Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Cell ; 181(3): 674-687.e13, 2020 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-32298652

RESUMEN

Caspases regulate cell death, immune responses, and homeostasis. Caspase-6 is categorized as an executioner caspase but shows key differences from the other executioners. Overall, little is known about the functions of caspase-6 in biological processes apart from apoptosis. Here, we show that caspase-6 mediates innate immunity and inflammasome activation. Furthermore, we demonstrate that caspase-6 promotes the activation of programmed cell death pathways including pyroptosis, apoptosis, and necroptosis (PANoptosis) and plays an essential role in host defense against influenza A virus (IAV) infection. In addition, caspase-6 promoted the differentiation of alternatively activated macrophages (AAMs). Caspase-6 facilitated the RIP homotypic interaction motif (RHIM)-dependent binding of RIPK3 to ZBP1 via its interaction with RIPK3. Altogether, our findings reveal a vital role for caspase-6 in facilitating ZBP1-mediated inflammasome activation, cell death, and host defense during IAV infection, opening additional avenues for treatment of infectious and autoinflammatory diseases and cancer.


Asunto(s)
Caspasa 6/inmunología , Caspasa 6/metabolismo , Inflamasomas/inmunología , Animales , Apoptosis/inmunología , Muerte Celular/inmunología , Inmunidad Innata , Inflamasomas/metabolismo , Inflamasomas/fisiología , Inflamación/inmunología , Inflamación/metabolismo , Inflamación/patología , Macrófagos/inmunología , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Necroptosis/inmunología , Unión Proteica , Piroptosis/inmunología , Proteínas de Unión al ARN/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo
2.
Mol Cell Neurosci ; 130: 103954, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39032719

RESUMEN

BACKGROUND: Tau post-translational modifications (PTMs) result in the gradual build-up of abnormal tau and neuronal degeneration in tauopathies, encompassing variants of frontotemporal lobar degeneration (FTLD) and Alzheimer's disease (AD). Tau proteolytically cleaved by active caspases, including caspase-6, may be neurotoxic and prone to self-aggregation. Also, our recent findings show that caspase-6 truncated tau represents a frequent and understudied aspect of tau pathology in AD in addition to phospho-tau pathology. In AD and Pick's disease, a large percentage of caspase-6 associated cleaved-tau positive neurons lack phospho-tau, suggesting that many vulnerable neurons to tau pathology go undetected when using conventional phospho-tau antibodies and possibly will not respond to phospho-tau based therapies. Therefore, therapeutic strategies against caspase cleaved-tau pathology could be necessary to modulate the extent of tau abnormalities in AD and other tauopathies. METHODS: To understand the timing and progression of caspase activation, tau cleavage, and neuronal death, we created two mAbs targeting caspase-6 tau cleavage sites and probed postmortem brain tissue from an individual with FTLD due to the V337M MAPT mutation. We then assessed tau cleavage and apoptotic stress response in cortical neurons derived from induced pluripotent stem cells (iPSCs) carrying the FTD-related V337M MAPT mutation. Finally, we evaluated the neuroprotective effects of caspase inhibitors in these iPSC-derived neurons. RESULTS: FTLD V337M MAPT postmortem brain showed positivity for both cleaved tau mAbs and active caspase-6. Relative to isogenic wild-type MAPT controls, V337M MAPT neurons cultured for 3 months post-differentiation showed a time-dependent increase in pathogenic tau in the form of caspase-cleaved tau, phospho-tau, and higher levels of tau oligomers. Accumulation of toxic tau species in V337M MAPT neurons was correlated with increased vulnerability to pro-apoptotic stress. Notably, this mutation-associated cell death was pharmacologically rescued by the inhibition of effector caspases. CONCLUSIONS: Our results suggest an upstream, time-dependent accumulation of caspase-6 cleaved tau in V337M MAPT neurons promoting neurotoxicity. These processes can be reversed by caspase inhibition. These results underscore the potential of developing caspase-6 inhibitors as therapeutic agents for FTLD and other tauopathies. Additionally, they highlight the promise of using caspase-cleaved tau as biomarkers for these conditions.

3.
Neurobiol Dis ; 190: 106368, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38040383

RESUMEN

In Huntington disease, cellular toxicity is particularly caused by toxic protein fragments generated from the mutant huntingtin (HTT) protein. By modifying the HTT protein, we aim to reduce proteolytic cleavage and ameliorate the consequences of mutant HTT without lowering total HTT levels. To that end, we use an antisense oligonucleotide (AON) that targets HTT pre-mRNA and induces partial skipping of exon 12, which contains the critical caspase-6 cleavage site. Here, we show that AON-treatment can partially restore the phenotype of YAC128 mice, a mouse model expressing the full-length human HTT gene including 128 CAG-repeats. Wild-type and YAC128 mice were treated intracerebroventricularly with AON12.1, scrambled AON or vehicle starting at 6 months of age and followed up to 12 months of age, when MRI was performed and mice were sacrificed. AON12.1 treatment induced around 40% exon skip and protein modification. The phenotype on body weight and activity, but not rotarod, was restored by AON treatment. Genes differentially expressed in YAC128 striatum changed toward wild-type levels and striatal volume was preserved upon AON12.1 treatment. However, scrambled AON also showed a restorative effect on gene expression and appeared to generally increase brain volume.


Asunto(s)
Enfermedad de Huntington , Animales , Humanos , Ratones , Caspasa 6/genética , Caspasa 6/metabolismo , Cuerpo Estriado/metabolismo , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/metabolismo , Oligonucleótidos Antisentido/farmacología , Fenotipo
4.
Immunology ; 169(3): 245-259, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36814103

RESUMEN

Cysteinyl aspartate specific proteinase (caspase)-6 belongs to the caspase family and plays a vital role in mediating cell death. Under certain conditions, three pathways of programmed cell death (PCD), including apoptosis, necroptosis and pyroptosis (PANoptosis), transform one way into another, with enormous therapeutic potential. Initially, scholars reported that caspase-6 is a caspase executor that mediates apoptosis. With the ceaseless exploration of the PCD types, studies have demonstrated that caspase-6 mediates pyroptosis by regulating gasdermin D and mediates necroptosis by regulating mixed lineage kinase domain-like. By regulating PANoptosis, caspase-6 plays a crucial role in tumorigenesis in humans and mediates anti-tumour immunity. Therefore, a comprehensive understanding of caspase-6 function in cancer via PANoptosis is important for the prevention and therapy of tumours. This article summarized the function of caspase-6 in PANoptosis and its impact on cancer development, providing targets and strategies for tumour treatment.


Asunto(s)
Apoptosis , Neoplasias , Humanos , Caspasa 6/metabolismo , Piroptosis , Caspasas/metabolismo , Caspasa 8/metabolismo
5.
Apoptosis ; 28(5-6): 769-782, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36882663

RESUMEN

Recent studies have indicated that pyroptosis may participate in the regulation of tumorigenesis and immune microenvironment. However, the role of pyroptosis-related genes (PRGs) in pancreatic adenocarcinoma (PAAD) remains unclear. Through multiple bioinformatics analysis, we constructed a prognostic gene model and competing endogenous RNA network. The correlation between PRGs and prognosis, immune infiltration, immune checkpoints, and tumor mutational burden was analyzed by Kaplan-Meier curve, univariate Cox, multivariate regression, and Spearman's analysis in PAAD patients. The qRT-PCR, Western blotting, CCK-8, Wound healing, and Transwell assay were applied to examine the role of CASP6 in PANC-1 cell. Thirty-one PRGs were upregulated in PAAD. Functional enrichment analysis revealed that the PRGs were mainly involved in pyroptosis, NOD-like receptor signaling pathway, and response to bacteria. We established a novel 4-gene signature related to PRGs for evaluating the prognosis of PAAD patients. Patients with PAAD in the low-risk group had a better prognosis than those in the high-risk group. The nomogram suggested that the 1-, 3-, and 5-years survival probability exhibited robust predictive performance. Significant correlation was observed between prognostic PRGs and immune infiltration, immune checkpoints, and tumor mutational burden. We first identified the potential competing endogenous RNA regulatory axis in PAAD: lncRNA PVT1/hsa-miR-16-5p/CASP6/CASP8. Moreover, knockdown of CASP6 dramatically inhibited the proliferation, migration, and invasion ability of PANC-1 cell in vitro. In conclusion, CASP6 could be a potential biomarker, promoting the occurrence and progression in PAAD. The lncRNA PVT1/hsa-miR-16-5p/CASP6/CASP8 regulatory axis plays an vital role in regulating the anti-tumor immune responses for PAAD.


Asunto(s)
Adenocarcinoma , MicroARNs , Neoplasias Pancreáticas , ARN Largo no Codificante , Humanos , Adenocarcinoma/genética , Pronóstico , Neoplasias Pancreáticas/genética , Piroptosis/genética , ARN Largo no Codificante/genética , Apoptosis , Toma de Decisiones Clínicas , Microambiente Tumoral/genética , Neoplasias Pancreáticas
6.
Cell Commun Signal ; 21(1): 282, 2023 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-37828624

RESUMEN

BACKGROUND: Caspase 6 is an essential regulator in innate immunity, inflammasome activation and host defense. We aimed to characterize the causal mechanism of Caspase 6 in liver sterile inflammatory injury. METHODS: Human liver tissues were harvested from patients undergoing ischemia-related hepatectomy to evaluate Caspase 6 expression. Subsequently, we created Caspase 6-knockout (Caspase 6KO) mice to analyze roles and molecular mechanisms of macrophage Caspase 6 in murine models of liver ischemia/reperfusion (IR) injury. RESULTS: In human liver biopsies, Caspase 6 expression was positively correlated with more severe histopathological injury and higher serum ALT/AST level at one day postoperatively. Moreover, Caspase 6 was mainly elevated in macrophages but not hepatocytes in ischemic livers. Unlike in controls, the Caspase 6-deficient livers were protected against IR injury, as evidenced by inhibition of inflammation, oxidative stress and iron overload. Disruption of macrophage NF-κB essential modulator (NEMO) in Caspase 6-deficient livers deteriorated liver inflammation and ferroptosis. Mechanistically, Caspase 6 deficiency spurred NEMO-mediated IκBα phosphorylation in macrophage. Then phosphorylated-inhibitor of NF-κBα (p-IκBα) co-localized with receptor-interacting serine/ threonine-protein kinase 1 (RIPK1) in the cytoplasm to degradate RIPK1 under inflammatory conditions. The disruption of RIPK1-IκBα interaction preserved RIPK1 degradation, triggering downstream apoptosis signal-regulating kinase 1 (ASK1) phosphorylation and inciting NIMA-related kinase 7/NOD-like receptor family pyrin domain containing 3 (NEK7/NLRP3) activation in macrophages. Moreover, ablation of macrophage RIPK1 or ASK1 diminished NEK7/NLRP3-driven inflammatory response and dampened hepatocyte ferroptosis by reducing HMGB1 release from macrophages. CONCLUSIONS: Our findings underscore a novel mechanism of Caspase 6 mediated RIPK1-IκBα interaction in regulating macrophage NEK7/NLRP3 function and hepatocytes ferroptosis, which provides therapeutic targets for clinical liver IR injury. Video Abstract.


Asunto(s)
Caspasa 6 , Inmunidad Innata , Transducción de Señal , Animales , Humanos , Ratones , Caspasa 6/metabolismo , Inflamación/metabolismo , Isquemia/metabolismo , Hígado/metabolismo , Ratones Endogámicos C57BL , Inhibidor NF-kappaB alfa/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteínas/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo
7.
J Biol Chem ; 297(6): 101379, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34740613

RESUMEN

The innate immune system acts as the first line of defense against infection. One key component of the innate immune response to gram-negative bacterial infections is inflammasome activation. The caspase-11 (CASP11)-nucleotide-binding oligomerization domain-like receptor pyrin domain-containing 3 (NLRP3) inflammasome is activated by cytosolic lipopolysaccharide, a gram-negative bacterial cell wall component, to trigger pyroptosis and host defense during infection. Although several cellular signaling pathways have been shown to regulate CASP11-NLRP3 inflammasome activation in response to lipopolysaccharide, the upstream molecules regulating CASP11 activation during infection with live pathogens remain unclear. Here, we report that the understudied caspase-6 (CASP6) contributes to the activation of the CASP11-NLRP3 inflammasome in response to infections with gram-negative bacteria. Using in vitro cellular systems with bone marrow-derived macrophages and 293T cells, we found that CASP6 can directly process CASP11 by cleaving at Asp59 and Asp285, the CASP11 auto-cleavage sites, which could contribute to the activation of CASP11 during gram-negative bacterial infection. Thus, the loss of CASP6 led to impaired CASP11-NLRP3 inflammasome activation in response to gram-negative bacteria. These results demonstrate that CASP6 potentiates activation of the CASP11-NLRP3 inflammasome to produce inflammatory cytokines during gram-negative bacterial infections.


Asunto(s)
Caspasa 6/fisiología , Caspasas Iniciadoras/metabolismo , Infecciones por Bacterias Gramnegativas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Animales , Células Cultivadas , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL
8.
Neuropathol Appl Neurobiol ; 48(5): e12819, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35508761

RESUMEN

AIM: Tau truncation (tr-tau) by active caspase-6 (aCasp-6) generates tau fragments that may be toxic. Yet the relationship between aCasp-6, different forms of tr-tau and hyperphosphorylated tau (p-tau) accumulation in human brains with Alzheimer's disease (AD) and other tauopathies remains unclear. METHODS: We generated two neoepitope monoclonal antibodies against tr-tau sites (D402 and D13) targeted by aCasp-6. Then, we used five-plex immunofluorescence to quantify the neuronal and astroglial burden of aCasp-6, tr-tau, p-tau and their co-occurrence in healthy controls, AD and primary tauopathies. RESULTS: Casp-6 activation was strongest in AD and Pick's disease (PiD) but almost absent in 4-repeat (4R) tauopathies. In neurons, the tr-tau burden was much more abundant in AD and PiD than in 4R tauopathies and disproportionally higher when normalising by p-tau pathology. Tr-tau astrogliopathy was detected in low numbers in 4R tauopathies. Unexpectedly, about half of tr-tau positive neurons in AD and PiD lacked p-tau aggregates, a finding we confirmed using several p-tau antibodies. CONCLUSIONS: Early modulation of aCasp-6 to reduce tr-tau pathology is a promising therapeutic strategy for AD and PiD but is unlikely to benefit 4R tauopathies. The large percentage of tr-tau-positive neurons lacking p-tau suggests that many vulnerable neurons to tau pathology go undetected when using conventional p-tau antibodies. Therapeutic strategies against tr-tau pathology could be necessary to modulate the extent of tau abnormalities in AD. The disproportionally higher burden of tr-tau in AD and PiD supports the development of biofluid biomarkers against tr-tau to detect AD and PiD and differentiate them from 4R tauopathies at a patient level.


Asunto(s)
Enfermedad de Alzheimer , Tauopatías , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/terapia , Encéfalo/patología , Caspasa 6 , Humanos , Neuronas/patología , Tauopatías/diagnóstico , Tauopatías/patología , Tauopatías/terapia , Proteínas tau/metabolismo
9.
Ecotoxicol Environ Saf ; 216: 112210, 2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-33866271

RESUMEN

Bisphenol A (BPA) is a ubiquitous industrial chemical found in everyday plastic products and materials. Due to scientific findings on the reproductive, developmental, and cellular defects caused by BPA and heightened public awareness, manufacturers have begun to use new chemicals in place of BPA in "BPA-free" products. These alternatives are chemical analogs of BPA and include dozens of new compounds that have undergone relatively little testing and oversight, including: bisphenol S (BPS), bisphenol AF (BPAF), and the recently developed tetramethyl bisphenol F (TMBPF; the monomer of valPure V70). Here, we used adult female rat adipose-derived stem cells (rASCs) and human mesenchymal stem cells (hMSCs) to compare the toxicities and potencies of these BPA alternatives in vitro. Rat and human stem cells were exposed to BPA (1-10 µM), 17ß-estradiol (E2; 10 µM), BPS (1-100 µM), BPAF (3×10-4-30 µM), TMBPF (0.01-50 µM), or control media alone (with 0.01% ethanol) for varying time intervals from 10 min to 24 h. We found significantly decreased cell viability and massive apoptosis in rat and human stem cells treated with each BPA analog, as early as 10 min of exposure, and at low, physiologically relevant doses. BPAF showed extreme cytotoxicity in a dose-dependent manner (LC50 =0.014 µM (rASCs) and 0.009 µM (hMSCs)), whereas TMBPF showed a bimodal response, with low and high concentrations being the most toxic (LC50 =0.88 µM (rASCs) and 0.06 µM (hMSCs)). Activated caspase-6 levels increased in nearly all cells treated with the BPA analogs indicating the majority of cell death was due to caspase-6-mediated apoptosis. These results in both rat and human stem cells underscore the toxicity and potency of these BPA analogs, and establish a rank order of potency of: BPAF>TMBPF>BPA>BPS. Further, these and other recent findings indicate that these newer BPA analogs may be 'regrettable substitutions,' being worse than the original parent compound and lacking proper testing and regulation. This work brings to light the need for further toxicological characterization, better regulation, greater public awareness, and the development of safer, more sustainable chemicals and non-plastic products.


Asunto(s)
Contaminantes Ambientales/toxicidad , Fenoles/toxicidad , Pruebas de Toxicidad , Animales , Apoptosis/fisiología , Compuestos de Bencidrilo/toxicidad , Supervivencia Celular , Estradiol/toxicidad , Femenino , Humanos , Ratas , Células Madre , Sulfonas/toxicidad
10.
J Biol Chem ; 294(1): 71-88, 2019 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-30420425

RESUMEN

Caspases are cysteine-aspartic proteases involved in the regulation of programmed cell death (apoptosis) and a number of other biological processes. Despite overall similarities in structure and active-site composition, caspases show striking selectivity for particular protein substrates. Exosites are emerging as one of the mechanisms by which caspases can recruit, engage, and orient these substrates for proper hydrolysis. Following computational analyses and database searches for candidate exosites, we utilized site-directed mutagenesis to identify a new exosite in caspase-6 at the hinge between the disordered N-terminal domain (NTD), residues 23-45, and core of the caspase-6 structure. We observed that substitutions of the tri-arginine patch Arg-42-Arg-44 or the R44K cancer-associated mutation in caspase-6 markedly alter its rates of protein substrate hydrolysis. Notably, turnover of protein substrates but not of short peptide substrates was affected by these exosite alterations, underscoring the importance of this region for protein substrate recruitment. Hydrogen-deuterium exchange MS-mediated interrogation of the intrinsic dynamics of these enzymes suggested the presence of a substrate-binding platform encompassed by the NTD and the 240's region (containing residues 236-246), which serves as a general exosite for caspase-6-specific substrate recruitment. In summary, we have identified an exosite on caspase-6 that is critical for protein substrate recognition and turnover and therefore highly relevant for diseases such as cancer in which caspase-6-mediated apoptosis is often disrupted, and in neurodegeneration in which caspase-6 plays a central role.


Asunto(s)
Caspasa 6/química , Mutación Missense , Proteínas de Neoplasias/química , Neoplasias/enzimología , Enfermedades Neurodegenerativas/enzimología , Sustitución de Aminoácidos , Arginina/química , Arginina/genética , Arginina/metabolismo , Caspasa 6/genética , Caspasa 6/metabolismo , Humanos , Hidrólisis , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/patología , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/patología , Dominios Proteicos
11.
Biol Pharm Bull ; 43(10): 1481-1489, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32999158

RESUMEN

Stroke is a common cerebrovascular disease. Inflammation-induced neuronal death is one of the key factors in stroke pathology. Propofol has been shown to ameliorate neuroinflammatory injury, but the exact mechanism of its neuroprotective role remains to be fully elucidated. In the present study, we found that inflammation was activated in ischemic cortical neurons, and the expression of nucleotide-binding domain, leucine-rich-repeat containing family, pyrin domain-containing 1 (NLRP1), NLRP3 inflammasome and effectors in primary cortical neurons increased. However, we found that propofol could inhibit the increased expression of NLRP1 and NLRP3 inflammasome induced by oxygen-glucose deprivation (OGD). Furthermore, the effector molecule caspase-1 (casp1) was revealed to be the downstream target of NLRP1 and propofol repressed the activation of caspase-1 via inhibiting NLRP1 in cortical neurons. Moreover, propofol inhibits caspase-6 activation in neurons through the NLRP1-caspase-1 pathway. Once the expression of caspase6 increases, propofol reduced its neuroprotective effect in OGD-treated cortical neurons. In the stroke middle cerebral artery occlusion (MCAO) model, infusion of caspase-6 inhibitors enhanced the protective effect of propofol on infarct size and neurological function. In conclusion, our results suggest that propofol plays a neuroprotective role in stroke by inhibiting the inflammatory pathway of NLRP1-caspase-1-caspase-6. Overall, these data suggest that propofol plays a key role in the inflammatory-dependent pathway after stroke, providing an important evidence for propofol as an effective strategy for neuroprotection in stroke.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/antagonistas & inhibidores , Proteínas Reguladoras de la Apoptosis/antagonistas & inhibidores , Lesiones Encefálicas/prevención & control , Caspasa 1 , Caspasa 6 , Mediadores de Inflamación/antagonistas & inhibidores , Propofol/uso terapéutico , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Lesiones Encefálicas/metabolismo , Lesiones Encefálicas/patología , Caspasa 1/metabolismo , Caspasa 6/metabolismo , Células Cultivadas , Mediadores de Inflamación/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Propofol/farmacología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
12.
Lasers Med Sci ; 35(8): 1841-1848, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32483748

RESUMEN

Photobiomodulation (PBM) has been used to modulate the inflammatory and immune responses, pain relief, and to promote wound healing. PBM is widely used in dental practice and its cellular effects should be investigated. The aim was to evaluate if PBM changes proteins cell death-related, such as caspase-6 and Bcl-2, in periodontal ligament cells. Eighteen mice were divided in three groups (n = 6), i.e., (I) control, (II) 3 J cm-2, and (III) 30 J cm-2. Low power infrared laser (830 nm) parameters were power at 10 mW, energy densities at 3 and 30 J cm-2 in continuous emission mode, exposure time of 15 and 150 s, respectively for 4 days in a row. Twenty-four hours after last irradiation, the animals were euthanized, and their jaws were fixed and decalcified. Caspase-6 and Bcl-2 were analyzed by real-time polymerase chain reaction and immunocytochemical techniques, and DNA fragmentation was evaluated by TUNEL. Statistical differences were not significant to caspase-6 mRNA relative levels in tissues from jaws at both energy densities, but a significant increase of Bcl-2 mRNA relative levels was obtained at 30 J cm-2 group. Also, 30 J cm-2 group showed caspase-6 positive-labeled cells decreased and Bcl-2 positive-labeled cells significantly increased. TUNEL-labeled cells demonstrated DNA fragmentation decreased at 30 J cm-2. PBM can alter Bcl-2 mRNA relative level and both caspase-6 and Bcl-2 protein, modulating cell survival, as well as to reduce DNA fragmentation. More studies must be performed in order to obtain conclusive results about photobiostimulation effects using infrared low-level laser in apoptosis process as to achieve the optimum dosage.


Asunto(s)
Apoptosis/efectos de la radiación , Terapia por Luz de Baja Intensidad , Ligamento Periodontal/citología , Animales , Supervivencia Celular/efectos de la radiación , Fragmentación del ADN/efectos de la radiación , Regulación de la Expresión Génica/efectos de la radiación , Ratones , Proteínas Proto-Oncogénicas c-bcl-2/genética , ARN Mensajero/genética , Cicatrización de Heridas/efectos de la radiación
13.
Int J Mol Sci ; 21(3)2020 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-32050445

RESUMEN

Alzheimer's disease (AD) is a progressive neurodegenerative disorder and is the most common form of dementia in the elderly. Caspases, a family of cysteine proteases, are major mediators of apoptosis and inflammation. Caspase-6 is considered to be an up-stream modulator of AD pathogenesis as active caspase-6 is abundant in neuropil threads, neuritic plaques, and neurofibrillary tangles of AD brains. In order to further elucidate the role of caspase-6 activity in the pathogenesis of AD, we produced a double transgenic mouse model, combining the 5xFAD mouse model of AD with caspase-6 knock out (C6-KO) mice. Behavioral examinations of 5xFAD/C6-KO double transgenic mice showed improved performance in spatial learning, memory, and anxiety/risk assessment behavior, as compared to 5xFAD mice. Hippocampal mRNA expression analyses showed significantly reduced levels of inflammatory mediator TNF-α, while the anti-inflammatory cytokine IL-10 was increased in 5xFAD/C6-KO mice. A significant reduction in amyloid-ß plaques could be observed and immunohistochemistry analyses showed reduced levels of activated microglia and astrocytes in 5xFAD/C6-KO, compared to 5xFAD mice. Together, these results indicate a substantial role for caspase-6 in the pathology of the 5xFAD model of AD and suggest further validation of caspase-6 as a potential therapeutic target for AD.


Asunto(s)
Enfermedad de Alzheimer/genética , Caspasa 6/genética , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/fisiopatología , Animales , Modelos Animales de Enfermedad , Femenino , Eliminación de Gen , Masculino , Memoria , Ratones , Ratones Noqueados , Mutación , Placa Amiloide/genética , Placa Amiloide/patología , Placa Amiloide/fisiopatología , Aprendizaje Espacial
14.
Annu Rev Pharmacol Toxicol ; 55: 553-72, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25340928

RESUMEN

Caspases, a family of cysteine proteases, are major mediators of apoptosis and inflammation. Caspase-6 is classified as an apoptotic effector, and it mediates nuclear shrinkage during apoptosis, but it possesses unique activation and regulation mechanisms that differ from those of other effector caspases. Furthermore, increasing evidence has shown that caspase-6 is highly involved in axon degeneration and neurodegenerative diseases, such as Huntington's disease and Alzheimer's disease. Cleavage at the caspase-6 site in mutated huntingtin protein is a prerequisite for the development of the characteristic behavioral and neuropathological features of Huntington's disease. Active caspase-6 is present in early stages of Alzheimer's disease, and caspase-6 activity is associated with the disease's pathological lesions. In this review, we discuss the evidence relevant to the role of caspase-6 in neurodegenerative diseases and summarize its activation and regulation mechanisms. In doing so, we provide new insight about potential therapeutic approaches that incorporate the modulation of caspase-6 function for the treatment of neurodegenerative diseases.


Asunto(s)
Enfermedad de Alzheimer/enzimología , Encéfalo/enzimología , Caspasa 6/metabolismo , Enfermedad de Huntington/enzimología , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/patología , Secuencia de Aminoácidos , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Encéfalo/efectos de los fármacos , Encéfalo/patología , Caspasa 6/química , Inhibidores de Caspasas/uso terapéutico , Diseño de Fármacos , Activación Enzimática , Humanos , Proteína Huntingtina , Enfermedad de Huntington/tratamiento farmacológico , Enfermedad de Huntington/patología , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/metabolismo , Conformación Proteica , Transducción de Señal , Relación Estructura-Actividad , Especificidad por Sustrato
15.
Fish Shellfish Immunol ; 80: 232-240, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29890217

RESUMEN

In this study, a novel caspase-6 named HLcaspase-6 was identified from sea cucumber Holothuria leucospilota. The full-length cDNA of HLcaspase-6 is 2195 bp in size, containing a 126 bp 5'-untranslated region (UTR), a 1043 bp 3'-UTR and a 1026 bp open reading frame (ORF) encoding a protein of 341 amino acids with a deduced molecular weight of 38.57 kDa. HLcaspase-6 contains the common signatures of the caspase family, including the conserved pentapeptide motif QACRG, as well as the P20 and P10 domains. In addition, HLcaspase-6 contains a short pro-domain. HLcaspase-6 mRNA is ubiquitously expressed in all tissues examined, with the highest transcript level in the intestine, followed by coelomocytes. In in vitro experiments, the expression of HLcaspase-6 mRNA in coelomocytes was significantly up-regulated by lipopolysaccharides (LPS) or polyriboinosinic-polyribocytidylic acid [poly (I:C)] challenge, suggesting that HLcaspase-6 might play important roles in the innate immune defense of sea cucumber against bacterial and viral infections. Moreover, we further confirmed that overexpression of HLcaspase-6 could induce apoptosis and activate the p53 signal pathway.


Asunto(s)
Caspasa 6/genética , Pepinos de Mar/genética , Secuencia de Aminoácidos , Animales , Apoptosis , Secuencia de Bases , Caspasa 6/inmunología , Clonación Molecular , ADN Complementario/genética , Células HEK293 , Humanos , Lipopolisacáridos/farmacología , Filogenia , Poli I-C/farmacología , ARN Mensajero/metabolismo , Pepinos de Mar/inmunología , Alineación de Secuencia , Análisis de Secuencia de ADN , Proteína p53 Supresora de Tumor/metabolismo
16.
Int J Mol Sci ; 19(12)2018 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-30486235

RESUMEN

Myocardial infarction (MI) in animal models induces cognitive deficits as well as the activation of caspase in the limbic system; both can be blocked by 2 weeks of treatment following MI using tricyclic antidepressants or selective serotonin uptake blockers. Here we used three different treatment schedules to test the short- and long-term effects of the combined serotonin-norepinephrine reuptake inhibitor desvenlafaxine on post-MI-associated cognitive deficits and caspase activation. MI was induced in 39 young adult rats, and 39 rats served as sham-operated controls. Desvenlafaxine (3 mg/kg/day, i.p.) or saline was administered according to one of three schedules: (1) for 2 weeks, starting right after surgery; (2) for 16 weeks, starting 2 weeks after surgery; (3) for 16 weeks, starting right after surgery. Behavior was tested 2 weeks (social interaction, passive avoidance) and 16 weeks (forced swimming, Morris water maze) after surgery. Caspase-3 and caspase-6 activities were measured 16 weeks after surgery. At 2 and 16 weeks post-surgery, saline-treated MI rats displayed performance deficits compared to desvenlafaxine-treated rats, regardless of the treatment schedule. Caspase-3 activity was higher in the amygdala (medial and lateral) and hippocampal CA3 region in untreated MI rats, whereas caspase-6 activity was higher in the CA1 region. Caspase-6 activity correlated positively with deficits in the Morris water maze. These results indicate that, independently of treatment schedules, various treatment schedules with desvenlafaxine can prevent MI-associated cognitive deficits and decrease caspase activities in the limbic system.


Asunto(s)
Trastornos del Conocimiento/tratamiento farmacológico , Trastornos del Conocimiento/etiología , Succinato de Desvenlafaxina/uso terapéutico , Infarto del Miocardio/complicaciones , Norepinefrina/metabolismo , Inhibidores Selectivos de la Recaptación de Serotonina/uso terapéutico , Animales , Reacción de Prevención , Conducta Animal/efectos de los fármacos , Caspasas/metabolismo , Cicatriz/patología , Trastornos del Conocimiento/patología , Succinato de Desvenlafaxina/farmacología , Masculino , Aprendizaje por Laberinto , Ratas Sprague-Dawley , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Conducta Social , Memoria Espacial , Natación
17.
Mol Cell Neurosci ; 75: 113-21, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27468976

RESUMEN

Pleiotrophin (PTN) is a secreted growth factor recently proposed to act as a neuromodulatory peptide in the Central Nervous System. PTN appears to be involved in neurodegenerative diseases and neural disorders, and it has also been implicated in learning and memory. Specifically, PTN-deficient mice exhibit a lower threshold for LTP induction in the hippocampus, which is attenuated in mice overexpressing PTN. However, there is little information about the signaling systems recruited by PTN to modulate neural activity. To address this issue, the gene expression profile in hippocampus of mice lacking PTN was analyzed using microarrays of 22,000 genes. In addition, we corroborated the effect of the absence of PTN on the expression of these genes by silencing this growth factor in primary neuronal cultures in vitro. The microarray analysis identified 102 genes that are differentially expressed (z-score>3.0) in PTN null mice, and the expression of eight of those modified in the hippocampus of KO mice was also modified in vitro after silencing PTN in cultured neurons with siRNAs. The data obtained indicate that the absence of PTN affects AKT pathway response and modulates the expression of genes related with neuroprotection (Mgst3 and Estrogen receptor 1, Ers 1) and cell differentiation (Caspase 6, Nestin, and Odz4), both in vivo and in vitro.


Asunto(s)
Proteínas Portadoras/metabolismo , Cerebelo/metabolismo , Citocinas/metabolismo , Hipocampo/metabolismo , Neuronas/metabolismo , Transcriptoma , Animales , Proteínas Portadoras/genética , Caspasa 6/genética , Caspasa 6/metabolismo , Células Cultivadas , Cerebelo/citología , Citocinas/deficiencia , Citocinas/genética , Hipocampo/citología , Proteínas Quinasas JNK Activadas por Mitógenos/genética , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Ribosómico 18S/genética , ARN Ribosómico 18S/metabolismo , Ratas , Ratas Sprague-Dawley , Transducción de Señal , Sinaptofisina/genética , Sinaptofisina/metabolismo
18.
Neurobiol Dis ; 76: 24-36, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25583186

RESUMEN

Huntington Disease (HD) is a progressive neurodegenerative disease caused by an elongated CAG repeat in the huntingtin (HTT) gene that encodes a polyglutamine tract in the HTT protein. Proteolysis of the mutant HTT protein (mHTT) has been detected in human and murine HD brains and is implicated in the pathogenesis of HD. Of particular importance is the site at amino acid (aa) 586 that contains a caspase-6 (Casp6) recognition motif. Activation of Casp6 occurs presymptomatically in human HD patients and the inhibition of mHTT proteolysis at aa586 in the YAC128 mouse model results in the full rescue of HD-like phenotypes. Surprisingly, Casp6 ablation in two different HD mouse models did not completely prevent the generation of this fragment, and therapeutic benefits were limited, questioning the role of Casp6 in the disease. We have evaluated the impact of the loss of Casp6 in the YAC128 mouse model of HD. Levels of the mHTT-586 fragment are reduced but not absent in the absence of Casp6 and we identify caspase 8 as an alternate enzyme that can generate this fragment. In vivo, the ablation of Casp6 results in a partial rescue of body weight gain, normalized IGF-1 levels, a reversal of the depression-like phenotype and decreased HTT levels. In the YAC128/Casp6-/- striatum there is a concomitant reduction in p62 levels, a marker of autophagic activity, suggesting increased autophagic clearance. These results implicate the HTT-586 fragment as a key contributor to certain features of HD, irrespective of the enzyme involved in its generation.


Asunto(s)
Caspasa 6/metabolismo , Enfermedad de Huntington/enzimología , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Animales , Peso Corporal , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Caspasa 6/genética , Cuerpo Estriado/metabolismo , Depresión/metabolismo , Modelos Animales de Enfermedad , Factor I del Crecimiento Similar a la Insulina/metabolismo , Ratones , Ratones Transgénicos , Actividad Motora
19.
Biochem Biophys Res Commun ; 465(3): 631-7, 2015 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-26297950

RESUMEN

Systemic administration of 3-nitropropionic acid (3-NP) facilitates the development of select striatal lesions, and some reports provide clues about this pathology. In this study, we investigated the relationship between reduced levels of brain-derived neurotrophic factor (BDNF) in lesioned brain regions and caspase activity, as well as involvement of apoptosis signal-regulating kinase 1 (ASK1) in caspase activation. We analyzed apoptotic cell death, BDNF distribution, caspase-3 activity, caspase-6 activity, ASK1 expression level, and active ASK1 in the cortex and striatum. There were different levels and distributions of these factors within each sub-region. Caspase-6 activity was reduced with down-regulation of ASK1 in the cortex. BDNF protein levels did not decrease in the cortex, but there was replenishment of severely reduced BDNF in the striatum. The present study suggests that an increase in ASK1 in the damaged cortex is related to caspase-6 activation and is involved in cortical depletion of BDNF in the striatum. Furthermore, with systemic infusion of 3-NP, differential expression of ASK1 in the cortex and striatum suggests that this kinase may modulate caspase activation and striatal degeneration.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Caspasas/metabolismo , Corteza Cerebral/enzimología , Cuerpo Estriado/enzimología , MAP Quinasa Quinasa Quinasa 5/metabolismo , Nitrocompuestos/administración & dosificación , Propionatos/administración & dosificación , Animales , Corteza Cerebral/efectos de los fármacos , Cuerpo Estriado/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Activación Enzimática/efectos de los fármacos , Infusiones Intraventriculares , Masculino , Ratones , Ratones Endogámicos C57BL
20.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 1): 58-67, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24419379

RESUMEN

Caspase 6 (CASP6) is a neuron degeneration-related protease and is widely considered to be a potential drug-design target against neurodegenerative diseases such as Huntington's disease and Alzheimer's disease. The N-terminal pro-peptide of CASP6, also referred to as the pro-domain, contains 23 residues and its functional role remains elusive. In this study, the crystal structure of a full-length CASP6 zymogen mutant, proCASP6H121A, was solved. Although the pro-domain was flexible in the crystal, without visible electron density, structural analyses combined with biochemical assays revealed that the pro-domain inhibited CASP6 auto-activation by inhibiting intramolecular cleavage at the intersubunit cleavage site TEVD(193) and also by preventing this site from intermolecular cleavage at low protein concentration through a so-called `suicide-protection' mechanism. Further experiments showed that the length of the pro-domain and the side chain of Asn18 played critical roles in suicide protection. These results disclosed a new inhibitory mechanism of CASP6 and shed light on the pathogenesis and therapeutically relevant study of CASP6-related neurodegenerative diseases.


Asunto(s)
Caspasa 6/química , Caspasa 6/genética , Caspasa 6/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Activación Enzimática , Humanos , Modelos Moleculares , Mutación , Enfermedades Neurodegenerativas/enzimología , Estructura Terciaria de Proteína
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda