Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 532
Filtrar
1.
Small ; 20(15): e2307095, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38009720

RESUMEN

Transition metal selenides are considered as promising anode materials for potassium-ion batteries (PIBs) due to their high theoretical capacities. However, their applications are limited by low conductivity and large volume expansion. Herein, sugar-gourd-shaped carbon nanofibers embedded with heterostructured ZnCo-Se nanocages are prepared via a facile template-engaged method combined with electrospinning and selenization process. In this hierarchical ZnCo-Se@NC/CNF, abundant phase boundaries of CoSe2/ZnSe heterostructure can promote interfacial electron transfer and chemical reactivity. The interior porous ZnCo-Se@NC nanocage structure relieves volume expansion and maintains structural integrity during K+ intercalation and deintercalation. The exterior spinning carbon nanofibers connect the granular nanocages in series, which prevents the agglomeration, shortens the electron transport distance and enhances the reaction kinetics. As a self-supporting anode material, ZnCo-Se@NC/CNF delivers a high capacity (362 mA h g-1 at 0.1 A g-1 after 100 cycles) with long-term stability (95.9% capacity retention after 1000 cycles) and shows superior reaction kinetics with high-rate K-storage. Energy level analysis and DFT calculations illustrate heterostructure facilitates the adsorption of K+ and interfacial electron transfer. The K+ storage mechanism is revealed by ex situ XRD and EIS analyses. This work opens a novel avenue in designing high-performance heterostructured anode materials with ingenious structure for PIBs.

2.
Small ; 20(1): e2304844, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37653594

RESUMEN

Fabricating highly efficient and long-life redox bifunctional electrocatalysts is vital for oxygen-related renewable energy devices. To boost the bifunctional catalytic activity of Fe-N-C single-atom catalysts, it is imperative to fine-tune the coordination microenvironment of the Fe sites to optimize the adsorption/desorption energies of intermediates during oxygen reduction/evolution reactions (ORR/OER) and simultaneously avoid the aggregation of atomically dispersed metal sites. Herein, a strategy is developed for fabricating a free-standing electrocatalyst with atomically dispersed Fe sites (≈0.89 wt.%) supported on N, F, and S ternary-doped hollow carbon nanofibers (FeN4 -NFS-CNF). Both experimental and theoretical findings suggest that the incorporation of ternary heteroatoms modifies the charge distribution of Fe active centers and enhances defect density, thereby optimizing the bifunctional catalytic activities. The efficient regulation isolated Fe centers come from the dual confinement of zeolitic imidazole framework-8 (ZIF-8) and polymerized ionic liquid (PIL), while the precise formation of distinct hierarchical three-dimensional porous structure maximizes the exposure of low-doping Fe active sites and enriched heteroatoms. FeN4 -NFS-CNF achieves remarkable electrocatalytic activity with a high ORR half-wave potential (0.90 V) and a low OER overpotential (270 mV) in alkaline electrolyte, revealing the benefit of optimizing the microenvironment of low-doping iron single atoms in directing bifunctional catalytic activity.

3.
Chemistry ; 30(52): e202401442, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39052252

RESUMEN

Commercial lithium-ion batteries are gradually approaching their theoretical specific energy, which cannot meet the fast-growing energy storage demands. Lithium-sulfur (Li-S) batteries are anticipated to supersede lithium-ion batteries as the next-generation energy storage system owing to their high atheoretical specific capacity (1675 mAh g-1) and energy density (2600 Wh kg-1). Nonetheless, Li-S batteries encounter several challenges, including the inadequate conductivity of sulfur and lithium sulfide, sulfur's volume expansion, and the shuttle effect of lithium polysulfides, all of which significantly impact the practical utilization of Li-S batteries. Electrospun carbon-based nanofibers can simultaneously resolve these issues with their economical preparation, distinctive nanostructure, and exceptional flexibility. This review presents the most recent research findings on electrospun carbon-based nanofibers materials serving as sulfur hosts and interlayer components in Li-S batteries. We analyzed the impact of the material's structural design on the performance of Li-S batteries and the relative underlying mechanism. Finally, the current challenges and issues faced by carbon-based nanofibers composites in the application of Li-S batteries are summarized, and the future development trajectory are outlined.

4.
Nanotechnology ; 35(21)2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38377620

RESUMEN

Lithium-sulfur (Li-S) batteries exhibit a huge potential in energy storage devices for the thrilling theoretical energy density (2600 Wh kg-1). Nevertheless, the serious shuttle effect rooted in polysulfides and retardative hysteresis reaction kinetics results in inferior cycling and rate performances of Li-S batteries, impeding commercial applications. In order to further promote the energy storage abilities of Li-S batteries, a unique binder-free sulfur carrier consisting of SnS2-modified multi-hole carbon nanofibers (SnS2-MHCNFs) has been constructed, where MHCNFs can offer abundant space to accommodate high-level sulfur and SnS2can promote the adsorption and catalyst capability of polysulfides, synergistically promoting the lithium-ion storage performances of Li-S batteries. After sulfur loading (SnS2-MHCNFs@S), the material was directly applied as a cathode electrode of the Li-S battery. The SnS2-MHCNFs@S electrode maintained a good discharge capacity of 921 mAh g-1after 150 cycles when the current density was 0.1 C (1 C = 1675 mA g-1), outdistancing the MHCNFs@S (629 mAh g-1) and CNFs@S (249 mAh g-1) electrodes. Meanwhile, the SnS2-MHCNFs@S electrode still exhibited a discharge capacity of 444 mAh g-1at 2 C. The good performance of SnS2-MHCNFs@S electrode indicates that combining multihole structure designation and polar material modification are highly effective methods to boost the performances of Li-S batteries.

5.
Nanotechnology ; 35(19)2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38316035

RESUMEN

Tin selenides possess layered structure and high theoretical capacity, which is considered as desirable anode material for lithium-ion batteries. However, its further development is limited by the low intrinsic electrical conductivity and sluggish reaction kinetics. Herein, a well-designed structure of SnSe2nanosheet attached on N, Se co-doped carbon nanofibers (SnSe2@CNFs) is fabricated as self-standing anodes for lithium-ion batteries. The integration of structural engineering and heteroatom doping enables accelerated electrons transfer and rapid ion diffusion for boosting Li+storage performance. Impressively, the flexible SnSe2@CNFs anodes exhibit inspiring capacity of 837.7 mAh g-1after 800 cycles at 1.2 C with coulombic efficiency almost 100% and superior rate performance 419.5 mAh g-1at 2.4 C. The kinetics analysis demonstrates the pseudocapacitive characteristic of SnSe2@CNFs promotes the storage property. This work sheds light on the hierarchical electrode construction towards high-performance energy storage applications.

6.
Nanotechnology ; 35(30)2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38653208

RESUMEN

Carbon-based electrode materials have widely been used in supercapacitors. Unfortunately, the fabrication of the supercapacitors includes a polymeric binding material that leads to an undesirable addition of weight along with an increased charge transfer resistance. Herein, binder-free and lightweight electrodes were fabricated using powder processing of carbon nanofibers (CNFs) and graphene nanoplatelets (GNPs) resulting in a hybrid all-carbon composite material. The structural, morphological, and electrochemical properties of the composite electrodes were studied at different concentrations of GNPs. The specific capacitance (Cs) of the CNFs/GNPs composite was improved by increasing the concentration of GNPs. A maximum Cs of around 120 F g-1was achieved at 90 wt% GNPs which is around 5-fold higher in value than the pristine CNFs in 1 M potassium hydroxides (KOH), which then further increased to 189 F g-1in 6 M KOH electrolyte. The energy density of around 20 Wh kg-1with the corresponding power density of 340 W kg-1was achieved in the supercapacitor containing 90 wt% GNPs. The enhanced electrochemical performance of the composite is related to the presence of a synergistic effect and the CNFs establishing conductive/percolating networks. Such binder-free all-carbon electrodes can be a potential candidate for next-generation energy applications.

7.
Environ Res ; 263(Pt 1): 119927, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39304015

RESUMEN

Water contamination by agricultural chemicals is a pressing environmental issue today. Carbendazim (CBZ), a potent fungicide with broad-spectrum antifungal properties and significant toxicity, poses substantial risks to ecosystems and human health. This study introduces an advanced electrochemical sensor by modifying screen-printed carbon electrodes (SPCEs) with a nanocomposite of erbium niobate (Er3NbO7) and functionalized carbon nanofibers (f-CNF). The Er3NbO7/f-CNF nanocomposite enhances electrochemical performance through its high surface area, excellent electrical conductivity, and catalytic activity. This synergy results in exceptional attributes such as a low detection limit of 6.0 nmolL-1, low quantification limit of 19.98 nmolL-1, sensitivity of 3.522 µAµ(molL-1)-1.cm-2, and precision of 0.05%. The sensor demonstrates a wide linear range from 0.2 to 222 µmolL-1, combined with high selectivity and robust stability, making it suitable for precise CBZ detection. Successful deployment in environmental monitoring underscores its versatility and effectiveness in safeguarding human health and ecological balance, establishing it as a pivotal tool in environmental protection efforts.

8.
Mikrochim Acta ; 191(9): 508, 2024 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-39102114

RESUMEN

A solid-state electrochemiluminescence (ECL) sensor was fabricated by immobilizing luminol, a classical luminescent reagent, on a Zn-Co-ZIF carbon fiber-modified electrode for the rapid and sensitive detection of procymidone (PCM) in vegetable samples. The sensor was created by sequentially modifying the glassy carbon electrode with Zn-Co-ZIF carbon fiber (Zn-Co-ZIF CNFs), Pt@Au NPs, and luminol. Zn-Co-ZIF CNFs, prepared through electrospinning and high-temperature pyrolysis, possessed a large specific surface area and porosity, making it suitable as carrier and electron transfer accelerator in the system. Pt@Au NPs demonstrated excellent catalytic activity, effectively enhancing the generation of active substances. The ECL signal was significantly amplified by the combination of Zn-Co-ZIF CNFs and Pt@Au NPs, which can subsequently be diminished by procymidone. The ECL intensity decreased proportionally with the addition of procymidone, displaying a linear relationship within the concentration range 1.0 × 10-13 to 1.0 × 10-6 mol L-1 (R2 = 0.993). The sensor exhibited a detection limit of 3.3 × 10-14 mol L-1 (S/N = 3) and demonstrated outstanding reproducibility and stability, making it well-suited for the detection of procymidone in vegetable samples.


Asunto(s)
Cobalto , Técnicas Electroquímicas , Oro , Límite de Detección , Mediciones Luminiscentes , Luminol , Verduras , Zinc , Luminol/química , Verduras/química , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Mediciones Luminiscentes/métodos , Zinc/química , Oro/química , Cobalto/química , Nanopartículas del Metal/química , Platino (Metal)/química , Carbono/química , Electrodos , Sustancias Luminiscentes/química , Contaminación de Alimentos/análisis , Reproducibilidad de los Resultados
9.
Mikrochim Acta ; 191(10): 570, 2024 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-39218927

RESUMEN

Loofah sponge-like carbon nanofibers (LF-Co,N/CNFs) were utilized as a carrier for Ru(bpy)32+, and then combined with CdS to create a novel solid-state electrochemiluminescence sensor capable of detecting trace amounts of fenpropathrin. LF-Co,N/CNFs, obtained through the high-temperature pyrolysis of ZIF-67 coaxial electrospinning fibers, were characterized by a loofah-like morphology and exhibited a significant specific surface area and porosity. Apart from serving as a carrier, LF-Co,N/CNFs also functioned as a luminescence accelerator, enhancing the system's luminescence efficiency by facilitating electron transmission and reducing the transmission distance. The inclusion of CdS in the luminescence reaction, in conjunction with Ru(bpy)32+, further boosted the sensor's luminescence signal. The resulting sensor demonstrated a satisfactory signal, with fenpropathrin causing significant quenching of the ECL signal. Under optimized conditions, a linear relationship between the signal quench value and fenpropathrin concentration in the range 1 × 10-12 to 1 × 10-6 M was observed, with a detection limit of 3.3 × 10-13 M (S/N = 3). This developed sensor is characterized by its simplicity, sensitivity, and successful application in detecting fenpropathrin in real samples. The study not only presents a straightforward detection platform for fenpropathrin but also introduces new avenues for the rapid determination of various food contaminants, thereby expanding the utility of carbon fibers in electrochemiluminescence sensors.


Asunto(s)
Carbono , Técnicas Electroquímicas , Límite de Detección , Mediciones Luminiscentes , Nanofibras , Nanofibras/química , Mediciones Luminiscentes/métodos , Carbono/química , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Animales , Contaminación de Alimentos/análisis , Compuestos de Cadmio/química , Piretrinas/análisis , Compuestos Organometálicos
10.
Mikrochim Acta ; 191(4): 215, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38512545

RESUMEN

An efficient and innovative electrochemiluminescence (ECL) sensor was developed for trace detection of cyfluthrin. The sensor utilized materials such as lotus root shaped carbon fiber (Co CNFs), cadmium selenide quantum dots (CdSe QDs), and Fe3O4 to amplify Ru(bpy)32+ signals. Co CNFs, with its large specific surface area and porosity, served the purpose of not only enhancing the stability of the sensor by fixing CdSe QDs and Ru(bpy)32+ on the Co CNFs/GCE, but also facilitating electron transfer. CdSe QDs was involved in the luminescence reaction and collaborated with Ru(bpy)32+ to enhance the sensor's sensitivity, while Fe3O4 promoted electron transfer in the system due to its large surface area. The solid-state ECL sensor achieved satisfactory signal under the synergistic action of these components. The ECL signal of the sensor was quenched by cyfluthrin, and a favorable linear relationship was observed between the sensor and cyfluthrin in the concentration range 1 × 10-12 to 1 × 10-6 M. The detection limit of the sensor was 3.3 × 10-13 M (S/N = 3). The utilization of lotus root shaped carbon fiber, CdSe QDs, and Fe3O4 in the Ru(bpy)32+ system demonstrated a synergistic effect for cyfluthrin detection, presenting a new approach for the rapid determination analysis of pesticide residues in foods.

11.
Mikrochim Acta ; 191(1): 75, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38172450

RESUMEN

A novel cobalt-doped two-dimensional molybdenum diselenide/polypyrrole hybrid-based carbon nanofiber (Co/MoSe2/PPy@CNF) was prepared using the hydrothermal method followed by electrospinning technique. The structural and morphological properties of the 2D-TMD@CNF-based hybrids were characterized through X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), energy-dispersive spectrometry (EDS), and transmission electron microscopy (TEM). The Co-MoSe2/PPy@CNF exhibited large surface area, porous structure, and improved active sites due to the synergistic effect of the components. The electrochemical and electrocatalytic characteristics of the 2D-TMD@CNF-modified electrodes were also investigated using cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques. The Co/MoSe2/PPy@CNF electrode was used as an electrochemical sensor for simultaneous detection of ascorbic acid (AA), dopamine (DA), and uric acid (UA) and showed enhanced catalytic activity and sensitivity. Using DPV measurements, the Co/MoSe2/PPy@CNF demonstrated wide linear ranges of 30-3212 µM for AA, 1.2-536 µM for DA, and 10-1071 µM for UA with low detection limits of 6.32, 0.45, and 0.81 µM, respectively. The developed sensor with the Co/MoSe2/PPy@CNF-modified electrode was also applied to a human urine sample and gave recoveries ranging from 94.0 to 105.5% (n = 3) for AA, DA, and UA. Furthermore, the Co/MoSe2/PPy@CNF-based sensor exhibited good selectivity and reproducibility for the detection of AA, DA, and UA.

12.
Int J Mol Sci ; 25(11)2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38892189

RESUMEN

High-temperature polymer-electrolyte membrane fuel cells (HT-PEMFCs) are a very important type of fuel cells since they operate at 150-200 °C, making it possible to use hydrogen contaminated with CO. However, the need to improve the stability and other properties of gas-diffusion electrodes still impedes their distribution. Self-supporting anodes based on carbon nanofibers (CNF) are prepared using the electrospinning method from a polyacrylonitrile solution containing zirconium salt, followed by pyrolysis. After the deposition of Pt nanoparticles on the CNF surface, the composite anodes are obtained. A new self-phosphorylating polybenzimidazole of the 6F family is applied to the Pt/CNF surface to improve the triple-phase boundary, gas transport, and proton conductivity of the anode. This polymer coating ensures a continuous interface between the anode and proton-conducting membrane. The polymer is investigated using CO2 adsorption, TGA, DTA, FTIR, GPC, and gas permeability measurements. The anodes are studied using SEM, HAADF STEM, and CV. The operation of the membrane-electrode assembly in the H2/air HT-PEMFC shows that the application of the new PBI of the 6F family with good gas permeability as a coating for the CNF anodes results in an enhancement of HT-PEMFC performance, reaching 500 mW/cm2 at 1.3 A/cm2 (at 180 °C), compared with the previously studied PBI-O-PhT-P polymer.


Asunto(s)
Bencimidazoles , Electrodos , Bencimidazoles/química , Polímeros/química , Nanofibras/química , Suministros de Energía Eléctrica , Membranas Artificiales , Electrólitos/química , Resinas Acrílicas/química
13.
Molecules ; 29(17)2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39274944

RESUMEN

Lithium metal is regarded as ideal anode material due to its high theoretical specific capacity and low electrode potential. However, the uncontrollable growth of lithium dendrites seriously hinders the practical application of lithium-metal batteries (LMBs). Among various strategies, carbon nanofiber materials have shown great potential in stabilizing the lithium-metal anode (LMA) due to their unique functional and structural characteristics. Here, the latest research progress on carbon nanofibers (CNFs) for LMA is systematically reviewed. Firstly, several common preparation techniques for CNFs are summarized. Then, the development prospects, strategies and the latest research progress on CNFs for dendrite-free LMA are emphatically introduced from the perspectives of neat CNFs and CNF-based composites. Finally, the current challenges and prospects of CNFs for stabilizing LMA are summarized and discussed. These discussions and proposed strategies provide new ideas for the development of high-performance LMBs.

14.
Molecules ; 29(10)2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38792090

RESUMEN

The integration of heterostructures within electrode materials is pivotal for enhancing electron and Li-ion diffusion kinetics. In this study, we synthesized CoO/MnO heterostructures to enhance the electrochemical performance of MnO using a straightforward electrostatic spinning technique followed by a meticulously controlled carbonization process, which results in embedding heterostructured CoO/MnO nanoparticles within porous nitrogen-doped carbon nanofibers (CoO/MnO/NC). As confirmed by density functional theory calculations and experimental results, CoO/MnO heterostructures play a significant role in promoting Li+ ion and charge transfer, improving electronic conductivity, and reducing the adsorption energy. The accelerated electron and Li-ion diffusion kinetics, coupled with the porous nitrogen-doped carbon nanofiber structure, contribute to the exceptional electrochemical performance of the CoO/MnO/NC electrode. Specifically, the as-prepared CoO/MnO/NC exhibits a high reversible specific capacity of 936 mA h g-1 at 0.1 A g-1 after 200 cycles and an excellent high-rate capacity of 560 mA h g-1 at 5 A g-1, positioning it as a competitive anode material for lithium-ion batteries. This study underscores the critical role of electronic and Li-ion regulation facilitated by heterostructures, offering a promising pathway for designing transition metal oxide-based anode materials with high performances for lithium-ion batteries.

15.
Molecules ; 29(8)2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38675705

RESUMEN

The NASICON-structured Na3MnZr(PO4)3 compound is a promising high-voltage cathode material for sodium-ion batteries (SIBs). In this study, an easy and scalable electrospinning approach was used to synthesize self-standing cathodes based on Na3MnZr(PO4)3 loaded into carbon nanofibers (CNFs). Different strategies were applied to load the active material. All the employed characterization techniques (X-ray powder diffraction (XRPD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS), thermal gravimetric analysis (TGA), and Raman spectroscopy) confirmed the successful loading. Compared to an appositely prepared tape-cast electrode, Na3MnZr(PO4)3/CNF self-standing cathodes demonstrated an enhanced specific capacity, especially at high C-rates, thanks to the porous conducive carbon nanofiber matrix. Among the strategies applied to load Na3MnZr(PO4)3 into the CNFs, the electrospinning (vertical setting) of the polymeric solution containing pre-synthesized Na3MnZr(PO4)3 powders resulted effective in obtaining the quantitative loading of the active material and a homogeneous distribution through the sheet thickness. Notably, Na3MnZr(PO4)3 aggregates connected to the CNFs, covered their surface, and were also embedded, as demonstrated by TEM and EDS. Compared to the self-standing cathodes prepared with the horizontal setting or dip-drop coating methods, the vertical binder-free electrode exhibited the highest capacity values of 78.2, 55.7, 38.8, 22.2, 16.2, 12.8, 10.3, 9.0, and 8.5 mAh/g at C-rates of 0.05C, 0.1C, 0.2C, 0.5C, 1C, 2C, 5C, 10C, and 20C, respectively, with complete capacity retention at the end of the measurements. It also exhibited a good cycling life, compared to its tape-cast counterpart: it displayed higher capacity retention at 0.2C and 1C, and, after cycling 1000 cycles at 1C, it could be further cycled at 5C, 10C, and 20C.

16.
Angew Chem Int Ed Engl ; 63(36): e202401707, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-38700007

RESUMEN

The pursuit of high efficacy C-C coupling during the electrochemical CO2 reduction reaction remains a tremendous challenge owing to the high energy barrier of CO2 activation and insufficient coverage of the desired intermediates on catalytic sites. Inspired by the concept of capture-coupled CO2 activation, we fabricated quinone-grafted carbon nanofibers via an in situ oxidative carbonylation strategy. The quinone functionality of carbon nanofibers promotes the capture of CO2 followed by activation. At a current density of 400 mA cm-2, the Faradaic efficiency of ethylene reached 62.9 %, and a partial current density of 295 mA cm-2 was achieved on the quinone-rich carbon nanofibers. The results of in situ spectroscopy and theoretical calculations indicated that the remarkable selectivity enhancement in ethylene originates from the quinone structure, rather than the electronic properties of Cu particles. The interaction of quinone with CO2 increases the local *CO coverage and simultaneously hinders the co-adsorption of *H on Cu sites, which greatly reduces the energy barrier for C-C coupling and restrains subsequent *CO protonation. The modulation strategy involving specific oxygenated structure, as an independent degree of freedom, guides the design of functionalized carbon materials for tailoring the selectivity of desired products during the CO2 capture and reduction.

17.
Small ; 19(50): e2304918, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37626450

RESUMEN

Developing composite materials with the synergistic effects of heterogeneous structures and multiple components is considered as a promising strategy to achieve high-performance electromagnetic wave (EMW) absorbers. To further satisfy the demand of broadband and strong microwave absorption, a novel NiS/carbon nanofibers (CNFs)/porous carbon composite is successfully synthesized by hydrothermal and chemical vapor deposition using lotus leaves as a biomass carbon source. A few carbon nanotubes (CNTs) and uniformly dispersed Ni nanocrystals have also been found in the hybrid. Benefiting from the porous structure derived from lotus leaves, the combination of dielectric NiS, conductive carbon nanomaterials, and magnetic Ni nanoparticles, together with the three-dimensional conductive network of CNFs and CNTs, the remarkable EMW absorption properties with a minimum reflection loss up to -67.65 dB have been achieved at merely 2.32 mm. Besides, the widest effective absorption band can reach 5.9 GHz with a thin thickness of 2.07 mm, covering almost the entire Ku band. In addition, under the incident angle of 31°, the radar cross-section reduction value of LNSF-600 can reach 42.88 dBm2. Therefore, this work provides an efficient and facile method for manufacturing outstanding biomass-derived EMW absorbers.

18.
Small ; : e2306367, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38054805

RESUMEN

Developing highly efficient bi-functional noble-metal-free oxygen electrocatalysts with low-cost and scalable synthesis approach is challenging for zinc-air batteries (ZABs). Due to the flexible valence state of manganese, MnF2 is expected to provide efficient OER. However, its insulating properties may inhibit its OER process to a certain degree. Herein, during the process of converting the manganese source in the precursor of porous carbon nanofibers (PCNFs) to manganese fluoride, the manganese source is changed to manganese acetate, which allows PCNFs to grow a large number of hollow carbon nanorods (HCNRs). Meanwhile, manganese fluoride will transform from the aggregation state into uniformly dispersed MnF2 nanodots, thereby achieving highly efficient OER catalytic activity. Furthermore, the intrinsic ORR catalytic activity of the HCNRs/MnF2 @PCNFs can be enhanced due to the charge modulation effect of MnF2 nanodots inside HCNR. In addition, the HCNRs stretched toward the liquid electrolyte can increase the capture capacity of dissolved oxygen and protect the inner MnF2 , thereby enhancing the stability of HCNRs/MnF2 @PCNFs for the oxygen electrocatalytic process. MnF2 surface-modulated HCNRs can strongly enhance ORR activity, and the uniformly dispersed MnF2 can also provide higher OER activity. Thus, the prepared HCNRs/MnF2 @PCNFs obtain efficient bifunctional oxygen catalytic ability and high-performance rechargeable ZABs.

19.
Small ; 19(45): e2302629, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37431237

RESUMEN

Tailor-made carbonaceous-based cathodes with zincophilicity and hydrophilicity are highly desirable for Zn-ion storage applications, but it remains a great challenge to achieve both advantages in the synthesis. In this work, a template electrospinning strategy is developed to synthesize nitrogen and phosphorous co-doped hollow porous carbon nanofibers (N, P-HPCNFs), which deliver a high capacity of 230.7 mAh g-1 at 0.2 A g-1 , superior rate capability of 131.0 mAh g-1 at 20 A g-1 , and a maximum energy density of 196.10 Wh kg-1 at the power density of 155.53 W kg-1 . Density functional theory calculations (DFT) reveal that the introduced P dopants regulate the distribution of local charge density of carbon materials and therefore facilitate the adsorption of Zn ions due to the increased electronegativity of pyridinic-N. Ab initio molecular dynamics (AIMD) simulations indicate that the doped P species induce a series of polar sites and create a hydrophilic microenvironment, which decreases the impedance between the electrode and the electrolyte and therefore accelerates the reaction kinetics. The marriage of ex situ/in situ experimental analyses and theoretical simulations uncovers the origin of the enhanced zincophilicity and hydrophilicity of N, P-HPCNFs for energy storage, which accounts for the faster ion migration and electrochemical processes.

20.
Small ; 19(15): e2206823, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36631275

RESUMEN

The emerging transition metal-nitrogen-carbon (MNC) materials are considered as a promising oxygen reduction reaction (ORR) catalyst system to substitute expensive Pt/C catalysts due to their high surface area and potential high catalytic activity. However, MNC catalysts are easy to be attacked by the ORR byproducts that easily lead to the deactivation of metal active sites. Moreover, a high metal loading affects the mass transfer and stability, but a low loading delivers inferior catalytic activity. Here, a new strategy of designing ZrO2 quantum dots and N-complex as dual chemical ligands in N-doped bubble-like porous carbon nanofibers (N-BPCNFs) to stabilize copper (Cu) by forming CuZrO3-x /ZrO2 heterostructures and CuN ligands with a high loading of 40.5 wt.% is reported. While the highly porous architecture design of N-BPCNFs builds a large solidelectrolytegas phase interface and promotes mass transfer. The preliminary results show that the half-wave potential of the catalyst reaches 0.856 V, and only decreases 0.026 V after 10 000 cycles, exhibiting excellent stability. The proposed strategy of stabilizing metal active sites with both heterostructures and CuN ligands is feasible and scalable for developing high metal loading ORR catalyst.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda