. RESULT: Firstly, we performed blind docking and evaluate the performance of the top docking pose of each method. It was observed that FRODOCK performed better than other methods with average L-RMSD of 12.46 Å. The performance of all methods improved significantly for their best docking pose and achieved highest average L-RMSD of 3.72 Å in case of FRODOCK. Similarly, we performed re-docking and evaluated the performance of the top and best docking pose of each method. We achieved the best performance in case of ZDOCK with average L-RMSD 8.60 Å and 2.88 Å for the top and best docking pose respectively. Methods were also evaluated on 40 protein-peptide complexes used in the previous benchmarking study, where peptide have length up to 5 residues. In case of best docking pose, we achieved the highest average L-RMSD of 4.45 Å and 2.09 Å for the blind docking using FRODOCK and re-docking using AutoDock Vina respectively. CONCLUSION: The study shows that FRODOCK performed best in case of blind docking and ZDOCK in case of re-docking. There is a need to improve the ranking of docking pose generated by different methods, as the present ranking scheme is not satisfactory. To facilitate the scientific community for calculating CAPRI parameters between native and docked complexes, we developed a web-based service named PPDbench ( http://webs.iiitd.edu.in/raghava/ppdbench/ ).


Asunto(s)
Benchmarking , Simulación del Acoplamiento Molecular/métodos , Péptidos/química , Proteínas/química , Algoritmos , Sitios de Unión , Bases de Datos de Proteínas , Unión Proteica , Estructura Secundaria de Proteína , Reproducibilidad de los Resultados
20.
Proteins ; 87(12): 1222-1232, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31294859

RESUMEN

Proteins frequently interact with each other, and the knowledge of structures of the corresponding protein complexes is necessary to understand how they function. Computational methods are increasingly used to provide structural models of protein complexes. Not surprisingly, community-wide Critical Assessment of protein Structure Prediction (CASP) experiments have recently started monitoring the progress in this research area. We participated in CASP13 with the aim to evaluate our current capabilities in modeling of protein complexes and to gain a better understanding of factors that exert the largest impact on these capabilities. To model protein complexes in CASP13, we applied template-based modeling, free docking and hybrid techniques that enabled us to generate models of the topmost quality for 27 of 42 multimers. If templates for protein complexes could be identified, we modeled the structures with reasonable accuracy by straightforward homology modeling. If only partial templates were available, it was nevertheless possible to predict the interaction interfaces correctly or to generate acceptable models for protein complexes by combining template-based modeling with docking. If no templates were available, we used rigid-body docking with limited success. However, in some free docking models, despite the incorrect subunit orientation and missed interface contacts, the approximate location of protein binding sites was identified correctly. Apparently, our overall performance in docking was limited by the quality of monomer models and by the imperfection of scoring methods. The impact of human intervention on our results in modeling of protein complexes was significant indicating the need for improvements of automatic methods.


Asunto(s)
Biología Computacional , Complejos Multiproteicos/ultraestructura , Conformación Proteica , Proteínas/ultraestructura , Sitios de Unión/genética , Bases de Datos de Proteínas , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Unión Proteica/genética , Mapeo de Interacción de Proteínas , Multimerización de Proteína/genética , Proteínas/química , Proteínas/genética , Análisis de Secuencia de Proteína , Homología Estructural de Proteína
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda