Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Arch Toxicol ; 98(6): 1937-1951, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38563870

RESUMEN

The high incidence of colorectal cancer (CRC) is closely associated with environmental pollutant exposure. To identify potential intestinal carcinogens, we developed a cell transformation assay (CTA) using mouse adult stem cell-derived intestinal organoids (mASC-IOs) and assessed the transformation potential on 14 representative chemicals, including Cd, iPb, Cr-VI, iAs-III, Zn, Cu, PFOS, BPA, MEHP, AOM, DMH, MNNG, aspirin, and metformin. We optimized the experimental protocol based on cytotoxicity, amplification, and colony formation of chemical-treated mASC-IOs. In addition, we assessed the accuracy of in vitro study and the human tumor relevance through characterizing interdependence between cell-cell and cell-matrix adhesions, tumorigenicity, pathological feature of subcutaneous tumors, and CRC-related molecular signatures. Remarkably, the results of cell transformation in 14 chemicals showed a strong concordance with epidemiological findings (8/10) and in vivo mouse studies (12/14). In addition, we found that the increase in anchorage-independent growth was positively correlated with the tumorigenicity of tested chemicals. Through analyzing the dose-response relationship of anchorage-independent growth by benchmark dose (BMD) modeling, the potent intestinal carcinogens were identified, with their carcinogenic potency ranked from high to low as AOM, Cd, MEHP, Cr-VI, iAs-III, and DMH. Importantly, the activity of chemical-transformed mASC-IOs was associated with the degree of cellular differentiation of subcutaneous tumors, altered transcription of oncogenic genes, and activated pathways related to CRC development, including Apc, Trp53, Kras, Pik3ca, Smad4 genes, as well as WNT and BMP signaling pathways. Taken together, we successfully developed a mASC-IO-based CTA, which might serve as a potential alternative for intestinal carcinogenicity screening of chemicals.


Asunto(s)
Pruebas de Carcinogenicidad , Transformación Celular Neoplásica , Neoplasias Colorrectales , Contaminantes Ambientales , Organoides , Animales , Transformación Celular Neoplásica/inducido químicamente , Transformación Celular Neoplásica/efectos de los fármacos , Pruebas de Carcinogenicidad/métodos , Organoides/efectos de los fármacos , Organoides/patología , Ratones , Contaminantes Ambientales/toxicidad , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/inducido químicamente , Humanos , Carcinógenos/toxicidad , Intestinos/efectos de los fármacos , Intestinos/patología , Neoplasias Intestinales/inducido químicamente , Neoplasias Intestinales/patología , Relación Dosis-Respuesta a Droga
2.
Regul Toxicol Pharmacol ; 134: 105235, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35917983

RESUMEN

The concept of the Maximum Tolerated Dose (MTD) was introduced in the seventies for carcinogenicity testing and was defined as the highest dose inducing clear toxicity, but not mortality by causes other than cancer. As estimation of the MTD in a carcinogenicity study, the highest dose that causes a 10% decrease in body weight compared to control animals over the course of a 90-day study, was formulated as a suitable criterion. This criterion was not seen as indicator of excessive toxicity but as a means to avoid false negative outcomes in a carcinogenicity study, as tumor formation may be reduced when body weight is significantly decreased. The body weight-based MTD criterion, however, turned up in carcinogenicity test guidelines and guidance (e.g., from OECD) as the highest dose that causes a 10% decrease in body weight gain relative to controls. Moreover, the 10% decrease in body weight gain criterion for MTD also ended up in test guidelines and guidances for toxicity endpoints other than carcinogenicity, so outside the context it was intended for. A 10% decrease in body weight gain relative to controls is however not a biologically relevant effect as it corresponds to less than 3% body weight reduction relative to controls in a 90-day study, which is within the normal variation in body weight. It therefore should certainly not be considered as a condition of excessive toxicity. Using the 10% lower weight gain criterion and incorrectly associating it with excessive toxicity has major implications for top dose selection in regulatory safety studies, resulting in tests performed at doses too low to elicit toxicity. This negatively impacts the reliability of studies and their regulatory usability; moreover, it results in a waste of experimental animals, which is ethically highly undesirable. Hence, our plea is to remove this MTD criterion for top dose selection in test guidelines and guidances for toxicity endpoints other than carcinogenicity and to reinstall the original 10% decrease in body weight criterion in test guidelines and guidances for carcinogenicity.


Asunto(s)
Neoplasias , Aumento de Peso , Animales , Peso Corporal , Pruebas de Carcinogenicidad/métodos , Dosis Máxima Tolerada , Reproducibilidad de los Resultados
3.
Arch Toxicol ; 95(1): 321-336, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32910239

RESUMEN

Current in vitro genotoxicity tests can produce misleading positive results, indicating an inability to effectively predict a compound's subsequent carcinogenic potential in vivo. Such oversensitivity can incur unnecessary in vivo tests to further investigate positive in vitro results, supporting the need to improve in vitro tests to better inform risk assessment. It is increasingly acknowledged that more informative in vitro tests using multiple endpoints may support the correct identification of carcinogenic potential. The present study, therefore, employed a holistic, multiple-endpoint approach using low doses of selected carcinogens and non-carcinogens (0.001-770 µM) to assess whether these chemicals caused perturbations in molecular and cellular endpoints relating to the Hallmarks of Cancer. Endpoints included micronucleus induction, alterations in gene expression, cell cycle dynamics, cell morphology and bioenergetics in the human lymphoblastoid cell line TK6. Carcinogens ochratoxin A and oestradiol produced greater Integrated Signature of Carcinogenicity scores for the combined endpoints than the "misleading" in vitro positive compounds, quercetin, 2,4-dichlorophenol and quinacrine dihydrochloride and toxic non-carcinogens, caffeine, cycloheximide and phenformin HCl. This study provides compelling evidence that carcinogens can successfully be distinguished from non-carcinogens using a holistic in vitro test system. Avoidance of misleading in vitro outcomes could lead to the reduction and replacement of animals in carcinogenicity testing.


Asunto(s)
Pruebas de Carcinogenicidad , Carcinógenos/toxicidad , Determinación de Punto Final , Proyectos de Investigación , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular , Forma de la Célula/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Micronúcleos con Defecto Cromosómico/inducido químicamente , Pruebas de Micronúcleos , Fosforilación , Medición de Riesgo , Proteína p53 Supresora de Tumor/metabolismo
4.
J Appl Toxicol ; 40(8): 1113-1130, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32266738

RESUMEN

Regarding carcinogenicity testing, the long-term rodent bioassay (RCB) has been the test required by most regulatory agencies across the world. Nonetheless, due to the lack of knowledge about its specificity, it has been argued that the RCB is unspecific or even invalid. Because of the substantial limitations of epidemiology to identify chemicals probably not carcinogenic to humans (PNCH), it has been very difficult to address the specificity of the RCB. Nevertheless, because mechanistic/pharmacological data are currently recognized as a valid stream of evidence for the identification of chemical hazards, the road is now open to gain insight into the specificity of the RCB. Based on sound mechanistic/pharmacological data that support the classification of chemicals as PNCH, 100 PNCH substances were gathered in this investigation. Contrary to what was previously forecast, in this study, the RCB exhibited a functional specificity that ranged from 83% to 91%, depending on the settings of the testing (2-species vs. rats only, and the nominal maximum tolerated dose). Other contributions of this work were: (a) enabling the comparison, in terms of specificity, between the RCB and the alternative methods that could replace it (eg, Tg.AC mouse, rasH2 mouse); (b) disclosing what the specificity is for alternative methods that were developed using the RCB as the reference standard; and (c) expanding the previous narrow (only seven substances) set of chemicals identified as not likely to be carcinogenic to humans by hazard identification programs.


Asunto(s)
Bioensayo/métodos , Pruebas de Carcinogenicidad/métodos , Cosméticos/toxicidad , Excipientes/toxicidad , Aditivos Alimentarios/toxicidad , Especificidad de la Especie , Animales , Humanos , Ratones , Ratas
5.
Toxicol Mech Methods ; 30(6): 462-475, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32338171

RESUMEN

The long-term rodent bioassay (RCB) has been the gold-standard for the pre-marketing prediction of chemical and drug carcinogenicity to humans. Nonetheless, the validity of this toxicity test has remained elusive for several decades. In the quest to uncover the performance of the RCB, its sensitivity (SEN) was charted as the first step. This appraisal was based on (a) chemicals with sufficient epidemiological evidence of carcinogenicity, and (b) other substances with limited epidemiological evidence, or remarkable classifications of carcinogenicity based on mechanistic or pharmacological data. In the present study, chemicals evaluated for their carcinogenicity to humans in IARC Monographs volumes 1-123, U.S. EPA IRIS Assessments, and U.S. NTP RoC were considered. This investigation gathered additional evidence supporting that, in hazard identification, the RCB is unwarranted for mutagenic or direct-acting genotoxicants. However, for purposes of risk assessment or management, the RCB might be justified whenever there is a lack of reliable and/or comprehensive epidemiological data. The RCB exhibited a significantly different SEN for threshold-based human carcinogens compared to non-threshold-based ones. With threshold-based chemicals, to increase the SEN of the testing from 80% (rat-RCB) to 90%, the 2-species RCB might be warranted. Nevertheless, the resolve would depend on the viewpoint, and on the future analysis of the overall performance of the RCB. In terms of SEN, and cancer hazard identification, the comparison between the RCB and alternative methods (e.g. rasH2 mouse, Tg.AC mouse) is now enabled.


Asunto(s)
Bioensayo , Pruebas de Carcinogenicidad , Carcinógenos/toxicidad , Transformación Celular Neoplásica/inducido químicamente , Neoplasias/inducido químicamente , Animales , Bases de Datos Factuales , Femenino , Humanos , Masculino , Ratones , Ratas , Medición de Riesgo , Factores de Tiempo
6.
Arch Toxicol ; 92(2): 935-951, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29110037

RESUMEN

Human exposure to carcinogens occurs via a plethora of environmental sources, with 70-90% of cancers caused by extrinsic factors. Aberrant phenotypes induced by such carcinogenic agents may provide universal biomarkers for cancer causation. Both current in vitro genotoxicity tests and the animal-testing paradigm in human cancer risk assessment fail to accurately represent and predict whether a chemical causes human carcinogenesis. The study aimed to establish whether the integrated analysis of multiple cellular endpoints related to the Hallmarks of Cancer could advance in vitro carcinogenicity assessment. Human lymphoblastoid cells (TK6, MCL-5) were treated for either 4 or 23 h with 8 known in vivo carcinogens, with doses up to 50% Relative Population Doubling (maximum 66.6 mM). The adverse effects of carcinogens on wide-ranging aspects of cellular health were quantified using several approaches; these included chromosome damage, cell signalling, cell morphology, cell-cycle dynamics and bioenergetic perturbations. Cell morphology and gene expression alterations proved particularly sensitive for environmental carcinogen identification. Composite scores for the carcinogens' adverse effects revealed that this approach could identify both DNA-reactive and non-DNA reactive carcinogens in vitro. The richer datasets generated proved that the holistic evaluation of integrated phenotypic alterations is valuable for effective in vitro risk assessment, while also supporting animal test replacement. Crucially, the study offers valuable insights into the mechanisms of human carcinogenesis resulting from exposure to chemicals that humans are likely to encounter in their environment. Such an understanding of cancer induction via environmental agents is essential for cancer prevention.


Asunto(s)
Pruebas de Carcinogenicidad/métodos , Carcinógenos/toxicidad , Linfocitos/efectos de los fármacos , Mutágenos/toxicidad , Línea Celular , Humanos , Pruebas de Micronúcleos , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Mensajero/genética , Proteína p53 Supresora de Tumor/metabolismo
7.
Toxicol Sci ; 201(1): 129-144, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38851877

RESUMEN

Lorcaserin is a 5-hydroxytryptamine 2C (serotonin) receptor agonist and a nongenotoxic rat carcinogen, which induced mammary tumors in male and female rats in a 2-yr bioassay. Female Sprague Dawley rats were treated by gavage daily with 0, 30, or 100 mg/kg lorcaserin, replicating bioassay dosing but for shorter duration, 12 or 24 wk. To characterize exposure and eliminate possible confounding by a potentially genotoxic degradation product, lorcaserin and N-nitroso-lorcaserin were quantified in dosing solutions, terminal plasma, mammary, and liver samples using ultra-high-performance liquid chromatography-electrospray tandem mass spectrometry. N-nitroso-lorcaserin was not detected, supporting lorcaserin classification as nongenotoxic carcinogen. Mammary DNA samples (n = 6/dose/timepoint) were used to synthesize PCR products from gene segments encompassing hotspot cancer driver mutations, namely regions of Apc, Braf, Egfr, Hras, Kras, Nfe2l2, Pik3ca, Setbp1, Stk11, and Tp53. Mutant fractions (MFs) in the amplicons were quantified by CarcSeq, an error-corrected next-generation sequencing approach. Considering all recovered mutants, no significant differences between lorcaserin dose groups were observed. However, significant dose-responsive increases in Pik3ca H1047R mutation were observed at both timepoints (ANOVA, P < 0.05), with greater numbers of mutants and mutants with greater MFs observed at 24 wk as compared with 12 wk. These observations suggest lorcaserin promotes outgrowth of spontaneously occurring Pik3ca H1047R mutant clones leading to mammary carcinogenesis. Importantly, this work reports approaches to analyze clonal expansion and demonstrates CarcSeq detection of the carcinogenic impact (selective Pik3ca H0147R mutant expansion) of a nongenotoxic carcinogen using a treatment duration as short as 3 months.


Asunto(s)
Fosfatidilinositol 3-Quinasa Clase I , Mutación , Ratas Sprague-Dawley , Animales , Femenino , Fosfatidilinositol 3-Quinasa Clase I/genética , Glándulas Mamarias Animales/efectos de los fármacos , Glándulas Mamarias Animales/metabolismo , Ratas , Carcinógenos/toxicidad , Neoplasias Mamarias Experimentales/inducido químicamente , Neoplasias Mamarias Experimentales/genética , Relación Dosis-Respuesta a Droga , Benzazepinas
8.
Front Toxicol ; 6: 1377990, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38845817

RESUMEN

Industry representatives on the ICH S1B(R1) Expert Working Group (EWG) worked closely with colleagues from the Drug Regulatory Authorities to develop an addendum to the ICH S1B guideline on carcinogenicity studies that allows for a weight-of-evidence (WoE) carcinogenicity assessment in some cases, rather than conducting a 2-year rat carcinogenicity study. A subgroup of the EWG composed of regulators have published in this issue a detailed analysis of the Prospective Evaluation Study (PES) conducted under the auspices of the ICH S1B(R1) EWG. Based on the experience gained through the Prospective Evaluation Study (PES) process, industry members of the EWG have prepared the following commentary to aid sponsors in assessing the standard WoE factors, considering how novel investigative approaches may be used to support a WoE assessment, and preparing appropriate documentation of the WoE assessment for presentation to regulatory authorities. The commentary also reviews some of the implementation challenges sponsors must consider in developing a carcinogenicity assessment strategy. Finally, case examples drawn from previously marketed products are provided as a supplement to this commentary to provide additional examples of how WoE criteria may be applied. The information and opinions expressed in this commentary are aimed at increasing the quality of WoE assessments to ensure the successful implementation of this approach.

9.
J Pharmacol Toxicol Methods ; 110: 107070, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33905862

RESUMEN

For several intended uses of chemicals, the 2-year rodent bioassay (RCB) has been the benchmark method to screen the carcinogenicity to humans of substances, according to the hazard identification sphere. Despite the ongoing controversy around this traditional testing, the RCB is in force and being used by stakeholders. After assembling the RCB's ability to forecast the carcinogenicity to humans of substances, the current review aimed to provide a discussion on the RCB's (1) sensitivity and specificity; (2) utility; (3) configuration, and (4) provisional role in the regulatory policy. In general, RCBs conducted at maximum tolerated doses (MTDs) exhibited a functional ability to (1) not missing the great majority of human carcinogens, and to (2) not responding to the large majority of human non-carcinogens. There is citable evidence supporting the use of MTDs to render RCBs as sensitive as possible, particularly provided the ethically-justified small samples used in RCBs. The literature shows that rodent-specific mechanisms of chemical carcinogenesis contribute significant unspecificity to RCBs. Nonetheless, the paradox between a functional sensitivity and a significant unspecificity can be predictively resolved through the application of Bayesian forecasting. In terms of performance to forecast the carcinogenicity to humans of either genotoxic or non-genotoxic substances, 2-species-RCBs added no value over the rat-RCB. Nevertheless, there is preliminary evidence cautioning that 15% of the rodent carcinogens probably carcinogenic to humans could be missed if mouse-RCBs are indiscriminately discontinued. More than thirteen RCB-related issues relevant to regulatory pharmacology and toxicology were discussed and summarized in this review.


Asunto(s)
Neoplasias , Preparaciones Farmacéuticas , Animales , Teorema de Bayes , Bioensayo , Carcinogénesis , Pruebas de Carcinogenicidad , Carcinógenos/toxicidad , Ratones , Neoplasias/inducido químicamente , Ratas , Roedores
10.
Toxicol Sci ; 184(1): 1-14, 2021 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-34373914

RESUMEN

Quantification of variation in levels of spontaneously occurring cancer driver mutations (CDMs) was developed to assess clonal expansion and predict future risk of neoplasm development. Specifically, an error-corrected next-generation sequencing method, CarcSeq, and a mouse CarcSeq panel (analogous to human and rat panels) were developed and used to quantify low-frequency mutations in a panel of amplicons enriched in hotspot CDMs. Mutations in a subset of panel amplicons, Braf, Egfr, Kras, Stk11, and Tp53, were related to incidence of lung neoplasms at 2 years. This was achieved by correlating median absolute deviation (MAD) from the overall median mutant fraction (MF) measured in the lung DNA of 16-week-old male and female, B6C3F1 and CD-1 mice (10 mice/sex/strain) with percentages of spontaneous alveolar/bronchioloalveolar adenomas and carcinomas reported in bioassay control groups. A total of 1586 mouse lung mutants with MFs >1 × 10-4 were recovered. The ratio of nonsynonymous to synonymous mutations was used to assess the proportion of recovered mutations conferring a positive selective advantage. The greatest ratio was observed in what is considered the most lung tumor-sensitive model examined, male B6C3F1 mice. Of the recurrent, nonsynonymous mouse mutations recovered, 55.5% have been reported in human tumors, with many located in or around the mouse equivalent of human cancer hotspot codons. MAD for the same subset of amplicons measured in normal human lung DNA samples showed a correlation of moderate strength and borderline significance with age (a cancer risk factor), as well as age-related cumulative lung cancer risk, suggesting MAD may inform species extrapolation.


Asunto(s)
Neoplasias Pulmonares , Animales , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Incidencia , Pulmón/patología , Neoplasias Pulmonares/epidemiología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Masculino , Ratones , Mutación
11.
Toxicol Sci ; 182(1): 142-158, 2021 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-33822199

RESUMEN

The ability to deduce carcinogenic potential from subchronic, repeat dose rodent studies would constitute a major advance in chemical safety assessment and drug development. This study investigated an error-corrected NGS method (CarcSeq) for quantifying cancer driver mutations (CDMs) and deriving a metric of clonal expansion predictive of future neoplastic potential. CarcSeq was designed to interrogate subsets of amplicons encompassing hotspot CDMs applicable to a variety of cancers. Previously, normal human breast DNA was analyzed by CarcSeq and metrics based on mammary-specific CDMs were correlated with tissue donor age, a surrogate of breast cancer risk. Here we report development of parallel methodologies for rat. The utility of the rat CarcSeq method for predicting neoplastic potential was investigated by analyzing mammary tissue of 16-week-old untreated rats with known differences in spontaneous mammary neoplasia (Fischer 344, Wistar Han, and Sprague Dawley). Hundreds of mutants with mutant fractions ≥ 10-4 were quantified in each strain, most were recurrent mutations, and 42.5% of the nonsynonymous mutations have human homologs. Mutants in the mammary-specific target of the most tumor-sensitive strain (Sprague Dawley) showed the greatest nonsynonymous/synonymous mutation ratio, indicative of positive selection consistent with clonal expansion. For the mammary-specific target (Hras, Pik3ca, and Tp53 amplicons), median absolute deviation correlated with percentages of rats that develop spontaneous mammary neoplasia at 104 weeks (Pearson r = 1.0000, 1-tailed p = .0010). Therefore, this study produced evidence CarcSeq analysis of spontaneously occurring CDMs can be used to derive an early metric of clonal expansion relatable to long-term neoplastic outcome.


Asunto(s)
Neoplasias de la Mama , Animales , Mama , Femenino , Humanos , Mutación , Ratas , Ratas Sprague-Dawley , Ratas Wistar
12.
Environ Int ; 128: 417-429, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31078876

RESUMEN

Cancer is a key public health concern, being the second leading cause of worldwide morbidity and mortality after cardiovascular diseases. At the global level, cancer prevalence, incidence and mortality rates are increasing. These trends are not fully explained by a growing and ageing population: with marked regional and socioeconomic disparities, lifestyle factors, the resources dedicated to preventive medicine, and the occupational and environmental control of hazardous chemicals all playing a role. While it is difficult to establish the contribution of chemical exposure to the societal burden of cancer, a number of measures can be taken to better assess the carcinogenic properties of chemicals and manage their risks. This paper discusses how these measures can be informed not only by the traditional data streams of regulatory toxicology, but also by using new toxicological assessment methods, along with indicators of public health status based on biomonitoring. These diverse evidence streams have the potential to form the basis of an integrated and more effective approach to cancer prevention.


Asunto(s)
Pruebas de Carcinogenicidad/métodos , Carcinógenos/toxicidad , Exposición a Riesgos Ambientales/efectos adversos , Monitoreo del Ambiente/métodos , Sustancias Peligrosas/efectos adversos , Salud Pública/métodos , Animales , Carcinogénesis/inducido químicamente , Humanos , Ratones , Ratas
13.
ALTEX ; 34(2): 235-252, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27776202

RESUMEN

An approach to systematically describe the uncertainties and complexity of the standard animal testing and assessment approach for carcinogenicity is explored by using a OECD Guidance Document that was originally developed for reporting defined in vitro approaches to testing and assessment. The format is suitable for this re-purposing and it appears that the potential multitude of approaches for integrating and interpreting data from standard animal testing may ultimately be conceptually similar to the challenge of integrating relevant in vitro and in silico data. This structured approach shall allow 1) fostering interest in developing improved defined in silico and in vitro approaches; 2) the definition of what type of effects should be predicted by the new approach; 3) selection of the most suitable reference data and assessments; 4) definition of the weight that the standard animal reference data should have compared to human reference data and mechanistic information in the context of assessing the fitness of the new in vitro and in silico approach; 5) definition of a benchmark for the minimum performance of the new approach, based on a conceptual recognition that correlation of alternative assessment results with reference animal results is limited by the uncertainties and complexity of the latter. A longer term perspective is indicated for evolving the definition of adversity for classification and regulatory purposes. This work will be further discussed and developed within the OECD expert group on non-genotoxic carcinogenicity IATA development.


Asunto(s)
Pruebas de Carcinogenicidad/métodos , Pruebas de Carcinogenicidad/normas , Incertidumbre , Alternativas a las Pruebas en Animales , Animales , Benchmarking , Simulación por Computador , Humanos , Técnicas In Vitro , Pruebas de Mutagenicidad/métodos , Medición de Riesgo/métodos
14.
Toxicol In Vitro ; 45(Pt 3): 351-358, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28461232

RESUMEN

The identification of the carcinogenic risk of chemicals is currently mainly based on animal studies. The in vitro Cell Transformation Assays (CTAs) are a promising alternative to be considered in an integrated approach. CTAs measure the induction of foci of transformed cells. CTAs model key stages of the in vivo neoplastic process and are able to detect both genotoxic and some non-genotoxic compounds, being the only in vitro method able to deal with the latter. Despite their favorable features, CTAs can be further improved, especially reducing the possible subjectivity arising from the last phase of the protocol, namely visual scoring of foci using coded morphological features. By taking advantage of digital image analysis, the aim of our work is to translate morphological features into statistical descriptors of foci images, and to use them to mimic the classification performances of the visual scorer to discriminate between transformed and non-transformed foci. Here we present a classifier based on five descriptors trained on a dataset of 1364 foci, obtained with different compounds and concentrations. Our classifier showed accuracy, sensitivity and specificity equal to 0.77 and an area under the curve (AUC) of 0.84. The presented classifier outperforms a previously published model.


Asunto(s)
Pruebas de Carcinogenicidad/clasificación , Transformación Celular Neoplásica/clasificación , Algoritmos , Animales , Células 3T3 BALB , Teorema de Bayes , Entropía , Procesamiento de Imagen Asistido por Computador , Ratones , Modelos Biológicos , Mutágenos/toxicidad
15.
Adv Biochem Eng Biotechnol ; 157: 81-96, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27506831

RESUMEN

The evaluation of the carcinogenic potential of chemicals constitutes an essential step in assessing the risk that the chemicals pose to human health. The "gold standard" method to evaluate the carcinogenic potential of chemicals is the carcinogenicity test in laboratory animals. However, because carcinogenicity studies in vivo are extremely time-consuming, expensive, make use of a high number of animals, and cannot be used to screen a high number of compounds at the same time, various different in vitro cell transformation assays have been developed. In this report, procedures to test the carcinogenicity in vivo and in vitro are described, whereby in the latter case three extensively evaluated test systems (the BALB/c 3T3 cell transformation assay, the Bhas 42 cell transformation assay, and the Syrian hamster embryo assay) are presented. Their performance shows that they are a useful complement to in vitro genotoxicity test batteries, can be used to identify non-genotoxic carcinogens, and as screening assays may significantly limit the number of chemicals to undergo an in vivo carcinogenicity testing, thereby strongly reducing the number of laboratory animals to be used. In the future, the development of human cell line-based transformation assays may contribute to increase further their relevance and the willingness to incorporate them into existing in vitro toxicity test batteries.


Asunto(s)
Bioensayo/métodos , Carcinogénesis/inducido químicamente , Pruebas de Carcinogenicidad/métodos , Carcinógenos/toxicidad , Monitoreo del Ambiente/métodos , Neoplasias Experimentales/inducido químicamente , Animales , Relación Dosis-Respuesta a Droga , Humanos , Técnicas In Vitro , Neoplasias Experimentales/patología , Medición de Riesgo/métodos , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda