Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 980
Filtrar
Más filtros

Publication year range
1.
Immunity ; 54(2): 340-354.e6, 2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33567252

RESUMEN

Cellular and humoral immunity to SARS-CoV-2 is critical to control primary infection and correlates with severity of disease. The role of SARS-CoV-2-specific T cell immunity, its relationship to antibodies, and pre-existing immunity against endemic coronaviruses (huCoV), which has been hypothesized to be protective, were investigated in 82 healthy donors (HDs), 204 recovered (RCs), and 92 active COVID-19 patients (ACs). ACs had high amounts of anti-SARS-CoV-2 nucleocapsid and spike IgG but lymphopenia and overall reduced antiviral T cell responses due to the inflammatory milieu, expression of inhibitory molecules (PD-1, Tim-3) as well as effector caspase-3, -7, and -8 activity in T cells. SARS-CoV-2-specific T cell immunity conferred by polyfunctional, mainly interferon-γ-secreting CD4+ T cells remained stable throughout convalescence, whereas humoral responses declined. Immune responses toward huCoV in RCs with mild disease and strong cellular SARS-CoV-2 T cell reactivity imply a protective role of pre-existing immunity against huCoV.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , COVID-19/inmunología , Inmunidad Celular/inmunología , Adulto , Anciano , Anciano de 80 o más Años , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Femenino , Humanos , Inmunidad Humoral/inmunología , Masculino , Persona de Mediana Edad , SARS-CoV-2/inmunología , Adulto Joven
2.
Immunity ; 53(1): 106-114.e5, 2020 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-32553275

RESUMEN

The recognition and cleavage of gasdermin D (GSDMD) by inflammatory caspases-1, 4, 5, and 11 are essential steps in initiating pyroptosis after inflammasome activation. Previous work has identified cleavage site signatures in substrates such as GSDMD, but it is unclear whether these are the sole determinants for caspase engagement. Here we report the crystal structure of a complex between human caspase-1 and the full-length murine GSDMD. In addition to engagement of the GSDMD N- and C-domain linker by the caspase-1 active site, an anti-parallel ß sheet at the caspase-1 L2 and L2' loops bound a hydrophobic pocket within the GSDMD C-terminal domain distal to its N-terminal domain. This "exosite" interface endows an additional function for the GSDMD C-terminal domain as a caspase-recruitment module besides its role in autoinhibition. Our study thus reveals dual-interface engagement of GSDMD by caspase-1, which may be applicable to other physiological substrates of caspases.


Asunto(s)
Caspasa 1/metabolismo , Dominio Catalítico/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de Unión a Fosfato/metabolismo , Piroptosis/inmunología , Animales , Línea Celular , Cristalografía por Rayos X , Células HEK293 , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Inflamasomas/inmunología , Ratones , Unión Proteica/fisiología , Conformación Proteica en Lámina beta/fisiología , Células THP-1
3.
Immunity ; 53(3): 533-547.e7, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32735843

RESUMEN

Programmed cell death contributes to host defense against pathogens. To investigate the relative importance of pyroptosis, necroptosis, and apoptosis during Salmonella infection, we infected mice and macrophages deficient for diverse combinations of caspases-1, -11, -12, and -8 and receptor interacting serine/threonine kinase 3 (RIPK3). Loss of pyroptosis, caspase-8-driven apoptosis, or necroptosis had minor impact on Salmonella control. However, combined deficiency of these cell death pathways caused loss of bacterial control in mice and their macrophages, demonstrating that host defense can employ varying components of several cell death pathways to limit intracellular infections. This flexible use of distinct cell death pathways involved extensive cross-talk between initiators and effectors of pyroptosis and apoptosis, where initiator caspases-1 and -8 also functioned as executioners when all known effectors of cell death were absent. These findings uncover a highly coordinated and flexible cell death system with in-built fail-safe processes that protect the host from intracellular infections.


Asunto(s)
Apoptosis/inmunología , Macrófagos/inmunología , Necroptosis/inmunología , Piroptosis/inmunología , Infecciones por Salmonella/inmunología , Salmonella/inmunología , Animales , Caspasa 1/deficiencia , Caspasa 1/genética , Caspasa 12/deficiencia , Caspasa 12/genética , Caspasa 8/genética , Caspasas Iniciadoras/deficiencia , Caspasas Iniciadoras/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína Serina-Treonina Quinasas de Interacción con Receptores/deficiencia , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética
4.
Semin Cell Dev Biol ; 156: 66-73, 2024 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-37468421

RESUMEN

Executioner caspases are evolutionarily conserved regulators of cell death under apoptotic stress. Activated executioner caspases drive apoptotic cell death through cleavage of diverse protein substrates or pyroptotic cell death in the presence of gasdermin E. On the other hand, activation of executioner caspases can also trigger pro-survival and pro-proliferation signals. In recent years, a growing body of studies have demonstrated that cells can survive from executioner caspase activation in response to stress and that the survivors undergo molecular and phenotypic alterations. This review focuses on death and survival from executioner caspase activation, summarizing the role of executioner caspases in apoptotic and pyroptotic cell death and discussing the potential mechanism and consequences of survival from stress-induced executioner caspase activation.


Asunto(s)
Apoptosis , Caspasas , Muerte Celular , Caspasas/metabolismo , Proteolisis , Procesamiento Proteico-Postraduccional , Caspasa 8/metabolismo
5.
Semin Cell Dev Biol ; 156: 44-57, 2024 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-37400292

RESUMEN

Epithelial cell death is highly prevalent during development and tissue homeostasis. While we have a rather good understanding of the molecular regulators of programmed cell death, especially for apoptosis, we still fail to predict when, where, how many and which specific cells will die in a tissue. This likely relies on the much more complex picture of apoptosis regulation in a tissular and epithelial context, which entails cell autonomous but also non-cell autonomous factors, diverse feedback and multiple layers of regulation of the commitment to apoptosis. In this review, we illustrate this complexity of epithelial apoptosis regulation by describing these different layers of control, all demonstrating that local cell death probability is a complex emerging feature. We first focus on non-cell autonomous factors that can locally modulate the rate of cell death, including cell competition, mechanical input and geometry as well as systemic effects. We then describe the multiple feedback mechanisms generated by cell death itself. We also outline the multiple layers of regulation of epithelial cell death, including the coordination of extrusion and regulation occurring downstream of effector caspases. Eventually, we propose a roadmap to reach a more predictive understanding of cell death regulation in an epithelial context.


Asunto(s)
Apoptosis , Células Epiteliales , Células Epiteliales/metabolismo , Muerte Celular , Apoptosis/fisiología
6.
Trends Immunol ; 44(8): 628-643, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37357102

RESUMEN

Tumor necrosis factor (TNF) plays a central role in orchestrating mammalian inflammatory responses. It promotes inflammation either directly by inducing inflammatory gene expression or indirectly by triggering cell death. TNF-mediated cell death-driven inflammation can be beneficial during infection by providing cell-extrinsic signals that help to mount proper immune responses. Uncontrolled cell death caused by TNF is instead highly detrimental and is believed to cause several human autoimmune diseases. Death is not the default response to TNF sensing. Molecular brakes, or cell death checkpoints, actively repress TNF cytotoxicity to protect the organism from its detrimental consequences. These checkpoints therefore constitute essential safeguards against inflammatory diseases. Recent advances in the field have revealed the existence of several new and unexpected brakes against TNF cytotoxicity and pathogenicity.


Asunto(s)
Apoptosis , Transducción de Señal , Animales , Humanos , Necrosis , Proteína Serina-Treonina Quinasas de Interacción con Receptores , Muerte Celular , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Inflamación/patología , Mamíferos
7.
EMBO Rep ; 24(6): e51716, 2023 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-37039000

RESUMEN

Current evidence has associated caspase activation with the regulation of basic cellular functions without causing apoptosis. Malfunction of non-apoptotic caspase activities may contribute to specific neurological disorders, metabolic diseases, autoimmune conditions and cancers. However, our understanding of non-apoptotic caspase functions remains limited. Here, we show that non-apoptotic caspase activation prevents the intracellular accumulation of the Patched receptor in autophagosomes and the subsequent Patched-dependent induction of autophagy in Drosophila follicular stem cells. These events ultimately sustain Hedgehog signalling and the physiological properties of ovarian somatic stem cells and their progeny under moderate thermal stress. Importantly, our key findings are partially conserved in ovarian somatic cells of human origin. These observations attribute to caspases a pro-survival role under certain cellular conditions.


Asunto(s)
Células Madre Adultas , Proteínas Hedgehog , Animales , Humanos , Proteínas Hedgehog/metabolismo , Muerte Celular , Apoptosis/fisiología , Caspasas/genética , Caspasas/metabolismo , Drosophila/metabolismo , Células Madre Adultas/metabolismo , Homeostasis , Caspasa 3/metabolismo , Caspasa 8/metabolismo , Caspasa 9/metabolismo
8.
Mol Cell ; 68(2): 265-280, 2017 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-29053955

RESUMEN

The linear ubiquitin chain assembly complex, LUBAC, is the only known mammalian ubiquitin ligase that makes methionine 1 (Met1)-linked polyubiquitin (also referred to as linear ubiquitin). A decade after LUBAC was discovered as a cellular activity of unknown function, there are now many lines of evidence connecting Met1-linked polyubiquitin to NF-κB signaling, cell death, inflammation, immunity, and cancer. We now know that Met1-linked polyubiquitin has potent signaling functions and that its deregulation is connected to disease. Indeed, mutations and deficiencies in several factors involved in conjugation and deconjugation of Met1-linked polyubiquitin have been implicated in immune-related disorders. Here, we discuss current knowledge and recent insights into the role and regulation of Met1-linked polyubiquitin, with an emphasis on the mechanisms controlling the function of LUBAC.


Asunto(s)
Inmunidad , FN-kappa B/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Poliubiquitina/metabolismo , Transducción de Señal , Animales , Muerte Celular , Humanos , FN-kappa B/genética , FN-kappa B/inmunología , Proteínas de Neoplasias/inmunología , Neoplasias/inmunología , Poliubiquitina/genética , Poliubiquitina/inmunología
9.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35105800

RESUMEN

Apoptosis is widely believed to be crucial for epithelial cell death and shedding in the intestine, thereby shaping the overall architecture of the gastrointestinal tract, but also regulating tolerance induction, pinpointing a role of apoptosis intestinal epithelial cell (IEC) turnover and maintenance of barrier function, and in maintaining immune homeostasis. To experimentally address this concept, we generated IEC-specific knockout mice that lack both executioner caspase-3 and caspase-7 (Casp3/7ΔIEC), which are the converging point of the extrinsic and intrinsic apoptotic pathway. Surprisingly, the overall architecture, cellular landscape, and proliferation rate remained unchanged in these mice. However, nonapoptotic cell extrusion was increased in Casp3/7ΔIEC mice, compensating apoptosis deficiency, maintaining the same physiological level of IEC shedding. Microbiome richness and composition stayed unaffected, bearing no sign of dysbiosis. Transcriptome and single-cell RNA sequencing analyses of IECs and immune cells revealed no differences in signaling pathways of differentiation and inflammation. These findings demonstrate that during homeostasis, apoptosis per se is dispensable for IEC turnover at the top of intestinal villi intestinal tissue dynamics, microbiome, and immune cell composition.


Asunto(s)
Apoptosis , Caspasa 3/metabolismo , Caspasa 7/metabolismo , Células Epiteliales/enzimología , Homeostasis , Mucosa Intestinal/enzimología , Transducción de Señal , Animales , Caspasa 3/genética , Caspasa 7/genética , Ratones , Ratones Transgénicos
10.
Am J Physiol Cell Physiol ; 326(3): C784-C794, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38189134

RESUMEN

The field of cell death has witnessed significant advancements since the initial discovery of apoptosis in the 1970s. This review delves into the intricacies of pyroptosis, a more recently identified form of regulated, lytic cell death, and explores the roles of pyroptotic effector molecules, with a strong emphasis on their mechanisms and relevance in various diseases. Pyroptosis, characterized by its proinflammatory nature, is driven by the accumulation of large plasma membrane pores comprised of gasdermin family protein subunits. In different contexts of cellular homeostatic perturbations, infections, and tissue damage, proteases, such as caspase-1 and caspase-4/5, play pivotal roles in pyroptosis by cleaving gasdermins. Gasdermin-D (GSDMD), the most extensively studied member of the gasdermin protein family, is expressed in various immune cells and certain epithelial cells. Upon cleavage by caspases, GSDMD oligomerizes and forms transmembrane pores in the cell membrane, leading to the release of proinflammatory cytokines. GSDMD-N, the NH2-terminal fragment, displays an affinity for specific lipids, contributing to its role in pore formation in pyroptosis. While GSDMD is the primary focus, other gasdermin family members are also discussed in detail. These proteins exhibit distinct tissue-specific functions and contribute to different facets of cell death regulation. Additionally, genetic variations in some gasdermins have been linked to diseases, underscoring their clinical relevance. Furthermore, the interplay between GSDM pores and the activation of other effectors, such as ninjurin-1, is elucidated, providing insights into the complexity of pyroptosis regulation. The findings underscore the molecular mechanisms that govern pyroptosis and its implications for various physiological and pathological processes.


Asunto(s)
Gasderminas , Piroptosis , Muerte Celular , Apoptosis , Caspasas/genética
11.
J Biol Chem ; 299(2): 102875, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36621626

RESUMEN

Aurora kinases (AURKs) are mitotic kinases important for regulating cell cycle progression. Small-molecule inhibitors of AURK have shown promising antitumor effects in multiple cancers; however, the utility of these inhibitors as inducers of cancer cell death has thus far been limited. Here, we examined the role of the Bcl-2 family proteins in AURK inhibition-induced apoptosis in colon cancer cells. We found that alisertib and danusertib, two small-molecule inhibitors of AURK, are inefficient inducers of apoptosis in HCT116 and DLD-1 colon cancer cells, the survival of which requires at least one of the two antiapoptotic Bcl-2 family proteins, Bcl-xL and Mcl-1. We further identified Bcl-xL as a major suppressor of alisertib- or danusertib-induced apoptosis in HCT116 cells. We demonstrate that combination of a Bcl-2 homology (BH)3-mimetic inhibitor (ABT-737), a selective inhibitor of Bcl-xL, Bcl-2, and Bcl-w, with alisertib or danusertib potently induces apoptosis through the Bcl-2 family effector protein Bax. In addition, we identified Bid, Puma, and Noxa, three BH3-only proteins of the Bcl-2 family, as mediators of alisertib-ABT-737-induced apoptosis. We show while Noxa promotes apoptosis by constitutively sequestering Mcl-1, Puma becomes associated with Mcl-1 upon alisertib treatment. On the other hand, we found that alisertib treatment causes activation of caspase-2, which promotes apoptosis by cleaving Bid into truncated Bid, a suppressor of both Bcl-xL and Mcl-1. Together, these results define the Bcl-2 protein network critically involved in AURK inhibitor-induced apoptosis and suggest that BH3-mimetics targeting Bcl-xL may help overcome resistance to AURK inhibitors in cancer cells.


Asunto(s)
Antineoplásicos , Apoptosis , Aurora Quinasas , Proteína bcl-X , Humanos , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/antagonistas & inhibidores , Proteínas Reguladoras de la Apoptosis/metabolismo , Aurora Quinasas/antagonistas & inhibidores , Proteína X Asociada a bcl-2/metabolismo , Proteína bcl-X/antagonistas & inhibidores , Proteína bcl-X/metabolismo , Línea Celular Tumoral , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/fisiopatología , Activación Enzimática/efectos de los fármacos , Células HCT116 , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/antagonistas & inhibidores , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo
12.
Infect Immun ; 92(7): e0005324, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38837340

RESUMEN

Coxiella burnetii is an obligate intracellular bacteria that causes the global zoonotic disease Q Fever. Treatment options for chronic infection are limited, and the development of novel therapeutic strategies requires a greater understanding of how C. burnetii interacts with immune signaling. Cell death responses are known to be manipulated by C. burnetii, but the role of caspase-8, a central regulator of multiple cell death pathways, has not been investigated. In this research, we studied bacterial manipulation of caspase-8 signaling and the significance of caspase-8 to C. burnetii infection, examining bacterial replication, cell death induction, and cytokine signaling. We measured caspase, RIPK, and MLKL activation in C. burnetii-infected tumor necrosis factor alpha (TNFα)/cycloheximide-treated THP-1 macrophage-like cells and TNFα/ZVAD-treated L929 cells to assess apoptosis and necroptosis signaling. Additionally, we measured C. burnetii replication, cell death, and TNFα induction over 12 days in RIPK1-kinase-dead, RIPK3-kinase-dead, or RIPK3-kinase-dead-caspase-8-/- bone marrow-derived macrophages (BMDMs) to understand the significance of caspase-8 and RIPK1/3 during infection. We found that caspase-8 is inhibited by C. burnetii, coinciding with inhibition of apoptosis and increased susceptibility to necroptosis. Furthermore, C. burnetii replication was increased in BMDMs lacking caspase-8, but not in those lacking RIPK1/3 kinase activity, corresponding with decreased TNFα production and reduced cell death. As TNFα is associated with the control of C. burnetii, this lack of a TNFα response may allow for the unchecked bacterial growth we saw in caspase-8-/- BMDMs. This research identifies and explores caspase-8 as a key regulator of C. burnetii infection, opening novel therapeutic doors.


Asunto(s)
Caspasa 8 , Coxiella burnetii , Macrófagos , Fiebre Q , Factor de Necrosis Tumoral alfa , Caspasa 8/metabolismo , Animales , Factor de Necrosis Tumoral alfa/metabolismo , Macrófagos/microbiología , Macrófagos/metabolismo , Macrófagos/inmunología , Ratones , Fiebre Q/microbiología , Fiebre Q/inmunología , Fiebre Q/metabolismo , Humanos , Apoptosis , Transducción de Señal , Línea Celular , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Células THP-1
13.
Pflugers Arch ; 476(8): 1289-1302, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38833170

RESUMEN

Osteoclasts are multinucleated cells of hematopoietic origin, with a pivotal role in bone development and remodeling. Failure in osteoclast differentiation and activation leads to various bone disorders; thus, attention has focused on a search of molecules involved in osteoclast regulatory pathways. Caspase-8 appears to be an interesting candidate for further exploration, due to its potential function in bone development and homeostasis. Mouse bone marrow cells were differentiated into osteoclasts by RANKL stimulation. Increased activation of caspase-8 and its downstream executioner caspases (caspase-3 and caspase-6) was found during osteoclastogenesis. Subsequent inhibition of caspase-8, caspase-3, or caspase-6, respectively, during osteoclast differentiation showed distinct changes in the formation of TRAP-positive multinucleated cells and reduced expression of osteoclast markers including Acp5, Ctsk, Dcstamp, and Mmp9. Analysis of bone matrix resorption confirmed significantly reduced osteoclast function after caspase inhibition. The results clearly showed the role of caspases in the proper development of osteoclasts and contributed new knowledge about non-apoptotic function of caspases.


Asunto(s)
Células de la Médula Ósea , Inhibidores de Caspasas , Diferenciación Celular , Osteoclastos , Ligando RANK , Animales , Ratones , Células de la Médula Ósea/metabolismo , Resorción Ósea/metabolismo , Caspasa 3/metabolismo , Caspasa 6/metabolismo , Caspasa 8/metabolismo , Inhibidores de Caspasas/farmacología , Células Cultivadas , Ratones Endogámicos C57BL , Osteoclastos/metabolismo , Ligando RANK/metabolismo , Fosfatasa Ácida Tartratorresistente/metabolismo
14.
Curr Issues Mol Biol ; 46(6): 5379-5396, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38920994

RESUMEN

The many limitations of implementing anticancer strategies under the term "precision oncology" have been extensively discussed. While some authors propose promising future directions, others are less optimistic and use phrases such as illusion, hype, and false hypotheses. The reality is revealed by practicing clinicians and cancer patients in various online publications, one of which has stated that "in the quest for the next cancer cure, few researchers bother to look back at the graveyard of failed medicines to figure out what went wrong". The message is clear: Novel therapeutic strategies with catchy names (e.g., synthetic "lethality") have not fulfilled their promises despite decades of extensive research and clinical trials. The main purpose of this review is to discuss key challenges in solid tumor therapy that surprisingly continue to be overlooked by the Nomenclature Committee on Cell Death (NCCD) and numerous other authors. These challenges include: The impact of chemotherapy-induced genome chaos (e.g., multinucleation) on resistance and relapse, oncogenic function of caspase 3, cancer cell anastasis (recovery from late stages of apoptosis), and pitfalls of ubiquitously used preclinical chemosensitivity assays (e.g., cell "viability" and tumor growth delay studies in live animals) that score such pro-survival responses as "lethal" events. The studies outlined herein underscore the need for new directions in the management of solid tumors.

15.
J Hepatol ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38936554

RESUMEN

BACKGROUND & AIMS: Gut bacterial translocation contributes to immune dysfunction and spontaneous bacterial peritonitis (SBP) in cirrhosis. We hypothesized that exposure of peritoneal macrophages (PMs) to bacterial DNA results in type-I interferon (IFN) production, shaping subsequent immune responses, inflammasome activation, and the release of damage-associated molecular patterns (DAMPs). METHODS: PMs from patients with cirrhosis were stimulated with E. coli single-stranded DNA (ssDNA), lipopolysaccharide and IFN, or infected with E. coli, S. aureus, and Group B streptococcus in vitro. Cytokine release, inflammasome activation, and DAMP release were quantified by quantitative-PCR, ELISA, western blots, and reporter cells employing primary PMs, monocytes, and caspase-deficient THP-1 macrophages. Serum progranulin concentration was correlated with transplant-free survival in 77 patients with SBP. RESULTS: E. coli ssDNA induced strong type-I IFN activity in PMs and monocytes, priming them for enhanced lipopolysaccharide-mediated tumor necrosis factor production without inducing toll-like receptor 4 tolerance. During in vitro macrophage bacterial infection, type-I IFN release aligned with upregulated expression of IFN-regulatory factors (IRF)1/2 and guanylate binding proteins (GBP)2/5. PMs upregulated inflammasome-associated proteins and type-I IFN upon E. coli ssDNA exposure and released interleukin-1ß upon bacterial infection. Proteomic screening in mouse macrophages revealed progranulin release as being caspase-11-dependent during E. coli infection. PMs and THP-1 macrophages released significant amounts of progranulin when infected with S. aureus or E. coli via gasdermin D in a type-I IFN- and caspase-5-dependent manner. During SBP, PMs upregulated IRF1, GBP2/5 and caspase-5 and higher serum progranulin concentrations were indicative of lower 90-day transplant-free survival after SBP. CONCLUSIONS: Type-I IFN shapes peritoneal immune responses and regulates caspase-5-mediated progranulin release during SBP. IMPACT AND IMPLICATIONS: Patients with cirrhosis exhibit impaired immune responses and increased susceptibility to bacterial infections. This study reveals that type-I interferon responses, triggered by pathogen-associated molecular patterns, are crucial in regulating macrophage activation and priming them for inflammatory responses. Additionally, we elucidate the mechanisms by which type-I interferons promote the release of progranulin from macrophages during spontaneous bacterial peritonitis. Our findings enhance understanding of how bacterial translocation affects immune responses, identify novel biomarkers for inflammasome activation during infections, and point to potential therapeutic targets.

16.
Apoptosis ; 29(7-8): 938-966, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38824481

RESUMEN

Caspases are enzymes with protease activity. Despite being known for more than three decades, caspase investigation still yields surprising and fascinating information. Initially associated with cell death and inflammation, their functions have gradually been revealed to extend beyond, targeting pathways such as cell proliferation, migration, and differentiation. These processes are also associated with disease mechanisms, positioning caspases as potential targets for numerous pathologies including inflammatory, neurological, metabolic, or oncological conditions. While in vitro studies play a crucial role in elucidating molecular pathways, they lack the context of the body's complexity. Therefore, laboratory animals are an indispensable part of successfully understanding and applying caspase networks. This paper aims to summarize and discuss recent knowledge, understanding, and challenges in caspase knock-out mice.


Asunto(s)
Caspasas , Ratones Noqueados , Animales , Caspasas/metabolismo , Caspasas/genética , Ratones , Humanos , Apoptosis , Inflamación/enzimología , Modelos Animales de Enfermedad
17.
Eur J Immunol ; 53(11): e2250235, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-36782083

RESUMEN

Regulated cell death (RCD) triggered by innate immune activation is an important strategy for host survival during pathogen invasion and perturbations of cellular homeostasis. There are two main categories of RCD, including nonlytic and lytic pathways. Apoptosis is the most well-characterized nonlytic RCD, and the inflammatory pyroptosis and necroptosis pathways are among the best known lytic forms. While these were historically viewed as independent RCD pathways, extensive evidence of cross-talk among their molecular components created a knowledge gap in our mechanistic understanding of RCD and innate immune pathway components, which led to the identification of PANoptosis. PANoptosis is a unique innate immune inflammatory RCD pathway that is regulated by PANoptosome complexes upon sensing pathogens, pathogen-associated molecular patterns (PAMPs), damage-associated molecular patterns (DAMPs) or the cytokines produced downstream. Cytosolic innate immune sensors and regulators, such as ZBP1, AIM2 and RIPK1, promote the assembly of PANoptosomes to drive PANoptosis. In this review, we discuss the molecular components of the known PANoptosomes and highlight the mechanisms of PANoptosome assembly, activation and regulation identified to date. We also discuss how PANoptosomes and mutations in PANoptosome components are linked to diseases. Given the impact of RCD, and PANoptosis specifically, across the disease spectrum, improved understanding of PANoptosomes and their regulation will be critical for identifying new therapeutic targets and strategies.


Asunto(s)
Apoptosis , Piroptosis , Muerte Celular , Citosol , Inmunidad Innata
18.
Am J Physiol Heart Circ Physiol ; 327(1): H1-H11, 2024 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-38700493

RESUMEN

Although the unfolded protein response (UPR) contributes to survival by removing misfolded proteins, endoplasmic reticulum (ER) stress also activates proapoptotic pathways. Changed sensitivity to normal developmental stimuli may underlie observed cardiomyocyte apoptosis in the healthy perinatal heart. We determined in vitro sensitivity to thapsigargin in sheep cardiomyocytes from four perinatal ages. In utero cardiac activation of ER stress and apoptotic pathways was determined at these same ages. Thapsigargin-induced phosphorylation of eukaryotic initiation factor 2 (EIF2A) was decreased by 72% between 135 and 143 dGA (P = 0.0096) and remained low at 1 dPN (P = 0.0080). Conversely, thapsigargin-induced caspase cleavage was highest around the time of birth: cleaved caspase 3 was highest at 1 dPN (3.8-fold vs. 135 dGA, P = 0.0380; 7.8-fold vs. 5 dPN, P = 0.0118), cleaved caspase 7 and cleaved caspase 12 both increased between 135 and 143 dGA (25-fold and 6.9-fold respectively, both P < 0.0001) and remained elevated at 1 dPN. Induced apoptosis, measured by TdT-mediated dUTP nick-end labeling (TUNEL) assay, was highest around the time of birth (P < 0.0001). There were changes in myocardial ER stress pathway components in utero. Glucose (78 kDa)-regulated protein (GRP78) protein levels were high in the fetus and declined after birth (P < 0.0001). EIF2A phosphorylation was profoundly depressed at 1 dPN (vs. 143 dGA, P = 0.0113). In conclusion, there is dynamic regulation of ER proteostasis, ER stress, and apoptosis cascade in the perinatal heart. Apoptotic signaling is more readily activated in fetal cardiomyocytes near birth, leading to widespread caspase cleavage in the newborn heart. These pathways are important for the regulation of normal maturation in the healthy perinatal heart.NEW & NOTEWORTHY Cardiomyocyte apoptosis occurs even in the healthy, normally developing perinatal myocardium. As cardiomyocyte number is a critical contributor to heart health, the sensitivity of cardiomyocytes to endoplasmic reticulum stress leading to apoptosis is an important consideration. This study suggests that the heart has less robust protective mechanisms in response to endoplasmic reticulum stress immediately before and after birth, and that more cardiomyocyte death can be induced by stress in this period.


Asunto(s)
Animales Recién Nacidos , Apoptosis , Miocitos Cardíacos , Tapsigargina , Animales , Apoptosis/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Ovinos , Tapsigargina/farmacología , Femenino , Factor 2 Eucariótico de Iniciación/metabolismo , Estrés del Retículo Endoplásmico/efectos de los fármacos , Fosforilación , Chaperón BiP del Retículo Endoplásmico , Embarazo , Respuesta de Proteína Desplegada , Células Cultivadas , Proteínas de Choque Térmico/metabolismo , Transducción de Señal , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/efectos de los fármacos
19.
Biochem Soc Trans ; 52(1): 441-453, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38334140

RESUMEN

With the discovery of CRISPR-controlled proteases, CRISPR-Cas has moved beyond mere nucleic acid targeting into the territory of targeted protein cleavage. Here, we review the understanding of Craspase, the best-studied member of the growing CRISPR RNA-guided protease family. We recollect the original bioinformatic prediction and early experimental characterizations; evaluate some of the mechanistic structural intricacies and emerging biotechnology; discuss open questions and unexplained mysteries; and indicate future directions for the rapidly moving field of the CRISPR proteases.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Péptido Hidrolasas/genética , Péptido Hidrolasas/metabolismo , ARN/metabolismo , Biotecnología , Endopeptidasas/metabolismo
20.
J Biol Inorg Chem ; 29(2): 217-241, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38369679

RESUMEN

We previously reported that the bismuth(III) dithiocarbamate derivative, bismuth diethyldithiocarbamate (1) exhibited greater cytotoxicity while inducing apoptosis via the intrinsic pathway in MCF-7 cells. We further evaluated the other bismuth(III) dithiocarbamate derivatives, Bi[S2CNR]3, with R = (CH2CH2OH)(iPr), (CH2)4, and (CH2CH2OH)(CH3), denoted as 2, 3, and 4, respectively, in the same MCF-7 cell line. 2-4 were found to exhibit IC50 values of 10.33 ± 0.06 µM, 1.07 ± 0.01 µM and 25.37 ± 0.12 µM, respectively, compared to that of cisplatin at 30.53 ± 0.23 µM. Apoptotic promotion via the mitochondrial-dependent pathway was due to the elevation of intracellular reactive oxygen species (ROS), promotion of caspases, release of cytochrome c, fragmentation of DNA, and results of staining assay observed in all compound-treated cells. 2-4 are also capable of suppressing MCF-7 cell invasion and modulate Lys-48 also Lys-63 linked polyubiquitination, leading to proteasomal degradation. Analysis of gene expression via qRT-PCR revealed their modulation, which supported all activities conducted upon treatment with 2-4. Altogether, bismuth dithiocarbamate derivatives, with bismuth(III) as the metal center bound to ligands, isopropyl ethanol, pyrrolidine, and methyl ethanol dithiocarbamate, are potential anti-breast cancer agents that induce apoptosis and suppress metastasis. Further studies using other breast cancer cell lines and in vivo studies are recommended to clarify the anticancer effects of these compounds.


Asunto(s)
Antineoplásicos , Apoptosis , Bismuto , Neoplasias de la Mama , Mitocondrias , Tiocarbamatos , Humanos , Bismuto/química , Bismuto/farmacología , Apoptosis/efectos de los fármacos , Tiocarbamatos/farmacología , Tiocarbamatos/química , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Células MCF-7 , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/patología , Adenocarcinoma/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Femenino , Invasividad Neoplásica , Ensayos de Selección de Medicamentos Antitumorales , Proliferación Celular/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda